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ABSTRACT 
 

SARS-CoV-2 virus genomes are currently being sequenced at an unprecedented pace. The 

choice of viral sequences used in genetic and epidemiological analysis is important as it can 

induce biases that detract from the value of these rich datasets. This raises questions about 

how a set of sequences should be chosen for analysis, and which epidemiological parameters 

derived from genomic data are sensitive or robust to changes in sampling. We provide initial 

insights on these largely understudied problems using SARS-CoV-2 genomic sequences from 

Hong Kong, China, and the Amazonas State, Brazil. We consider sampling schemes that 

select sequences uniformly, in proportion or reciprocally with case incidence and which 

simply use all available sequences (unsampled). We apply Birth-Death Skyline and 

Skygrowth methods to estimate the time-varying reproduction number (Rt) and growth rate 

(rt) under these strategies as well as related R0 and date of origin parameters. We compare 

these to estimates from case data derived from EpiFilter, which we use as a reference for 

assessing bias. We find that both Rt and rt are sensitive to changes in sampling whilst R0 and 

the date of origin are relatively robust. Moreover, we find that analysis using unsampled 

datasets, which reflect an opportunistic sampling scheme, result in the most biased Rt and rt 

estimates for both our Hong Kong and Amazonas case studies. We highlight that sampling 

strategy choices may be an influential yet neglected component of sequencing analysis 

pipelines. More targeted attempts at genomic surveillance and epidemic analyses, particularly 

in settings with limited sequencing capabilities, are necessary to maximise the 

informativeness of virus genomic datasets.   
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INTRODUCTION 

 

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an enveloped single-

stranded zoonotic RNA virus belonging to the Betacoronavirus genus and Coronaviridae 

family1. It was first identified in late 2019 in a live food market in Wuhan City, Hubei 

Province, China2. Within a month, SARS-CoV-2 had disseminated globally through 

sustained human-to-human transmission. It was declared a public health emergency of 

international concern on the 30th of January 2020 by the World Health Organisation3. Those 

infected with SARS-CoV-2 have phenotypically diverse symptoms ranging from mild fever 

to multiple organ dysfunction syndromes and death4.  

 

Despite the implementation of non-pharmaceutical interventions (NPIs) and rollout of 

vaccination programmes in many countries to control their epidemics, as of the 16th July 

2022, over 557 million SARS-CoV-2 cases and 6.3 million deaths have been reported 

worldwide5. These NPIs can vary within and between countries and include restrictions on 

international and local travel, school closures, social distancing measures and the isolation of 

infected individuals and their contacts6. The key aim of NPIs is to reduce epidemic 

transmission, often measured by epidemiological parameters such as the time-varying 

effective reproduction number (Rt at time t) and growth rate (rt), which both provide updating 

measures of the rate of spread of a pathogen (see Table 1 for detailed definitions)7,8.  
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Table 1: Key parameters and definitions for SARS-CoV-2 

Parameter Definition 

Basic reproduction number 

(R0) 

Average number of individuals infected by a single infected 

person in a fully susceptible population 

Time-varying or effective 

reproduction number (Rt) 

Average number of secondary infections generated per 

effective primary case at a certain time point and in the 

presence of susceptible depletion or interventions  

Growth rate (rt) 
Rate of change of the logarithm of the number of new cases 

(i.e., the case incidence) per unit of time 

Incubation period Time between infection and symptom onset 

Infectious period 
Period in which an infectious host can transmit infectious 

agents to a susceptible individual 

Generation interval Time between infection events in an infector–infectee pair 

Time of the most recent 

common ancestor or origin 

time 

Date in which viral variant is thought to have emerged 

Serial Interval Time between symptom onsets in an infector–infectee pair 

 

However, there is currently great difficulty in estimating and comparing epidemiological 

parameters derived from case and death data globally due to disparities in molecular 

diagnostic surveillance and notification systems between countries. Further, even if data are 

directly comparable, the choice of epidemiological parameter can implicitly shape insights 

into how NPIs influence transmission potential9,10. As such, there is a need to supplement 

traditional estimates with information derived from alternative data sources, such as genomic 

data11, to gain improved and more robust insights into viral transmission dynamics12,13. 

 

Phylodynamic analysis of virus genome sequences have increasingly been used for studying 

emerging infectious diseases, as seen during the current SARS-CoV-2 pandemic14–17, recent 

Ebola virus epidemics in Western Africa18 and the Zika epidemic in Brazil and the 



5 

Americas19,20. Transmissibility parameters such as the basic reproduction number (R0), Rt and 

rt can be directly inferred from genomic sequencing data or from epidemiological data, while 

other epidemiological parameters such as the time of the most recent common ancestor 

(TMRCA) of a given viral variant or lineage can only be estimated from genomic data. This 

is of particular importance for variants of concern (VOC), genetic variants with evidence of 

increased transmissibility, more severe disease, and/or immune evasion. VOC are typically 

detected through virus genome sequencing and only limited inferences can be made using 

epidemiological data alone21. 

 

Currently, SARS-CoV-2 virus genomes from COVID-19 cases are being sequenced at an 

unprecedented pace providing a wealth of virus genomic datasets22. There are currently over 

11.9 million genomic sequences available on GISAID, an open-source repository for 

influenza and SARS-CoV-2 genomic sequences23. These rich datasets can be used to provide 

an independent perspective on pathogen dynamics and can help validate or challenge 

parameters derived from epidemiological data. Specifically, the genomic data can potentially 

overcome some of the limitations and biases that can result from using epidemiological data 

alone. For example, genomic data are less susceptible to changes at the government level 

such as alterations to the definition of a confirmed case and changes to notification 

systems24,25. Inferences from virus genomic data improve our understanding of underlying 

epidemic spread and can facilitate better-informed infection control decisions26. However, 

these advantages are not straightforward to realise. The added value of genomic data depends 

on two related variables: sampling strategy and computational complexity. 

