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Abstract: 
As the brain ages, it almost invariably accumulates vascular pathology, which differentially 

affects the white matter. The microstructure of the white matter may therefore reveal a brain 

age reflecting cerebrovascular disease burden and a relationship to vascular risk factors. In 

this study, a white matter specific brain age was developed from diffusion weighted imaging 

(DWI) using a three-dimensional convolutional neural network (3D-CNN) deep learning 

model in both cross-sectional data from UK biobank participants (n = 37327) and a 

longitudinal subset (n = 1409) with an average of 2.25 years follow up. We achieved a mean 

absolute error (MAE) of white matter brain age prediction of 2.84 years and a Pearson’s r of 

0.902 with chronological age in the test participants.  The average white matter brain age gap 

(WMBAG) of the baseline 1409 participants with repeated scans were 0.36 ± 0.11 years 

younger than that of other participants in the baseline test sample with single time-point MRI 

scan (n = 9759). Individual vascular risk factors and the cumulative vascular risk score were 

significantly correlated with greater WMBAG  Obesity was observed to be correlated with 

WMBAG only in the male participants. Participants with one, two, and three or more 
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vascular risk factors, compared to those without any, showed an elevated WMBAG of 0.54, 

1.23, and 1.94 years, respectively. Baseline WMBAG was also associated significantly with 

processing speed, executive and global cognition after Bonferroni correction. The significant 

associations of diabetes and hypertension with poor processing speed and executive function 

were found to be mediated through the WMBAG. However, the vascular risk factors did not 

associate with the two-year change in WMBAG in the longitudinal dataset. Our analysis 

suggests that tissue-specific brain age can be successfully targeted for the examination of the 

most relevant risk factors and cognition, although longer-term longitudinal data are needed to 

demonstrate its dynamic characteristics. The results suggest an intriguing possibility that a 

white matter brain age gap can serve as a potential neuroimaging biomarker for an 

individual’s cerebrovascular ageing process.  

 
 
Keywords: vascular risk factors, white matter brain age, diffusion weighted imaging, deep 
learning networks 
 
 
1.  INTRODUCTION 

 
Brain ageing is a complex biological process in middle-to-late aged individuals, accompanied 

by changes at all levels from molecules and morphology to advanced brain functions1. 

Exposure to different hazardous vascular risk factors such as hypertension, diabetes, and 

hypercholesterolemia aggravate the vascular burden and accelerate the cerebrovascular 

ageing trajectory. Given that different organs or systems usually demonstrate heterogeneous 

ageing rates, an individual might have multiple underlying bodily ages2, such as bone age, 

renal age, and lung age, in addition to their chronological age. Brain age is a special case in 

this context, and it arguably reflects the brain’s biological status.  Previous studies have 

investigated brain age using high-dimensional neuroimaging data in a machine learning 

framework for healthy populations 3, 4 or people with specific brain diseases 5, 6.  Brain age 
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gap (BAG) is the difference calculated by subtracting the chronological age from predicted 

brain age, which describes how one’s brain health deviates from what would be expected for 

the chronological age. Positive brain age gap (i.e., an older predicted brain age than 

chronological age) was usually reported to be associated with brain disorders such as 

Alzheimer’s Disease (AD) 7, multiple sclerosis 8, and schizophrenia 6.  

 

Different anatomical locations and brain tissue types of the brain show different vulnerability 

to vascular risk factors9, 10 . Due to the ‘outside in’ vascularisation pattern11 with key 

regulating vessels outside the brain parenchyma, the number of arterioles supplying grey 

matter are considered eight times more than that in white matter12. As a result, white matter, 

particularly deep white matter, is more susceptible to ischaemia than grey matter.  Brain 

lesions observed in cerebrovascular disorders are more relevant to white matter, such as 

white matter hyperintensity (WMH), lacunes, microbleeds and enlarged perivascular 

spaces13. Therefore, to investigate the cerebrovascular burden on the white matter, tissue-

specific brain ages should be established. To our knowledge, most brain age studies thus far 

have generated a single brain age using T1-weighted imaging scans. Tissue-specific brain 

ages, especially white matter brain age, have not been fully investigated. A recent study 14 

proposed a grey matter brain age, which was suggested as a biomarker of the risk of 

dementia. Benson Mwangi et al.15 developed a diffusion weighted imaging (DWI) derived 

brain age, but the main aim of the study was to prove the concept and demonstrate the 

validity of establishing brain age using DWI scans rather than the usual T1-weighted scans. 

Further, they did not explore specific relationships between cerebrovascular burden and this 

DWI-derived brain age. In a more recent study16, over 1000 neuroimaging phenotypes 

derived from multimodality MRI scans including DWI were used in a linear regression model 

to estimate brain age. So far, there has been few explorations of the relationship between 
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vascular risks and its cerebrovascular consequences in white matter by using white matter 

brain age.   

 

The primary objective of this study was to investigate whether vascular risk factors would be 

associated with an accelerated brain ageing process measured by ‘white matter specific brain 

age’ in community-dwelling, middle to older aged adults drawn from a UK Biobank cohort 

cross-sectionally and a longitudinal subset. DWI is a sensitive and reliable technique for 

monitoring white matter microstructural impairment. Using deep learning techniques, we 

developed a DWI-derived white matter brain age as a biomarker to characterise the 

microstructural changes in relation to vascular risk factors and cognition. The individual and 

accumulative effects of vascular risk factors and their sex stratifications on the white matter 

brain age gap (WMBAG) and cognition were examined. We hypothesised that the DWI-

derived white matter brain age would reflect the cumulative cerebrovascular burden and 

thereby enhance the understanding of how vascular risk factors may accelerate the biological 

ageing of the white matter. 

 

 

2.  METHODS 

2.1 Participants   

Data for this study were drawn from UK Biobank, a large-scale ongoing prospective 

population-based cohort study 17. A flowchart of the selection of participants can be found in 

Figure 1. Briefly, after visual inspection of 37327 eligible DWI scans, 98 participants with 

poor image quality were removed, leaving 37229 at baseline to be included in this study. 