 

The most popular approaches used to investigate changes in virus population dynamics 

include the Bayesian Skyline Plot27 and Skygrid28 models and the Birth-Death Skyline 

(BDSKY)29. These integrate Markov Chain Monte Carlo (MCMC) procedures and often 

converge slowly on large datasets30. As such, currently available SARS-CoV-2 datasets 

containing thousands of sequences become computationally impractical to analyse and sub-

sampling is necessary. Although previous studies have examined how sampling choices 

might influence phylodynamic inferences30–34, this remains a neglected area of study35, 

particularly concerning SARS-CoV-2 for which sequencing efforts have been unprecedented 

36. To our knowledge, there are no published studies concerning SARS-CoV-2 which explore 

the effect that sampling strategies can have on the phylodynamic reconstruction of key 
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transmission parameters. Incorrectly implementing a sampling scheme or ignoring its 

importance can mislead inferences and introduce biases30,37.  

 

This raises the important question that motivates our analysis: how should sequences be 

selected for phylodynamic analysis and which parameters are sensitive or robust to changes 

in different sampling schemes. Here we explore how diverse sampling strategies in genomic 

sequencing may affect the estimation of key epidemiological parameters. We estimate R0, Rt, 

and rt from genomic sequencing data under different sampling strategies from a location with 

higher genomic coverage represented by Hong Kong, and a location with lower genomic 

coverage represented by the Amazonas state, Brazil. We then compare our estimates against 

those derived from reference case data. By benchmarking genomic inferences against those 

from case data we can better understand the impact that sampling strategies may have on 

phylodynamic inference, bolster confidence in estimates of genomic-specific parameters such 

as the origin time (or TMRCA) and improve the interpretation of estimates from areas with 

heterogeneous genomic coverage. 
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METHODS 

 

Empirical Estimation of the Reproduction Number, Time-varying Effective 

Reproduction Number, and Growth Rate 

 

Epidemiological Datasets 

Two sources of data from the Amazonas state, Brazil, and one source of data from Hong 

Kong were used to calculate empirical epidemiological parameters. For the Amazonas state, 

case data from the SIVEP-Gripe (Sistema de Informação de Vigilância Epidemiológica da 

Gripe) SARI (severe acute respiratory infections) database from the 30th of November 2020 

up to 7th of February 2021 were used. Here we were interested in cases caused by the Gamma 

VOC first detected in Manaus14. The number of Gamma cases was calculated by using the 

proportion of Gamma viral sequences uploaded to GISAID within each week (Supplementary 

Figure 1). For Hong Kong, all case data were extracted from the Centre of Health Protection, 

Department of Health, the Government of the Hong Kong Special Administrative region up 

to the 7th of May 2020. Due to lags in the development of detectable viral loads, symptom 

onset and subsequent testing38; the date on which each case was recorded was left shifted by 

5 days within our models39 to account for these delays in both datasets.  

 

Basic Reproduction Number  

The R0 parameter was estimated using a time series of confirmed SARS-CoV-2 cases from 

both Hong Kong and the Amazonas state. To avoid the impact of NPIs, only data up to the 

banning of mass gathering in Hong Kong (27th March 2020) and until the imposition of strict 

restrictions in the Amazonas state (12th January 2021) were used. We estimated R0 from 

weekly counts of confirmed cases using maximum likelihood methods. The weekly case 

counts were assumed to be Poisson distributed and were fitted to a closed Susceptible-

Exposed-Infectious-Recovered (SEIR) model (equation (1)) by maximising the likelihood of 

observing the data given the model parameters (Table 2). Subsequently, the log-likelihood 

was used to calculate the R0 by fitting β, the effective contact rate. 

 

𝜆 =  
𝛽𝐼

𝑁

𝑑𝑆

𝑑𝑡
= −𝜆𝑆

𝑑𝐸

𝑑𝑡
= 𝜆𝑆 −  𝛾𝐸

𝑑𝐼

𝑑𝑡
=  𝛾𝐸 −  𝜎𝐼

𝑑𝑅

𝑑𝑡
=  𝜎𝐼      (1) 

 

To generate approximate 95% confidence intervals (CIs) for R0, non-parametric 

bootstrapping was used with 1000 iterations.   
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Table 2: This shows the parameter estimates used within the deterministic SEIR model. 

 

Parameter Description Value (source) 

𝑅0 = 𝛽𝛼 
Basic Reproduction Number Estimated 

N 

Population of Hong Kong 7,481,800 persons40 

Population of Amazonas state 4,207,714 persons41 

𝛽 
Effective Contact Rate Estimated 

α Infectious Period 0.07 day-1 42  

𝜆 Force of Infection  Estimated  

𝛾 Progression from E to I 5.26 day-1 43   

𝜎 Progression from I to R 14.3 day-1
 
42 

S 
Estimated number of 

Susceptibles 
Estimated 

E Estimated number of Exposed Estimated 

I Number of Infected Weekly case counts 

R Estimated number of Recovered Estimated 

 

Time-varying Effective Reproduction Number 

To estimate Rt from case time series data the EpiFilter method44 was used. EpiFilter 

describes transmission using a renewal model; a general and popular framework that can be 

applied to infer the dynamics of numerous infectious diseases from case incidence45. This 

model describes how the number of new cases (incidence) at time t depends on Rt at that 

specified time point and the past incidence, which is summarised by the cumulative number 

of cases up to each time point weighted by the generation time distribution. EpiFilter 

integrates both Bayesian forward and backward recursive smoothing. This improves Rt 
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estimates by leveraging the benefits of two of the most popular Rt estimation approaches: 

EpiEstim 46 and the Wallinga-Teunis method47. EpiFilter minimises the mean squared error 

in estimation and reduces dependence on prior assumptions, making it a suitable candidate 

for deriving reference estimates. We use these to benchmark estimates independently 

obtained from genomic data. We assume the generation time distribution is well 

approximated by the serial interval (SI) distribution46, which describes the times between 

symptom onsets between an infector–infectee pair. We describe the specific SI distributions 

that we used in the next subsection.  

 

Growth Rate  

After Rt has been inferred, the Wallinga-Lipsitch equation for a gamma distributed generation 

time distribution (equation (2)) was used to estimate the exponential epidemic rt
48. The SI for 

Hong Kong was derived from a systematic review and meta-analysis49 and a study exploring 

SI in Brazil was used for the Amazonas datasets50. The SI was assumed to be gamma 

distributed. The gamma distribution is represented by gamma (𝜀, 𝛾) with 𝜀 𝑎𝑛𝑑 𝛾 being the 

shape and scale parameters respectively. 