After excluding 3399 participants with severe self-reported brain related disorders (Field ID 

20002, see Supplementary Table e-1) to ensure a relatively healthy sample for deep learning 
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training, 60% (n = 19526) of the remaining participants were randomly selected to the 

training set. Twenty percent (n = 6515) were used as the validation set which provided an 

unbiased evaluation of a model fit on the training dataset while selecting the model's 

structures (e.g., the type of loss function and optimiser for training a neural network). The 

remaining 20% were combined with the unhealthy participants as identified above (n = 

11168) for use in the test set. In this test sample, 1409 participants had both baseline and 

follow-up scans that were used for longitudinal analysis.  

 

The ethics of this study has been approved by the North West Multi-centre Research Ethics 

Committee (MREC) and written informed consent was obtained from all participants. 

 

2.2 MRI acquisition and imaging processing 

DWI scans were acquired from three imaging centres (Cheadle Greater Manchester, 

Newcastle and Reading, UK), and each centre used a 3T Siemens Skyra scanner with a 

standard Siemens 32-channel head coil and same parameters.  Details of imaging protocols 

can be found in the online UK Biobank brain imaging documentation 

(https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/brain_mri.pdf). The original DWI data had 

been pre-processed with eddy currents and head motion correction by UK Biobank using the 

FMRIB Software Library (FSL) toolkit18. The diffusion-tensor-imaging fitting tool (DTIFIT) 

was used to generate the following DWI-derived maps in native space: FA (fractional 

anisotropy), MD (mean diffusivity), AxD (axial diffusivity), RD (radial diffusivity) and MO 

(tensor mode). The individual maps were nonlinearly warped to a 2 × 2 × 2 mm3 MNI-152 

standard space using FNIRT (FMRIB’s Nonlinear Image Registration Tool)19. The standard-

space DWI-derived maps for each individual were finally used as the input for the deep 
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learning model. All DWI-derived maps were visually inspected before being used as input for 

the deep learning networks. 

 

2.3 White matter brain age computation 

A three-dimensional convolutional neural network (3D-CNN) deep learning model was used 

to establish white matter brain age, the structure of which is illustrated in Figure 2.  

 

2.3.1 Convolutional neural network architecture for each DWI map 

A 3D-CNN architecture was applied to estimate white matter brain age using DWI maps. The 

architecture follows the Simple Fully Convolutional Network (SFCN) proposed by Peng Han 

et al. 20 due to its simplicity, which is based on VGGNet 21 with fully convolutional 

structures22.  

 

Briefly, the network received a 91 × 109 × 91 3D image and the corresponding sex and 

scanner of a participant as input, and the output was the predicted age at the last layer. The 

network consisted of eight blocks, as shown in Figure 2, and each of the first five blocks 

contained a 3D convolutional layer with kernel size 3 × 3 × 3, a 3D batch normalisation 

layer, a 3D max-pooling layer, and a ReLU23 activation layer. The sixth block had a 1 × 1 × 1 

3D convolutional layer, a batch normalisation layer, and a ReLU activation layer. The 

seventh block contained a dropout layer (activated only during the training process by 

randomly dropping 50% of the elements) and a fully connected layer. The spatial dimension 

was reduced to 2 × 3 × 2 after the sixth block. The flatten operator was applied to resize the 

tensor to a vector before applying the seventh block. Instead of going through the 3D-CNN 

network as images, the extra information such as sex and scanner was incorporated into the 

feature map by concatenation before the eighth block. Finally, linear regression was 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted February 7, 2022. ; https://doi.org/10.1101/2022.02.06.22270484doi: medRxiv preprint 

https://doi.org/10.1101/2022.02.06.22270484
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 
 

employed in the eighth block for fusing the image features and the information of sex and 

scanner, with the output being a scalar for the predicted white matter brain age. The channel 

numbers used in the first six 3D convolution layers were [32, 64, 128, 256, 256, 64].  

 

The internal process of the model can be summarised into three stages: (1) Nonlinear feature 

extraction: The first six blocks extracted feature maps from each input image; (2) Tensor to 

vector: The seventh block smoothly transformed the 3D tensor to a vector for downstream 

age prediction; and (3) Linear regression: The eighth block incorporated the extra sex and 

scanner information, and the output was the predicted age.  

 

2.3.2 Network architecture for fusing all five diffusion maps 

To increase the white matter brain age prediction accuracy, the five resultant DWI-derived 

maps (FA, MD, AxD, RD and MO) were incorporated to generate a composite metric. Five 

3D CNN networks with the same structure as discussed above were applied, with each 

network modelling each feature map separately. In terms of feature fusion, we adopted a 

simple concatenation to fuse the five feature maps after the seventh block, as well as the 

covariates (i.e., sex and scanner). The two covariates were applied to all five feature maps. 

The resultant feature map was a vector with (100*5 +2) entries, namely 100 entries for each 

feature map and 2 entries for two covariates. Similarly, linear regression was employed in the 

eighth block for mapping the fused features into the final predicted age. 

To reduce the computational cost, instead of retraining five 3D CNN networks 

simultaneously from scratch, we reused the intermediate feature maps learned during the 

analysis of each of the five DWI-derived maps and only trained the eighth block accordingly. 

 

2.3.3 Bias correction 
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The predicted ages normally suffer from the issue of underfitting due to regression dilution 

and non-Gaussian age distribution, which means older participants will be estimated with a 

younger brain age while younger participants will be estimated with an older brain age. As 

reported by Smith et al.24, bias correction is an essential postprocessing technique in most 

brain-age prediction studies. Using the techniques proposed by Smith et al24, we applied the 

linear bias correction method to the predicated age before the subsequent investigations with 

clinical measurements, where ! and !" denote the chronological age and predicted age, 

respectively. We can fit a linear regression !" = $! + & on the left-out validation set with 

known chronological age. Applying the learned coefficients ($, &), the corrected predicted 

age !"!" for test set can be estimated by 

!"!" =
!" − &
$  

where we assume the coefficients ($, &) can be generalised to the test set.  