 

𝑟𝑡 =  𝜀(𝑅𝑡

(
1

𝛾
)

− 1)       (2) 

 

SARS-CoV-2 Brazilian Gamma VOC and Hong Kong datasets 

All high-quality (<1% N, or non-identified nucleotide), complete (>29 kb) SARS-CoV-2 

genomes were downloaded from GISAID23 for Hong Kong (up to 7th May 2020) and the 

Amazonas state, Brazil (from 30th November 2020 up to 7th February 2021). Using the 

Accession ID of each sequence, all sequences were screened and only sequences previously 

analysed and published in PubMed, MedRxiv, BioRxiv, virological or Preprint repositories 

were selected for subsequent analysis. For both datasets, sequence alignment was conducted 

using MAFFTV.751. The first 130 base pairs (bp) and last 50 bps of the aligned sequences 

were trimmed to remove potential sequencing artefacts in line with the Nextstrain protocol52. 

Both datasets were then processed using the Nextclade pipeline for quality control 

(https://clades.nextstrain.org/). Briefly, the Nextclade pipeline examines the completeness, 

divergence, and ambiguity of bases in each genetic sequence. Only sequences deemed ‘good’ 

by the Nextclade pipeline were selected. Subsequently, all sequences were screened for 

identity and in the case of identical sequences, for those with the same location, collection 
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date, only one such isolate was used. Moreover, PANGO lineage classification was 

conducted using the Pangolin22 (v2.3.3) software tool (http://pangolin.cog-uk.io) on 

sequences from the Amazonas state and only those with the designated P.1/Gamma lineage 

were selected (Supplementary Figure 1).  

 

Maximum Likelihood tree reconstruction 

Maximum likelihood phylogenetic trees were reconstructed using IQTREE253 for both 

datasets. A TIM2 model of nucleotide substitution with empirical base frequencies and a 

proportion of invariant sites was used as selected for by the ModelFinder application54 for the 

Hong Kong dataset. For the Brazilian dataset, a TN model of nucleotide substitution55 with 

empirical base frequencies was selected for. To assess branch support, the approximate 

likelihood-ratio test based on the Shimodaira–Hasegawa-like procedure with 

1,000 replicates56, was used. 

 

Root-to-tip regression 

To explore the temporal structure of both the Brazilian and Hong Kong dataset, TempEst 

v.1.5.357 was used to regress the root-to-tip genetic distances against sampling dates (yyyy-

mm-dd). The ‘best-fitting’ root for the phylogeny was found by maximising the R2 value of 

the root-to-tip regression (Supplementary Figure 2). Several sequences showed incongruent 

genetic diversity and were discarded from subsequent analyses. This resulted in a final 

dataset of N = 117 Hong Kong sequences and N = 196 Brazilian sequences. The gradient of 

the slopes (clock rates) provided by TempEst were used to inform the clock prior in the 

phylodynamic analysis.   

 

Subsampling for analysis  

Four retrospective sampling schemes were used to select a subsample of Amazonas and Hong 

Kong sequences. Each sampling period was broken up into weeks with each week being used 

as an interval according to a temporal sampling scheme (without replacement). This temporal 

sampling scheme was based on the number of reported cases of SARS-CoV-2. 

The temporal sampling schemes that we explored were: 

● No sampling strategy applied: All sequences were included without a sampling 

strategy applied (equivalent to opportunistic sampling).  

http://pangolin.cog-uk.io/
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● Proportional sampling: Weeks are chosen with a probability proportional to the 

value of the number of incident cases in each epi-week. 

● Uniform sampling: All weeks have equal probability. 

● Reciprocal-proportional sampling: Weeks are chosen with a probability 

proportional to the reciprocal of the incident number of cases in each epi-week. 

These sampling schemes were inspired by those recommended by the WHO for practical use 

in different settings and scenarios58. Proportional sampling is equivalent to representative 

sampling, uniform sampling is equivalent to fixed sampling whilst the unsampled data 

includes all sampled sequences. Reciprocal-proportional sampling is not commonly applied 

in practice and was used as a control within this study. 

 

Bayesian Evolutionary Analysis  

Date molecular clock phylogenies were inferred for all sampling strategies applied to the 

Amazonas and Hong Kong dataset using BEAST v1.10.459 with BEAGLE library v3.1.060 for 

accelerated likelihood evaluation. For both the Amazonas and Hong Kong datasets, a HKY 

substitution model with gamma-distributed rate variation among sites and four rate categories 

was used to account for among-site rate variation61. A strict clock molecular clock model was 

chosen. Both the Amazonas and Hong Kong dataset were analysed under a flexible non-

parametric skygrid tree prior62. Four independent MCMC chains were run for both datasets. 

For the Amazonas dataset, each MCMC chain consisted of 250,000,000 steps with sampling 

every 50,000 steps. Meanwhile, for the Hong Kong dataset, each MCMC chain consisted of 

200,000,000 steps with sampling every 40,000 steps. For both datasets, the four independent 

MCMC runs were combined using LogCombiner v1.10.459. Subsequently, 10% of all trees 

were discarded as burn in, and the effective sample size of parameter estimates were 

evaluated using TRACER v1.7.263. An effective sample size of over 200 was obtained for all 

parameters. Maximum clade credibility (MCC) trees were summarised using Tree 

Annotator59. 

 

Phylodynamic Reconstruction  

Estimation of the Basic and Time-varying Effective Reproduction Numbers 

The Bayesian birth-death skyline (BDSKY) model29 implemented within BEAST 2 v2.6.564 

was applied to estimate the time-varying transmissibility parameter Rt (Table 3). An HKY 
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substitution model with a gamma-distributed rate variation among sites and four rate 

categories61 was used alongside a strict molecular clock model. The selected number of 

intervals for both datasets was 5, representing Rt changing every 2.5 weeks for the Hong 

Kong datasets and every 2 weeks for the Brazilian datasets, with equidistant intervals per 

step. An exponential distribution was used with a mean of 36.5y-1 for the rate of becoming 

infectious, assuming a mean duration of infection of 10 days15. A uniform distribution prior 

was used for the sampling proportion, which models changes in case ascertainment. Four 

independent MCMC chains were run for 50 million MCMC steps with sampling every 5000 

steps for each dataset. These MCMC runs were combined using LogCombiner v2.6.5.64 and 

the effective sample size of parameter estimates evaluated using TRACER v1.7.263. We 

obtained an effective sample size above 200 for all parameters (indicating convergence) and 

plotted all results using the bdskytools R package (https://github.com/laduplessis/bdskytools). 