 

2.3.4 Model performance  

Model performance was evaluated by two predominant measures in this study. Mean absolute 

error (MAE) was defined as +,-	 = #
$∑ |123456734_9:3% − 	6ℎ2<=<><:569>_9:3%|$

%&# , 

Pearson’s correlation coefficient (Pearson’s r) was applied to characterise the correlation 

between chronological age and predicted age. 

 

2.4 Vascular risk score (VRS) and Apolipoprotein E (APOE) ε4 carrier status 

While a variety of vascular risk factors have been reported in previous decades, we 

incorporated five essential vascular risk factors, i.e.: (1) hypertension; (2) diabetes; (3) 

hypercholesterolemia; (4) obesity; and (5) smoking. An Omron HEM-7015IT device was 

used to automatically evaluate the seated blood pressure twice; the mean blood pressure for 
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each individual was computed by averaging these two measurements. Participants with 

hypertension were defined with blood pressure over 140/90 mmHg or using lowering blood 

pressure medication (Field IDs 6177 and 6153).  Participants with diabetes were defined 

according to the doctor’s diagnosis (Field ID 2443) and anti-diabetes medication (Field IDs 

6177 and 6153). Hypercholesterolemia was identified according to the medication 

information (Field IDs 6177 and 6153). Obesity was defined as body-mass-index (BMI) ≥ 30, 

which was constructed from ratio of height and weight measured during the initial assessment 

(Field ID 21001). Smoking was defined as current or previous smoking history (Field ID 

20116). Each vascular risk factor was binarized with 1 indicating presence of that factor and 

0 otherwise. A composite vascular risk factor score (VRS) was generated to evaluate the 

overall cerebrovascular burden by calculating the total numbers of vascular risk factors using 

a method applied similarly in other studies25. Given that there were a very small number of 

subjects who scored 4 (n = 408, 3.7%) or 5 (n = 82, 0.7%), the VRS was categorised into 0, 

1, 2 and ≥ 3.   

 

DNA from a blood sample of first recruited participants (approximately 50,000) were 

genotyped in the UK biobank using Affymetrix UK BiLEVE Axiom array; the rest were 

genotyped with Affymetrix UK Biobank Axiom array26. Two APOE coding single nucleotide 

polymorphisms (SNPs) rs7412 and rs429358 downloaded from the genotyped data were used 

to determine the APOE genotype 27.  APOE was considered as the major genetic AD risk 

factor, however, it was also reported to be associated with cerebrovascular lesions. As a 

result, APOE ε4 carrier status was also included in this study as a covariate and was 

classified into three categories based on the number of ε4 alleles, i.e., non-carriers; carriers 

with one ε4 allele; carriers with two ε4 alleles.   
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2.5 Cognitive tests 

Seven neuropsychological tests were included in this study: Reaction Time, Trail Making 

Test A and Symbol Digit Substitution for assessing processing speed; Numeric Memory and 

Pairs Matching for assessing memory; Trail Making Test B and Fluid Intelligence for 

assessing executive function.  Raw scores for these tests were standardised by transforming 

the raw cognitive scores into z-scores using the healthy reference subsample of UK Biobank 

at baseline. Specific cognitive domain scores were computed by averaging the corresponding 

cognitive test scores within a domain and then standardising against the healthy subsample. 

Global cognition was computed by averaging the scores across all three cognitive domains 

and again standardising against the healthy subsample. Further details of the standardisation 

procedure can be found in our previous work using the UK Biobank data 28.  

 

2.6 Statistical analysis 

Statistical analyses were conducted using SPSS (IBM corporation, USA) version 26.0 and R 

version 3.6.1. Two-tailed p ˂ 0.05 was considered statistically significant. The difference of 

WMBAG between healthy and unhealthy participants in the baseline test set was compared 

using Analysis of Covariance (ANCOVA) adjusting for chronological age, sex, scanner and 

APOE status. Comparison of baseline age, sex, education and risk factors between test 

participants who had only one time-point brain scan and 1409 participants who had repeat 

(follow-up) scans was conducted using independent-t test and c2 analysis, while comparison 

of white matter brain age measures and cognition was performed by ANCOVA controlling 

for baseline chronological age, sex, and scanner and APOE. 

 

Multiple linear regression models were conducted to investigate the associations between 

vascular risk factors and WMBAG at baseline. VRS was dummy coded with the 0 category 
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as reference in all analyses. Eight regression models were used in this analysis for analysing 

the vascular risk factors - see their mathematical expressions in Supplementary methods. For 

model 1a, we investigated the main effect of VRS on the white matter brain age gap. For 

model 1b, interaction terms (sex times different VRS levels) were added to the model to 

examine if the effects of VRS differ by sex. In model 2a, to determine the specific 

contribution of each risk factor, the VRS was replaced with all five vascular risk factors. In 

model 2b-f, we investigated the moderation effect of sex on the relationship between each 

vascular risk factor and WMBAG. Chronological age, sex, scanner and APOE status were 

controlled for all models. 

 

The association between WMBAG and cognition at baseline was first examined. Then 

mediation analysis with WMBAG as a mediator and cognition as outcome, was carried out 

among baseline participants with VRS and individual risk factors as predictors. Baseline 

chronological age, sex, scanner, APOE and education were controlled. Bonferroni correction 

was applied for these analyses with four cognitive outcomes (corrected alpha level = 0.05/4 = 

0.0125).  Mediation analysis was performed using the ‘mediation’ package29 in R. Direct and 

indirect effects were estimated via bootstrapping with 5,000 samples.   

 

For longitudinal analysis, a dependent t-test was conducted to examine change in WMBAG 

between baseline and follow-up. To explore the prospective effects in the longitudinal subset, 

we first conducted multiple linear regression to examine the relationships between baseline 

vascular risk factors and change in WMBAG (calculated as the difference between follow-up 

and baseline scores), and that between WMBAG change and cognition change. Mediation 

analysis was then conducted to examine the direct and indirect effects of vascular risk factors 

on change in cognition, through change in WMBAG.  
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2.7 Data and code availability statement 

The UK Biobank data can be accessed by online application (https://www.ukbiobank.ac.uk/). 

Codes for the 3D-CNN deep learning model in this study can be shared from the authors 

upon request. 