 

Table 3: Values and priors for the parameters of the BDSKY model. s/s/y=substitutions per 

site per year. 

 

Parameter Dataset Value or prior Rationale/Assumption 

Clock rate 

Brazil 4.0x10-4 s/s/y 

Informed by root-to-tip regression 

Hong Kong 1.0x10-4
 s/s/y  

Death rate 
Brazil and 

Hong Kong 
36.5 y-1 

The period between infection and 

becoming uninfectious assumed 

an exponential distribution with a 

mean of 10 days15 

Reproduction 

number 

Brazil and 

Hong Kong 

Lognormal (0.8, 

0.5) 
Median 2.2, 95% IQR 0.8 to 5.9 

Time of origin Brazil 

Lognormal (-1.50, 

0.4) y before 

present 

Median 4th December 2020, 95% 

IQR 25th September 2020 to 12th 

January, 2021 

https://github.com/laduplessis/bdskytools
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Hong Kong 

Lognormal (-1.75, 

0.4) y before 

present 

Median 18th January 2020, 95% 

IQR 17th November 2019 to 15th 

February 2020 

Sampling 

proportion 

Brazil Uniform (0, 0.024) 

196 sequences from 8246 

suspected P.1 cases as of 7th 

February, 2021 

Hong Kong Uniform (0, 0.116) 

117 sequences from 1012 

confirmed cases as of 7th May, 

2020 

 

Estimation of Growth Rates 

For each dataset, a scaled proxy for rt was obtained from the Skygrowth method65 within R. 

Skygrowth uses a non-parametric Bayesian approach to apply a first-order autoregressive 

stochastic process on the growth rate of the effective population size. The MCMC chains 

were run for one million iterations for each dataset on their MCC tree with an Exponential 

(10-5) prior on the smoothing parameter. The Skygrowth model was parameterised assuming 

that the effective population size of SARS-COV-2 could change every two weeks. To 

facilitate a comparison of the scaled proxy for rt estimated by Skygrowth and exponential rt 

estimated by EpiFilter, the rt estimated by the Skygrowth method was rescaled to the 

exponential growth rate. This was achieved by adding a gamma rate variable to the scaled 

proxy for rt, which assumed a mean duration of infection of 10 days15, to calculate Rt. 

Subsequently, the Wallinga-Lipsitch equation (Equation 2) was used to convert Rt into the 

exponential growth rate48. 

 

Comparing Parameter Estimates from Genetic and Epidemiological Data 

To compare estimates derived from epidemiological and genetic data the Jensen-Shannon 

divergence (DJS)66, which measures the similarity between two probability mass functions 

(PMFs), was applied. The DJS offers a formal information theoretic evaluation of 

distributions and is more robust than comparing Bayesian credible intervals (BCIs) since it 

considers both the shape and spread of a given distribution. The DJS is a symmetric and 

smoothed version of the Kullback-Leibler divergence (DKL) and is commonly used in the 
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fields of machine learning and bioinformatics. The DKL between two PMFs, P and Q, is 

defined in equation (3) below67, with x spanning the common domain of those PMFs. 

 

𝐷𝐾𝐿  (𝑃||𝑀) =  ∑ 𝑃(𝑥)𝑙𝑜𝑔 (
𝑃(𝑥)

𝑄(𝑥)
)𝑥       (3) 

 

To calculate the PMF for each epidemiological parameter, the cumulative probability density 

function was extracted for each model, converted to a probability density function and a 

discretisation procedure was applied to generate the associated PMF.  

 

The Jensen-Shannon distance (JSD) is a metric which takes the square-root of the total DJS 

and is the metric that we used to compare parameter estimations from differing sampling 

strategies. The JSD can be calculated using Equation 4 with P and Q representing the two 

probability distributions and DKL as the KL divergence. A smaller JSD metric indicates that 

two probability distributions (P and Q) are more similar with a Jensen-Shannon distance of 0 

uniquely indicating that both distributions are equivalent. The mean JSD was taken over all 

intervals for the BDSKY and Skygrowth models to obtain an overall measure of the level of 

estimated similarity across the epidemic trajectory. We do not expect the JSD to perfectly 

align with the 95% highest posterior density interval if the shapes of distributions from 

different schemes are very different. 

 

𝐽𝑆𝐷 (𝑃||𝑄 ) =  √
1

2
𝐷𝐾𝐿(𝑃||𝑀 ) +

1

2
𝐷𝐾𝐿  (𝑄||𝑀 ) 𝑤ℎ𝑒𝑟𝑒 𝑀 =  

1

2
 (𝑃 + 𝑄) (4) 

 

 

Data availability 

Code and data for reproducing the analyses presented in this study are freely available at 

https://github.com/rhysinward/Phylodynamic-Subsampling.  
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RESULTS  

Sampling Schemes 

Hong Kong 

Hong Kong reacted rapidly upon learning of the emergence of SARS-CoV-2 in Wuhan, 

Hubei province, China, by declaring a state of emergency on the 25th of January 2020 and by 

mobilising intensive surveillance schemes in response to initial cases68. This appeared to be 

successful in controlling the first wave of cases. However, due to imported cases from Europe 

and North America, a second wave of SARS-CoV-2 infections emerged prompting stricter 

NPIs such as the closure of borders and restrictions on gatherings 68. Following these 

measures, the incidence of SARS-CoV-2 rapidly decreased (Figure 1). Hong Kong has a high 

sampling intensity with 11.6% of confirmed cases sequenced during our study period. 

Further, Hong Kong has high quality case data with a high testing rate through effective 

tracing of close contacts, testing of all asymptomatic arriving travellers and all patients with 

pneumonia69.    

 

Figure 1. Confirmed incident SARS-CoV-2 cases from Hong Kong until 7th of May 2020. The 

arrows represent policy change-times68.   
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The number of cases within Hong Kong for each week was used to inform the sampling 

schemes used within this study. This resulted in the unsampled scheme having N = 117 

sequences, the proportional sampling scheme having N = 54 sequences, the uniform sampling 

scheme having N = 79 and the reciprocal-proportional sampling scheme having N = 84 

sequences (Supplementary Figure 3).  

Amazonas  

The Amazonas state of Brazil had its first laboratory confirmed case of SARS-CoV-2 in 

March 2020 in a traveller returning from Europe70. After a first large wave of SARS-CoV-2 

infections within the state that peaked in early May 2020 (Figure 2), the epidemic waned, 

cases dropped, remaining stable until mid-December 2020. The number of cases then started 

growing exponentially, ushering in a second epidemic wave. This second wave peaked in 

January 2021 (Figure 2) and coincided with the emergence of a new SARS-CoV-2 VOC, 

designated P.1/Gamma14.  

To combat this second wave, the Government of the Amazonas state suspended all non-

essential commercial activities on the 23rd of December 2020 

(http://www.pge.am.gov.br/legislacao-covid-19/). However, in response to protests, these 

restrictions were reversed, and cases continued to climb. On the 12th of January, when local 

transmission of P.1/Gamma was confirmed in Manaus, capital of Amazonas state71, NPIs 

were re-introduced (http://www.pge.am.gov.br/legislacao-covid-19/) which seemed to be 

successful in reducing the case incidence in the state. However, cases remained 

comparatively high (Figure 4). Amazonas has a sampling intensity with 2.4% of suspected 

P.1/gamma cases sequenced during our study period.   
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Figure 2. Confirmed incident SARS-CoV-2 cases from Amazonas state, north Brazil until 7th 

of February 2021. The arrows represent key policy change-times72.   

 

The number of cases within the Amazonas state informed the sampling schemes used within 

this study. This resulted in the unsampled scheme having N = 196 sequences, the 

proportional sampling scheme having N = 168 sequences, the uniform sampling scheme 

having N = 150 and the reciprocal-proportional sampling scheme having N = 67 sequences 

(Supplementary Figure 4).  

Root-to-tip Regression 

The correlation (R2) between genetic divergence and sampling dates for the Hong Kong 

datasets ranged between 0.36 and 0.52 and between 0.13 and 0.20 for the Amazonas datasets 

(Supplementary Figure 2). This implies that the Hong Kong datasets have a stronger temporal 

signal. This is likely due to the Hong Kong datasets having a wider sampling interval (106 

days) compared to the Amazonas datasets (69 days). A wider sampling interval can lead to a 

stronger temporal signal73. The gradient (rate) of the regression ranged from 1.16x10-3 to 
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2.09x10-3 substitutions per site per year (s/s/y) for the Hong Kong datasets and 4.41x10-4 to 

5.30x10-4 s/s/y for the Amazonas datasets.  

Estimation of Evolutionary Parameters 

The mean substitution rate (measured in units of number of s/s/y) and the TMRCA was 

estimated in BEAST, for both datasets, and the estimation from all sampling schemes was 

compared. 

 

Hong Kong 

 

For Hong Kong, the mean substitution rate per site per year ranged from 9.16x10 -4 to 

2.09x10-3 with sampling schemes all having overlapping Bayesian credible intervals (BCIs) 

(Supplementary table 2; Supplementary Figure 5A). This indicates that the sampling scheme 

did not have a significant impact on the estimation of the clock rate. Moreover, the clock rate 

is comparable to estimations from the root-to-tip regression and to early estimations of the 

mean substitution rate per site per year of SARS-CoV-2 (Duchene et al., 2020).  

 

Molecular clock dating of the Hong Kong dataset indicates that the estimated time of the 

most common recent ancestor was around December 2020 (Figure 3B; Supplementary Table 

2). This is a few weeks before the first confirmed case which was reported on the 18th of 

January 2021. Once again, all sampling strategies have overlapped BCIs and with the range 

in means differing by around three weeks, a relatively short time scale, suggesting that the 

sampling scheme does not significantly impact the estimation of the TMRCA.  

 

Brazil 

For the Gamma VOC in the Amazonas state, the mean substitution rate ranged from 4.00x10-

4 to 5.56x10-4 s/s/y with all sampling schemes having overlapped BCIs (Figure 3D, 

Supplementary Table 2; Supplementary Figure 5B). This indicates that sampling strategy 

does not impact the estimation of the clock rate, supporting findings from the Hong Kong 

dataset. This also supports estimations from the root-to-tip analysis (Supplementary Figure 

2). 
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Molecular clock dating estimated a TMRCA mean around late October to early November 

(Figure 3D; Supplementary Table 2). This is around five weeks before the date of the first P.1 

case identified in Manaus used in our study. All sampling schemes have overlapping BCI 

consistent with the conclusion from the Hong Kong data that TMRCA is relatively robust to 

sampling. 

 

Estimation of Basic Reproduction Number  

 

We found from using genomic data, Hong Kong had a posterior mean R0 estimate of 2.07 

(Figure 3A) across all sampling strategies. Using a proportional sampling strategy gave the 

highest posterior mean R0 estimate of 2.38 with the unsampled sampling strategy giving the 

lowest posterior mean R0 estimate of 1.87. Overall, Brazil had a higher posterior mean R0 

estimate with a value of 2.24 (Figure 3B) across all sampling strategies. The uniform 

sampling strategy yielded the highest posterior mean R0 estimate of 2.50 while the unsampled 

sampling strategy gave the lowest one of 1.82. Using case data, we found similarly found that 

Hong Kong had a lower R0 of 2.17 (95% credible interval (CI) = 1.43 - 2.83) when compared 

to Amazonas which had a R0 of 3.67 (95% CI = 2.83 – 4.48). All sampling schemes for both 

datasets were characterised by similar R0 values (Figure 3) indicating that the estimation of R0 

is robust to changes in sampling scheme. 
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Figure 3. R0 estimated from BDSKY (using sequence data) and TMRCA for Hong Kong and 

Brazil. Figure 1A and B represent Hong Kong and Figure 1C and D represent the Amazonas. The 

central line represents the posterior mean and with intervals representing 95% highest posterior 
density interval. 

 

Time-varying Reproduction number and Growth rate 

 

We estimate Rt and rt for local SARS-CoV-2 epidemics in Hong Kong and Amazonas, Brazil. 

Our main results showing these two parameters and JSD metrics are shown in Figures 4-8. 