 

 

3.  RESULTS 

3.1 Sample characteristics 

Sample characteristics including demographics and vascular risk factors of test data are 

shown in Table 1. Cross-sectional test data included 7769 healthy participants and 3399 

unhealthy participants. Among them, 1409 participants with both the baseline and follow-up 

scans were used for longitudinal analysis.  

 

3.2 White matter brain age prediction 

The white matter brain age predictions before and after bias correction for the whole test set 

are shown in Figure 3 (A and B). Spearman correlation coefficient between WMBAG and 

chronological age for the whole cross-sectional test participants was reduced from -0.54 

before bias correction to 0.04 after bias correction, with a slight increase of MAE from 2.57 

to 2.84. Pearson’s r between white matter brain age and chronological age is 0.902.   

 

Cross-sectional white matter brain age which was computed using our 3D-CNN model and 

WMBAG are summarised in Table 2.  Interestingly, participants with none of the vascular 

risk factors had a negative mean WMBAG of 0.56, which suggested that they had a brain 

0.56 years younger on average than their chronological age. Performances for all DWI maps 
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and fusion results are listed in Table 3. The MAE for the fused white matter brain age was 

smaller than that of any other single DWI derived map. MAE measured on the healthy test 

data was 2.75 years (Table 3 and Supplementary Figure e-1A) with Pearson’s r between 

chronological and predicted brain age of 0.908 (p < 0.001). For unhealthy test data (Table 3 

and Supplementary Figure e-1B), the MAE was 3.03 with Pearson’s r = 0.892 (p < 0.001). 

Due to the best performance of the fusion of all five DWI maps, we conducted the subsequent 

clinical analysis using the fused predicted age. The mean WMBAG for unhealthy test 

participants was 0.51 ± 0.08 years older than healthy test participants (p < 0.001, 95% CI = 

0.348 – 0.668). Comparison of baseline characteristics between 9759 baseline participants 

with single time-point scans and 1409 participants who had repeat scans were listed in 

Supplementary Table e2; at baseline, the WMBAG of the participants who had follow-up 

brain scans were 0.36 ± 0.11 years lower than that of the rest baseline participants.  The 

cognitive scores such as processing speed, executive function, memory, and global cognition 

of the participants with follow-up scans were significantly higher than those of the rest of the 

test sample participants at baseline (see supplementary Table e2).  

 

3.3 Cross-sectional analysis at baseline 

3.3.1 Associations between risk factors and WMBAG 

In model 1a, after controlling for chronological age, sex, scanner and APOE status, 

participants with one, two, and three or more vascular risk factors had an increased WMBAG 

of 0.54, 1.23, and 1.94 years older, respectively, than those without vascular risk factors 

(Table 4; also see Figure 4A).  In model 1b, significant interaction between sex and VRS on 

its association with WMBAG was found (p = 0.015; Table 4).  Among participants with three 

or more vascular risk factors, the WMBAG of males was significantly larger than that of 
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females (mean difference = 0.617 years, p = 0.001). No significant difference of WMBAG 

between males and females was found for those with 0, 1 or 2 risk factors (Figure 4B).  

 

Apart from the composite VRS, we also observed significant unique contributions of each 

individual risk factor (except obesity) to the WMBAG when controlling for other risk factors 

and covariates, in model 2a (Table 5). Having diabetes was more strongly associated with 

WMBAG (1.39 years, p = 0.002), relative to other risk factors. Interestingly, in models 2b-f, 

we found that all interaction terms were not significant, except for the interaction between 

obesity and sex (Table 5). We found that female participants with obesity did not have larger 

WMBAG, while males with obesity had significant larger WMBAG than those without 

obesity (Figure 4C). Different APOE ε4 carrier status was not associated with the WMBAG 

in any of the models (all p values > 0.05).   

 

3.3.2 Association between cognition and WMBAG 

After controlling for age, sex, scanner, APOE and education, WMBAG was found to be 

significantly and negatively associated with baseline processing speed (unstandardised b = -

0.025, p < 0.001), executive function (unstandardised b = -0.018, p < 0.001), memory 

(unstandardised b = -0.008, p = 0.027) and global cognition (unstandardised b = -0.022, p < 

0.001). However, only speed, executive function and global cognition survived after the 

Bonferroni correction. 

 

Mediation analysis on baseline data is summarized in Table 6.  Significant mediation effects 

of WMBAG were observed for the associations between hypertension and processing speed, 

executive function and global cognition (bs = -0.019 ~ -0.014, all p values < 0.001), and the 

associations between diabetes and these cognitive outcomes (bs = -0.033 ~ -0.024, all p 
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values < 0.001). Smoking was also found to be associated with processing speed and 

executive function decline via WMBAG (b = -0.014, p < 0.001 and b = -0.010, p < 0.001, 

respectively), and was also associated with executive function, memory, and global cognition 

directly (bs = -0.071 ~ -0.007, all p values < 0.05. Obesity was associated with processing 

speed decline directly (b = -0.103, p = 0.001), but not mediated by WMBAG (b = 0.003, p = 

0.200). 

 

3.4 Longitudinal analysis 

The demographics of 1409 participants with baseline and follow-up scans are shown in Table 

1. Estimated white matter brain age and WMBAG for both timepoints are presented in Table 

2. Generally, participants underwent an average 2.25 ± 0.12 years of follow up (ranging from 

2.01 to 2.67 years). One thousand three hundred and fourteen (93.26%) participants had 

increased white matter brain age with an average of 2.57 ± 1.48 years (dependent t-test, p < 

0.001) between baseline and follow-up scans (Figure 5). VRS was not associated with the 

WMBAG change, no individual vascular risk factors contributed significantly to the 

WMBAG change expect for obesity (Supplementary Table e-3). While the presence of 

obesity contributed to decrease in WMBAG (unstandardised b = -0.371, p = 0.008), the 

direction of which was not within our expectation. No significant associations between 

WMBAG change and cognition change were observed (Supplementary Table e-4). 

Moreover, we did not find any significant mediation effect of WMBAG change on the 

relationships between vascular risk factors and cognition change (all p values > 0.05, see 

Supplementary Table e-5).   