 

Hong Kong 

We applied the BDSKY model to estimate the Rt for each dataset subsampled according to 

the different sampling strategies (Figure 4). We compared these against the Rt from incidence 

data, derived from EpiFilter. Based on the proportional sampling scheme, which had the 

lowest JSD (Figure 4E), we initially infer a super-critical Rt value, with a mean around 2, that 

appears to fall swiftly in response to the state of emergency and the rapid implementation of 

NPIs. A steady transmission rate subsequently persisted throughout the following weeks 
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around the critical threshold (Rt = 1). This period is followed by a sharp increase in Rt, 

peaking at a mean value of 2.6. This is likely due to imported cases from North America and 

Europe68. This led to a ban on international travel resulting in a sharp decline in Rt (Figure 2). 

However, this decline lasted around a week with the mean Rt briefly increasing until more 

stringent NPIs such as the banning of major gatherings were implemented. Following this, 

the Rt continued its sharp decline falling below the critical threshold, with transmission 

becoming sub-critical (Figure 4). The proportional sampling scheme showed the most 

divergence from all other sampling schemes whilst the uniform and reciprocal-proportional 

sampling schemes were almost identical (Figure 4F). 
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Figure 4: Rt estimated from both the BDSKY and EpiFilter methods for Hong Kong. Titles indicate 

the sampling scheme used in panels A-D. The light-shaded area represents the 95% highest posterior 
density interval. The solid line represents the mean Rt estimate with EpiFilter in green and BDSKY in 

blue. The black line plots the number of cases. We refer to Figure 1 for a brief description of key 

events 1–3. The Jensen Shannon Distance (JSD) is given in panel E and ranks the sampling strategies 
based on how similar the BDSKY estimates under those strategies are to those derived from EpiFilter 

(smaller values are better). Panel F provides the pairwise JSD between the BDSKY estimates under 

different sampling strategies, showing often appreciable difference among strategies. 

These results were mirrored in the estimation of rt. (Figure 5), where estimates derived from 

the proportional sampling scheme showed the least divergence (Figure 5E). There was an 

initial decline in the rt, which steadied at a value of ~ 0, indicating that epidemic stabilisation 

had occurred. This stable period is followed by an increase in rt peaking at around a 0.050 d-1 

(Figure 5B). In response to NPIs, the rt starts to decrease, falling below 0, indicating a 

receding epidemic. The rate of this decline peaks at around -0.075 d-1 (Figure 5B). Unlike the 
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estimation of Rt (Figure 4), the unsampled sampling scheme showed the most divergence 

from all other sampling schemes (Figure 5F). It also has a high divergence from estimates 

derived from EpiFilter when compared the proportional sampling scheme which was the 

most closely related to EpiFilter (Figure 5E). Once again, the uniform and reciprocal-

proportional schemes are the most closely related (Figure 5E). 

 

Figure 5: rt estimated from both the Skygrowth and EpiFilter methods for Hong Kong. Titles 

indicate the sampling scheme used in panels A-D. The light-shaded area represents the 95% highest 
posterior density interval. The solid line represents the mean rt estimate with EpiFilter in orange 

and Skygrowth in blue. The black line refers to the number of cases. We refer to Figure 1 for a brief 

description of key events 1–3. The Jensen Shannon Distance (JSD) is given in panel E and ranks the 
sampling strategies based on how similar the Skygrowth estimates under those strategies are to 

those derived from EpiFilter (smaller values are better). Panel F provides the pairwise JSD between 

the BDSKY estimates under different sampling strategies, showing often appreciable difference 
among strategies. 
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Brazil 

The uniform, reciprocal-proportional, and proportional sampling schemes all showed a 

similarly low JSD (Figure 6E). Based on these sampling schemes, we initially infer super-

critical transmission (Rt > 1) with a mean value of 3 (Figure 6). From this point, the Rt 

declines, although it remains above the critical threshold (Rt = 1) for much of the study 

period. Sub-critical transmission (Rt < 1) was only reached after the re-imposition of NPIs. 

This implies that initial restrictions, such as the suspension of commercial activities, were 

likely insufficient for suppressing spread. Only after more stringent restrictions were imposed 

did Rt become sub-critical. However, there is no evidence of a sharp decrease in Rt once 

restrictions were re-imposed, which may suggest limited effectiveness. The unsampled 

sampling scheme again showed the most divergence from all other sampling schemes (Figure 

6F) and the highest divergence from the case data estimate (Figure 6E) with the uniform and 

proportional sampling schemes showing the most similarity. As such, applying no sampling 

strategy/opportunistic sampling leads to, from the perspective of comparing to EpiFilter, the 

most biased estimates.   
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Figure 6: Rt estimated from both the BDSKY and EpiFilter methods forAmazonas, Brazil. Titles 

indicate the sampling scheme used in panels A-D. The light-shaded area represents the 95% highest 
posterior density interval. The solid line represents the mean Rt estimate with EpiFilter in green and 

BDSKY in blue. We refer to Figure 2 for a brief description of key events, including 5 which 

corresponds to the second lockdown.  Event "a'' corresponds to the suspension of commercial 

activities in Manaus; event "b" corresponds to the resumption of commercial activities in Manaus72. 

The Jensen Shannon Distance (JSD) is given in panel E and ranks the sampling strategies based on 

how similar the BDSKY estimates under those strategies are to those derived from EpiFilter 
(smaller values are better). Panel F provides the pairwise JSD between the BDSKY estimates under 

different sampling strategies, showing often appreciable difference among strategies. 

Based on the proportional sampling scheme, which had the lowest JSD (Figure 7E) we infer a 

steady decline in rt which matches the pattern seen with the Rt value (Figure 7). The initial rt 

implied a 0.250 d-1. Subsequently, the rt falls over the study period. rt falls below 0 after the 

re-imposition of NPIs declining at -0.030 d-1 by the end of the study period. There is no 

evidence of any noticeable declines in rt when interventions were introduced indicating that 
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they might not have significantly impacted the growth rate of P.1/gamma. The unsampled 

sampling scheme was again most divergent from other sampling schemes as well as from 

estimates derived from EpiFilter with the uniform and reciprocal-proportional being most 

similar. 