 

 

4.  DISCUSSION 
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This study had three main findings. First, we successfully developed a deep learning model 

using convolutional neural network (CNN) for estimating brain age based on cerebral white 

matter only. Our model produced robust and accurate white matter brain age prediction in 

healthy test subjects with MAE of 2.75 and Pearson’s r of 0.908 with chronological age. 

Second, we found that, cross-sectionally, cerebrovascular risk factors, both individually and 

collectively, were significantly associated with WMBAG, such that participants free of 

vascular risk factor had a younger brain (WMBAG = -0.56); higher WMBAG was associated 

with poorer cognitive performance, especially processing speed and executive function. 

Third, we demonstrated that WMBAG played a mediation role between vascular risk factors, 

namely, hypertension and diabetes, and declined cognition, especially with a slower 

processing speed and worse executive function.  

 

Our trained 3D-CNN model showed a better MAE in age prediction compared with many 

previous brain age studies30. Technically, this model was trained in a large population sample 

of healthy community-dwelling participants drawn from the UK Biobank, which enabled 

strong power for model estimation. The combined information extracted from all five DWI 

maps also improved the model accuracy; as shown in Table 3, the information from the 

fusion of five DWI maps resulted in a lower MAE and higher Pearson’s coefficient.  FA, 

MD, AxD, RD and MO maps are widely recognized DWI feature maps and have been shown 

to be significantly correlated with vascular risk factors31, 32. Each of them taps into distinct 

physiological properties of the white matter microstructure, from which the deep learning 

model extracted essential information for white matter brain age prediction. We conducted 

the bias correction for the original white matter brain age to remove the negative bias towards 

the chronological age. Taking all these technical steps into consideration, our deep learning 

model for white matter age predication was well established. The mean WMBAG for 
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unhealthy subjects was shown to be 0.51 ± 0.08 years greater than that of those healthy 

subjects. The 1409 participants who had repeat brain MRI scans did not only have better 

cognition, but also had a 0.36 ± 0.11 years younger brain age than the participants who had 

only a single time-point scan (p < 0.001). This might suggest the potential recruiting bias, as 

it was reported that the response rate to the repeat MRI scan was 65%33. Our method’s ability 

to detect the subtle brain age difference between the two groups of participants from the same 

cohort with only sample recruitment difference shows that our brain age estimation was 

accurate and reliable. Moreover, we also validated the model’s performance in the subsample 

with two time-point scans. After approximately an average of 2.25 years of follow up, 

93.26% of the 1409 participants had an increased white matter brain age compared with 

baseline, which further demonstrated that our deep learning model was robust and able to 

extract useful information from the DWI maps for white matter brain age prediction.  

 

Interestingly, the WMBAG computed in this study correlated with the cerebrovascular 

burden but not with the neurodegenerative risk factor, APOE genotype. Neurodegenerative 

and vascular risk factors are both associated with brain ageing34, 35. In our study, except for 

obesity, all vascular risk factors were significantly correlated with WMBAG with diabetes 

and hypertension having the highest correlations.  Our results suggested that the diabetic 

participants on average had a WMBAG of 1.39-years older than that of the non-diabetic 

participants; similarly, the brain of a hypertensive participant would have a WMBAG of 

0.871 years older than those without hypertension. Collectively, the accumulation of vascular 

risk factors led to a larger WMBAG, suggesting that WMBAG is a sensitive biomarker for 

monitoring the vascular burden. This finding was consistent with previous observations that 

hypertension and diabetes are the most widely recognized vascular risk factors that are highly 

associated with morbidity and mortality of cerebrovascular diseases (CVD)16, 36-38. One 
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previous study also reported that DWI based brain age gap was correlated with blood 

pressure and smoking39. However, no significant association was found between the APOE 

ε4 allele(s) status and WMBAG. APOE ε4 allele(s) has been recognized as the strongest 

genetic risk factor for sporadic Alzheimer’s Disease40. APOE genotypes with one or two ε4 

allele(s) lead to a three to 10 fold risk for AD, respectively41. While some studies also 

reported that AOPE was correlated with subcortical lesions such as WMH42 and 

microbleeds43, the findings were not always consistent. Most previous brain age studies 

aimed at capturing the overall changes for the whole brain, therefore unable to differentiate 

cerebrovascular burden from neurodegenerative burden. Although increasing evidence has 

suggested cerebrovascular disease and neurodegenerative disease share multiple risk factors 

and have overlapping neuropathologies44, 45, there is a general difference in their MRI 

manifestations. AD patients usually start grey matter atrophy at premorbid stage and the 

atrophy progresses with the advance of AD, while those with cerebrovascular disease usually 

suffer more from the subcortical lesions such as WMH, lacunes, microbleeds and enlarged 

perivascular spaces13. Our study was based on this hypothesis, and we used DWI for white 

matter brain age computation, given its sensitivity to the microstructural integrity and 

pathology of subcortical white matter. 

 

Sex dimorphism was observed when we considered the interactive effect between sex and 

vascular risk factors on the prediction of the WMBAG. Males showed higher WMBAG than 

females when they had three or more vascular risk factors. Obesity was the only vascular risk 

factor that showed interactive effect with sex on the WMBAG.  Only males with obesity had 

a significantly greater WMBAG, suggesting that obesity was detrimental to brain ageing in 

men but not in women.  This finding was in line with the finding of our previous study which 

investigated sex difference in WMH46; males with higher BMI showed significantly greater 
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deep WMH volume compared to women. Although the potential mechanisms underlying this 

sex difference have not been fully understood, other studies have also reported this 

interesting dimorphism, suggesting that females might be more resilient to the detrimental 

effect of obesity on the brain than males47. A cross-sectional study conducted in the UK 

Biobank cohort also found that obese men had a steeper grey matter volume decline than 

women48. One hypothesis posits that the distribution of adipose tissues in males and females 

is different - males tend to accrue more visceral fat, which heightens the vascular burden; 

conversely women usually accrue more fat in the subcutaneous depot, which is an 

independent predictor of lower cardiovascular and diabetes-related mortality49.  

 

Significant associations between WMBAG processing speed, executive function and global 

cognition after Bonferroni correction were observed cross-sectionally. Processing speed and 

executive function were considered to be the most vulnerable cognitive domains in CVD50. In 

comparison with AD patients, patients with CVD usually show less pronounced memory 

deficits51, although the memory dysfunction may also appear progressively during the later 

course of the disease. Consistent with the clinical differentiations between AD and CVD, we 

did not find a significant association between the WMBAG and memory loss after Bonferroni 

correction, which further demonstrated both specificity and reliability of our white matter 

brain age model in relation to the cerebrovascular disease burden, and that our model may 

have clinical utility.  

 

Using mediation analyses in baseline participants, we found that among the five 

cerebrovascular risk factors, only hypertension and diabetes were associated with processing 

speed, executive function, and global cognition through the mediation of WMBAG. These 

findings validated the underlying pathway that the vascular risk factors would contribute to 
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the pathological changes in the white matter and then lead to the cognitive dysfunction. 

However, obesity was the only vascular risk factor in our study that contributed directly to 

the cognitive decline but not through the WMBAG. Although some studies have observed a 

mediation effect of white matter changes on the relationship between obesity and cognition in 

healthy adults52, our result suggested otherwise. These modifiable vascular risk factors were 

also reported to be linked to late-life progression of brain disorders in longitudinal studies53, 

54, but few studies have conducted the mediation analysis in a longitudinal cohort with a 

relatively large sample size. However, our longitudinal analysis did not yield a significant 

mediation effect of WMBAG change between any vascular risk factor and cognitive decline. 

This may be partly due to the short period of time between baseline and follow-up (i.e., about 

2 years), where significant changes in WMBAG might be too subtle to be detected.  

Moreover, many participants had better cognition at follow-up than baseline due perhaps to 

practice effects (data not shown). 

 

We believe that future work should be carried out to further investigate the relationship 

between vascular risk factors and white matter brain age. Our stratification for the level of 

risk factors was based on the number of vascular risk factors, regardless of the type of 

vascular risk factors a participant had or the specific contribution of each risk factor. For 

example, a participant with diabetes only would be grouped with anyone with just one of the 

vascular risk factors we investigated regardless of the type, i.e., any of one of hypertension, 

diabetes, hypercholesterolemia, obesity or smoking. In this study, we ‘binarized’ our 

participants into ‘presence’ or ‘absence’ of a vascular risk factor. Comparisons were therefore 

limited to ‘yes’ or ‘no’ as to whether the participant had that particular vascular risk factor or 

not, with a lack of more nuanced investigations of the disease stage or disease severity 

dependent effects of clinical measurements on these risk factors.  Additionally, although we 
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have a longitudinal subset with a large sample size from UK Biobank, the follow-up time 

might be too short to uncover significant brain structural and cognitive changes. Some 

cerebrovascular and neurodegenerative pathologies may coexist in the brain ageing process, 

and it is difficult to differentiate the effect of these pathologies on white matter and grey 

matter distinctively.   
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Table 1 Characteristics of test samples. 
 

 Cross-sectional test sample (instance 2)  Longitudinal test sample (baseline 

instance 2, follow-up instance 3) 

 

 All test data  

(n = 11168) 

Healthy test data  

(n = 7769) 

Unhealthy test data  

(n = 3399) 

 Baseline 

(n = 1409) 

Follow-up 

(n = 1409) 

Demographics       

Male, number (%) 5111 (45.8) 3721 (47.9) 1390 (40.9)  685 (48.6) - 

Education, college number (%) 5434 (49.1) 3779 (49.1) 1655 (49.1)  684 (48.9) - 

Chronological age, years, mean ± SD  

range (min, max) 

63.94 ±7.52 

(45.49, 82.32) 

64.21	 ± 7.45 

(45.49, 82.32) 

63.30 ± 7.62 

(45.93, 80.97) 

 63.05 ±7.17 

(47.01, 80.33) 

65.30	 ± 7.17 

(49.36, 82.61) 

Risk factors       

Hypertension, number (%) 5618 (50.4) 3858 (49.8) 1760 (51.8)  703 (49.9) - 

Diabetes, number (%) 610 (5.5) 390 (5.0) 220 (6.5)  66 (4.7) - 

Hypercholesterolemia, number (%) 2713 (24.5) 1706 (22.2) 1007 (30.0)  299 (21.4) - 

Obesity, number (%) 2070 (19.0) 1265 (16.8) 805 (23.9)  232 (16.6) - 

Smoking, number (%) 4222 (38.1) 2863 (37.2) 1359 (40.3)  459 (32.8) - 

VRS, number (%)       

Score = 0 2659 (24.7) 1935 (26.1) 724 (21.8)  400 (28.9) - 

Score = 1 3718 (34.6) 2654 (35.7) 1064 (32.0)  496 (35.8) - 

Score = 2 2600 (24.2) 1756 (23.6) 844 (25.4)  290 (20.9) - 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted February 7, 2022. ; https://doi.org/10.1101/2022.02.06.22270484doi: medRxiv preprint 

https://doi.org/10.1101/2022.02.06.22270484
http://creativecommons.org/licenses/by-nc-nd/4.0/


27 
 

 
Instance 2/3 means the first or second imaging assessment. Due to some missing values of the risk factors, the valid percentage of the risk factors 
were calculated for the remaining participants. The numbers for cross-sectional analysis are: college, n = 11071; hypertension, n = 11151; 
diabetes, n = 11103; hypercholesterolemia, n = 11060; obesity, n = 10880; smoking, n = 11073; VRS, n = 10749; APOE status, n = 9328. 
Abbreviations: SD = standard deviation; VRS = vascular risk score; APOE = Apolipoprotein E. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Score ≥ 3  1772 (16.5) 1082 (14.6) 690 (20.8)  200 (14.4) - 

APOE ε4 carrier status, number (%)       

Non-carrier 6739 (72.2) 4728 (72.2) 2011 (72.2)  839 (70.7) - 

Carrier with one ε4 allele 2379 (25.5) 1666 (25.5) 713 (25.6)  321 (27.1) - 

Carrier with two ε4 alleles 210 (2.3) 150 (2.3) 60 (2.2)  26 (2.2) - 
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Table 2 White matter brain age computed using 3D-CNN and WMBAG. 
 