 

Figure 7: rt estimated from both the Skygrowth and EpiFilter methods for Amazonas, Brazil. Titles 

indicate the sampling scheme used in panels A-D. The light-shaded area represents the 95% highest 
posterior density interval. The solid line represents the mean rt estimate with EpiFilter in orange and 

Skygrowth in blue. We refer to Figure 2 for a brief description of key events, including 5 which 

corresponds to the second lockdown.  Event "a'' corresponds to the suspension of commercial 

activities in Manaus; event "b" corresponds to the resumption of commercial activities in Manaus72. 

The Jensen Shannon Distance (JSD) is given in panel E and ranks the sampling strategies based on 

how similar the Skygrowth estimates under those strategies are to those derived from EpiFilter 
(smaller values are better). Panel F provides the pairwise JSD between the BDSKY estimates under 

different sampling strategies, showing often appreciable difference among strategies. 
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Discussion  

In this study, we applied phylodynamic methods to available SARS-CoV-2 sequences from 

Hong Kong and the Amazonas state of Brazil to infer their key epidemiological parameters 

and to compare the impact that various sampling strategies have on the phylodynamic 

reconstruction of these parameters. 

We estimated the basic reproductive number of SARS-CoV-2 in Hong Kong to be 2.17 (95% 

CI = 1.43-2.83). This supports previous estimates of the initial R0 in Hong Kong68,74 which 

estimated R0 to be 2.23 (95% CI = 1.47-3.42). For the Amazonas state in Brazil, we estimated 

the R0 to be 3.67 (95% CI = 2.83 – 4.48). Whilst the population of Amazonas State may not 

be fully susceptible to P.1/Gamma14,82, this should not affect the comparison among sampling 

schemes. We found that R0 is robust to changes in sampling schemes (Figure 3A and C). 

For the Hong Kong dataset, the proportional sampling scheme was superior to all other 

sampling schemes in estimating Rt. It successfully predicted the initial super-critical Rt, its 

decline in response to rapid NPIs, and subsequent increase and decline during the second 

wave of infections (Figure 4B). This was in comparison to the uniform sampling scheme, 

which provided the worst (largest) JSD (Figure 4D) and an Rt estimate that was largely 

insensitive to NPIs. The proportional sampling scheme, alongside the uniform sampling 

scheme, best estimated rt (Figure 5B and C). In contrast, for the Amazonas dataset, the 

uniform sampling scheme best estimated the Rt and rt (Figure 6C) whilst the proportional 

sampling scheme best captured rt (Figure 7C). It captured both its initial super-critical Rt and 

high rt alongside their subsequent decline.  

We found that estimates from all sampling schemes were distinct from those obtained using 

the unsampled data and that on some instances the sampling schemes were also appreciably 

different from one another (see panel F in Figures 4-7) with the uniform and reciprocal-

proportional sampling strategies being most similar. This highlights how different sampling 

schemes can produce significantly differing estimates of epidemiological parameters and 

underscores the need for considering sampling and its potential impact on estimations.  

Our Rt estimates are consistent with previous estimates of Gamma VOC’s transmissibility in 

Amazonas state14. This contrasted with the unsampled data in which the rt increased at the 

end of the period (Figure 7A). This highlights that unlike R0, both Rt and rt are sensitive to 



28 

changes in sampling and that even related epidemiological parameters like Rt and rt may 

require different sampling strategies to optimise inferences. 

Molecular clock dating of the Hong Kong and Amazonas dataset has revealed that the date of 

origin is relatively robust to changes in sampling schemes. For Hong Kong, SARS-CoV-2 

likely emerged in mid-December 2019 around 5 weeks before the first reported case on the 

22nd of January 202068. The Amazonas dataset revealed that the date of the common ancestor 

of the P.1 lineage emerged around late October 2020 to early November, around 5 weeks 

before the first reported case on the 6th of December14, with all BCI’s overlapping for each 

sampling strategy. Like the molecular clock dating, we found that the molecular clock rate 

was robust to changes in sampling strategies in both datasets with all sampling strategies 

having overlapped BCI’s (Supplementary Table 2 and Supplementary Figure 5). For the 

Hong Kong dataset, its clock rate is comparable to early estimations of the mean substitution 

rate per site per year of SARS-CoV-213. However, the clock rate estimated for the Brazilian 

dataset is lower than the initial 8.00x10-4 s/s/y which is used in investigating SARS-CoV-275 

and that has been used in previous analyses of Gamma VOC76. This initial estimation of 

evolutionary rate was estimated from genomic data taken over a short time span at the 

beginning of the pandemic introducing a time dependency bias. By using a more appropriate 

clock rate it can improve tree height and rooting resulting in more robust parameter 

estimations77.  

Treating sampling times as uninformative has been shown to be inferior to including them as 

dependent on effective population size and other parameters by several previous 

studies30,31,34,78. Whilst these studies did not consider the estimation of epidemiological 

parameters, they highlight the potential of systematic biases being introduced into the 

phylodynamic reconstruction by not using a sampling scheme or by assuming an incorrect 

model for how sampling schemes introduce information. This was supported by our results as 

phylodynamic inferences with no sampling strategy applied had the poorest overall 

performance for both Hong Kong and the Amazonas state. This implies that sampling design 

choices can significantly impact phylodynamic reconstruction, and that exploration of 

sampling strategies is needed to obtain the most reliable estimates of key epidemiological 

parameters.  
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While our results provide rigorous insight into the dynamics of SARS-CoV-2 and the impact 

of sampling strategies in the Amazonas state and Hong Kong, there are limitations. The 

Skygrowth and BDSKY models do not explicitly consider imports into their respective 

regions. This is particularly relevant for Hong Kong as most initial sequences from the region 

were sequenced from importation events79 which can introduce error into parameter 

estimation80. However, as the epidemic expanded, more infections were attributable to 

autochthonous transmission79, and the risk of error introduced by importation events 

decreased. Moreover, while sampling strategies can account for temporal variations in 

genomic sampling fractions there is currently no way to account for non-random sampling 

approaches in either the BDSKY or Skygrowth models81. It is unclear how network-based 

sampling may affect parameter estimates obtained through these models82 presenting a key 

challenge in molecular and genetic epidemiology. Spatial heterogeneities were also not 

explored within this work. This represents the next key step in understanding the impact of 

sampling as spatial sampling schemes would allow the reconstruction of the dispersal 

dynamics and estimation of epidemic overdispersion (k), a key epidemiological parameter. 