 
 
 
 
 
 
 
 

Instance 2/3 means the first or second imaging assessment. Abbreviations: 3D-CNN = three-dimensional convolutional neural network; 
WMBAG = white matter brain age gap; SD = standard deviation; VRS = vascular risk score. 
 
 
 
 
 

 White matter brain age, years, mean ± SD  

range (min, max) 

WMBAG, years, mean ± SD  

range (min, max) 

Cross-sectional test sample (instance 2) 

All (n = 11168) 64.17	 ± 8.35 (45.13, 84.06) 0.23 ± 3.60 (-13.82, 20.91) 

Healthy test data (n = 7769) 64.30 ± 8.31 (45.13, 83.60) 0. 09 ± 3.49 (-12.50, 13.94) 

Unhealthy test data (n = 3399) 63.86 ± 8.45 (45.73, 84.06) 0.56 ± 3.82 (-13.82, 20.91) 

Longitudinal test sample (baseline instance 2, follow-up instance 3) 

Baseline (n = 1409) 62.94	 ± 8.02 (45.71, 81.77) -0.11 ± 3.45 (-12.25, 13.59) 

Follow-up (n = 1409) 65.28 ± 8.05 (46.02, 82.98) -0.02 ± 3.45 (-12.46, 12.90) 

VRS levels for all test data 

Score = 0 (n = 2659) 60.57 ± 7.91 (45.13, 82.23) -0.56 ± 3.53 (-12.06, 20.91) 

Score = 1 (n = 3718) 63.30 ± 8.15 (45.73, 83.22) -0.02 ± 3.55 (-12.72, 15.70) 

Score = 2 (n = 2600) 66.16 ± 7.88 (46.26, 84.06) 0.64 ± 3.54 (-13.82, 14.68) 

Score ≥ 3 (n = 1772) 68.19 ± 7.41 (47.01, 83.60) 1.29 ± 3.58 (-10.94, 14.79) 
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Table 3 Model performance for different DWI maps. 
 
 Healthy (n = 7769)  Unhealthy (n = 3399) 
 Before bias correction After bias correction  Before bias correction After bias correction 
 MAE (years) Pearson’s r MAE (years) Pearson’s r  MAE (years)  Pearson’s r MAE (years) Pearson’s r 
FA 2.76 0.890 3.05 0.890  2.95 0.882 3.24 0.882 
MD 2.77 0.884 3.16 0.884  3.05 0.865 3.45 0.865 
AxD 2.78 0.886 3.16 0.888  3.07 0.868 3.43 0.868 
RD 2.73 0.886 3.13 0.886  2.99 0.867 3.44 0.867 
MO 3.01 0.875 3.53 0.875  3.21 0.848 3.74 0.848 
fusion 2.51 0.908 2.75 0.908  2.71 0.892 3.03 0.892 

 
This table shows the model performance in healthy and unhealthy test data before and after bias correction. Abbreviations: DWI = diffusion 
weighted imaging; FA = fractional anisotropy; MD = mean diffusivity; AxD = axial diffusivity; RD = radial diffusivity; MO = anisotropy mode; 
MAE = mean absolute error; fusion = fusion of all five diffusion weighted maps; Pearson’s r = Pearson’s correlation coefficient. 
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Table 4 Association between VRS and WMBAG. 
 
  Unstandardised beta 95% CI p-value 
   Lower bound Upper bound  
Main effect  Chronological age -0.026 -0.036 -0.016 < 0.001 
(model 1a) Sex 0.087 -0.063 0.237 0.258 
 Scanner  0.231 0.145 0.317 < 0.001 
 APOE status 0.047 -0.098 0.192 0.528 
 VRS_1 0.538 0.345 0.730 < 0.001 
 VRS_2 1.229 1.014 1.444 < 0.001 
 VRS_3 1.936 1.692 2.181 < 0.001 
Interactions  Chronological age -0.026 -0.036 -0.016 < 0.001 
(model 1b) Sex 0.01 -0.299 0.318 0.951 
 Scanner  0.232 0.146 0.318 < 0.001 
 APOE status 0.049 -0.096 0.194 0.507 
 VRS_1 0.543 0.301 0.785 < 0.001 
 VRS_2 1.282 1.000 1.564 < 0.001 
 VRS_3 1.572 1.217 1.928 < 0.001 
 VRS_1*Sex 0.002 -0.395 0.400 0.991 
 VRS_2*Sex -0.076 -0.505 0.354 0.730 
 VRS_3*Sex 0.607 0.119 1.095 0.015 

 
Main effect of VRS on WMBAG was analysed by recoding VRS into dummy variables as independent variables. Interaction effects were 
analysed by adding their corresponding interaction terms to the model. Abbreviations: WMBAG = white matter brain age gap; VRS = vascular 
risk score; APOE = Apolipoprotein E; CI = confidence interval, VRS_1 is the dummy variable indicating participants with only 1 vascular risk 
factor; VRS_2 indicates participants with 2 vascular risk factors; VRS_2 indicates participants with 3 or more vascular risk factors. 
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Table 5 Associations between different vascular risk factors and WMBAG. 
 
  Unstandardised beta 95%CI p-value 
   Lower bound Upper bound  
Main effects Chronological age -0.028 -0.038 -0.017 < 0.001 
(model 2a) Sex  0.052 -0.099 0.202 0.503 
 Scanner  0.235 0.149 0.321 < 0.001 
 APOE status 0.057 -0.088 0.202 0.440 
 Hypertension 0.871 0.713 1.028 < 0.001 
 Diabetes 1.390 0.119 0.503 0.002 
 Hypercholesterolemia 0.311 1.051 1.729 < 0.001 
 Obesity 0.161 -0.033 0.355 0.103 
 Smoking 0.689 0.537 0.841 < 0.001 
Interactions Hypertension *Sex 0.112 -0.183 0.406 0.458 
(models 2b-f) Diabetes*Sex 0.318 -0.278 1.040 0.257 
 Hypercholesterolemia*Sex -0.221 -0.574 0.131 0.219 
 Obesity*Sex 1.023 0.643 1.403 < 0.001 
 Smoking*Sex 0.275 -0.026 0.576 0.073 

 
Independent main effects of vascular risk factors on WMBAG were analysed by adding all vascular risk factors into the regression model. 
Interaction effects were analysed by adding each vascular risk factor and its corresponding interaction term to the model. Abbreviations: 
WMBAG = white matter brain age gap; APOE = Apolipoprotein E; CI = confidence interval. 
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Table 6 Associations between baseline vascular risk factors and cognition mediated by WMBAG 
 

 Processing speed 
 

Executive 
 

Memory Global cognition 

 Unsta
ndardi
sed 
beta 

95%CI p-value Unstan
dardise
d beta 

95%CI p-value Unstan
dardise
d beta 

95%CI p-value Unstanda
rdised 
beta 

95%CI p-value 

  Lower 
bound 

Upper 
bound 

  Lower 
bound 

Upper 
bound 

  Lower 
bound 

Upper 
bound 

  Lower 
bound 

Upper 
bound 

 

Direct effects                 
Hypertension -0.020 -0.078 0.003 0.400 0.011 -0.041 0.060 0.690 -0.026 -0.081 0.030 0.330 -0.015 -0.063 0.030 0.550 
Diabetes -0.018 -0.132 0.100 0.750 -0.035 -0.160 0.090 0.590 -0.070 -0.197 0.060 0.290 -0.051 -0.175 0.070� 0.400 
Hypercholest
erolemia 

-0.043 -0.099 0.010 0.148 -0.051 -0.114 0.010 0.094 -0.028 -0.094 0.040 0.420 -0.051 -0.108 0.010 0.078 

Obesity -0.103 -0.162 -0.050 0.001 -0.059 -0.123 0.010 0.082 -0.027 -0.040 0.090 0.460 -0.056 -0.116 0.000 0.066 
Smoking -0.028 -0.073 0.020 0.218 -0.071 -0.121 -0.020 0.004 -0.071 -0.122 -0.020 0.005 -0.007 -0.012 -0.020 0.004 
Indirect effects mediated through baseline 
WMBAG 

             

Hypertension -0.019 -0.026 -0.001 < 0.001 -0.014 -0.021 -0.010 < 0.001 -0.005 -0.012 0.000 0.140 -0.016 -0.023 -0.010 <0.001 
Diabetes -0.033 -0.048 -0.002 < 0.001 -0.024 -0.038 -0.010 < 0.001 -0.009 -0.022 0.000 0.130 -0.027 -0.042 -0.020 <0.001 
Hypercholest
erolemia 

-0.004 -0.009 0.000 0.094 -0.003 -0.007 0.000 0.096 -0.001 -0.004 0.000 0.200 -0.003 -0.008 0.000 0.108 

Obesity 0.003 -0.090 0.000 0.200 -0.002 -0.007 0.000 0.210 -0.0009 -0.003 0.000 0.310 -0.003 -0.008 0.000 0.194 
Smoking -0.014 -0.021 -0.010 < 0.001 -0.010 -0.017 -0.010 < 0.001 -0.0001 -0.001 0.000 0.758 0.0001 0.000 0.000 0.036 

This table shows the mediation effect of baseline WMBAG on the associations between baseline vascular risk factors and baseline cognition. 
Chronological age, sex, scanner, APOE and education were controlled for all models. Raw p values are reported in this table with bold 
unstandardised beta indicating statistical significance after Bonferroni correction (corrected a level = 0.0125). Abbreviations: WMBAG = white 
matter brain age gap; CI = confidence interval. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted February 7, 2022. ; https://doi.org/10.1101/2022.02.06.22270484doi: medRxiv preprint 

https://doi.org/10.1101/2022.02.06.22270484
http://creativecommons.org/licenses/by-nc-nd/4.0/


33 
 

 

 
 
Figure 1 Flowchart of participant selection.  
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Figure 2 Overview of study design. The left panel shows the 3D convolution neural network (3D-CNN) 
architecture; the right panel shows the clinical analyses between risk factors and WMBAG and cognition. Inputs 
of the model are pre-processed 3D FA/MD/AxD/RD/MO maps, WMBAG = White matter brain age – 
Chronological age. Abbreviations: 3D = three-dimensional; Conv = convolution; Batchnorm = batch 
normalization; ReLU = rectified linear unit; WM = white matter; WMBAG = white matter brain age gap; FA = 
fractional anisotropy; MD = mean diffusivity; AxD = axial diffusivity; RD = radial diffusivity; MO = anisotropy 
mode. 
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Figure 3 Bias correction. Association between chronological age and uncorrected WMBAG (A); 
Association between chronological age and bias-corrected WMBAG (B). All cross-sectional test participants 
were included in this bias correction analysis (n= 11168). This bias correction was conducted using the 
predicted age after fusion of five DWI-derived maps. MAE and the correlation coefficient (r) were listed in the 
upper left corner of each sub-plot. Colour bar indicates the sample density. WMBAG = White matter brain age 
– Chronological age. Abbreviations: WMBAG = white matter brain age gap; Spearman r = coefficient for 
Spearman correlation; MAE = mean absolute error; WM = white matter; DWI = diffusion weighted maps. 
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Figure 4 Difference of WMBAG across different VRS groups (A for all participants; B for males and 
females separately) and WMBAG difference for different obesity status by sex (C). Each dot indicated the 
mean value for the WMBAG, error bar indicated the 95% CI. Abbreviations: WMBAG = white matter brain age 
gap; VRS = vascular risk score; WM = white matter. CI = confidence interval. 
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Figure 5 Longitudinal change of white matter brain age for each participant. Each participant has two 
time-point white matter brain ages (shown as two dots), connected with either a short blue line indicating white 
matter brain age increase (93.26%), or a red line indicating white matter brain age decrease. The bold blue line 
was a mean line fitted using white matter brain ages from all participants at both two timepoints. 
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