 

Finally, we compared our phylodynamic estimates against epidemiological inferences derived 

from incident case data from Hong Kong and Amazonas state, two settings with very 

different diagnostic capacity. While Hong Kong has high quality case data with a high testing 

rate69, there is a large underreporting of SARS-CoV-2 cases in the Amazonas state72,83. 

Future epidemiological modelling work is needed to compare parameter estimates obtained 

from case data, death data and excess death data across different settings. This will improve 

the benchmarks we use to compare sequence-based estimates against.  

 

This work has highlighted the impact and importance that applying temporal sampling 

strategies can have on phylodynamic reconstruction. Whilst more genomic datasets from a 

variety of countries and regions with different sampling intensities and proportions are 

needed to create a more generalisable sampling framework and to dissect any potential 

cofounders, this study has demonstrated that genomic datasets that commonly feature 

opportunistic sampling (i.e., there is no deliberate strategy design) can introduce significant 

uncertainty and biases in the estimation of epidemiological parameters. This finding signifies 

the need for more targeted attempts at performing genomic surveillance and epidemic 

analyses particularly in resource-poor settings with limited genomic capability.  
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Supplementary Figures and Tables  

 

 

Supplementary Figure 1: The proportion of P.1 sequences compared to non-P.1 sequences from 

Amazonas State, Brazil found on GISaid (Shu and McCauley, 2017). 
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Supplementary Figure 2: Root-to-tip genetic distances to sample collection dates for the 

SARS-CoV-2 genome datasets used in this study: A-D represents Hong Kong and E-H 

represent Amazonas State. Plots are based on the maximum likelihood trees rooted by 

maximising R2. The linear regression trend lines are shown to data points, corresponding to 

the genome sequences (represented with black dots).  
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Supplementary Figure 3: Number of sequences for each week and sampling scheme for Hong 

Kong dataset.  

 

 

 

Supplementary Figure 4: Number of sequences for each week and sampling scheme for 

Amazonas dataset.  

 

 



38 

Supplementary Table 1: TMRCA and mean substitution rate both with 95% BCI for each 

sampling strategy for Hong Kong and Amazonas datasets alongside the Jensen-Shannon 

distance. Full posterior distribution of the TMRCA and substitution rates obtained under the 

different sampling strategies can be found in Figure 3B and D and Supplementary Figure 5. 

Sampling 

Strategy 

Dataset TMRCA (95% BCI) Mean 

Substitution 

Rate (95% BCI, 

subs/site/year, 

s/s/y) 

Unsampled 

Hong Kong  2nd December 2019 (10th 

November 2019 – 24th 

December 2019) 

1.12x10-3 

(9.16x10-4 – 

1.35x10-3) 

Brazil 
30th October 2020 (8th October 

2020 – 13th December 2020) 

4.58x10-4 

(3.69x10-4 – 

5.56x10-4) 

Proportional 

Hong Kong 24th December 2019 (21st 

November 2019 – 11th January 

2020) 

1.39x10-3 

(9.28x10-4 – 

2.48x10-3) 

Brazil 
30th October 2020 (25th August  

2020 – 29th November 2020) 

4.60x10-4 

(3.70x10-4 – 

5.56x10-4) 

Uniform 

Hong Kong 13th December 2019 (18th 

November 2019 – 4th January 

2020) 

1.64x10-3 

(1.22x10-3 – 

2.09x10-3) 
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Brazil 
27th October 2020 (5th October 

2020 – 25th November 2020) 

4.60x10-4 

(3.70x10-4 – 

5.56x10-4) 

Reciprocal-

proportional 

Hong Kong  6th December 2019 (10th 

November 2019 – 28th December 

2019) 

1.30x10-3 

(1.03x10-3 – 

1.59x10-3) 

Brazil 30th October 2020 (27th 

September 2020 – 25th November 

2020) 

4.00x10-4 

(2.56x10-4 – 

5.55x10-4) 

 

 

 

Supplementary Figure 5: Mean substitution rate (s/s/y) for Hong Kong and Brazil. Figure 1A 

represents Hong Kong with Figure 1B representing the Amazonas.  The central line represents the 

posterior mean and with intervals representing 95% Highest Posterior Density Interval 
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Supplementary Table 2: Accession ID of each Hong Kong sequence for each sampling strategy 
used within this study 

 

Unsampled Proportional Uniform Reciprocal-

proportional 

EPI_ISL_ 412028 EPI_ISL_ 414517 EPI_ISL_ 412029 EPI_ISL_ 412028 

EPI_ISL_ 412029 EPI_ISL_ 414519 EPI_ISL_ 414517 EPI_ISL_ 412029 

EPI_ISL_ 412030 EPI_ISL_ 414527 EPI_ISL_ 414519 EPI_ISL_ 412030 

EPI_ISL_ 414517 EPI_ISL_ 418815 EPI_ISL_ 414527 EPI_ISL_ 414517 

EPI_ISL_ 414519 EPI_ISL_ 419224 EPI_ISL_ 414569 EPI_ISL_ 414519 

EPI_ISL_ 414527 EPI_ISL_ 419229 EPI_ISL_ 414571 EPI_ISL_ 414527 

EPI_ISL_ 414528 EPI_ISL_ 419232 EPI_ISL_ 416314 EPI_ISL_ 414528 

EPI_ISL_ 414569 EPI_ISL_ 450404 EPI_ISL_ 417064 EPI_ISL_ 414569 

EPI_ISL_ 414571 EPI_ISL_ 450405 EPI_ISL_ 417443 EPI_ISL_ 414571 

EPI_ISL_ 416314 EPI_ISL_ 450410 EPI_ISL_ 419214 EPI_ISL_ 416314 

EPI_ISL_ 417064 EPI_ISL_ 476801 EPI_ISL_ 419215 EPI_ISL_ 417064 

EPI_ISL_ 417176 EPI_ISL_ 476802 EPI_ISL_ 419217 EPI_ISL_ 417176 

EPI_ISL_ 417178 EPI_ISL_ 476803 EPI_ISL_ 419224 EPI_ISL_ 417178 

EPI_ISL_ 417181 EPI_ISL_ 497769 EPI_ISL_ 419225 EPI_ISL_ 417181 

EPI_ISL_ 417185 EPI_ISL_ 497773 EPI_ISL_ 419227 EPI_ISL_ 417185 

EPI_ISL_ 417187 EPI_ISL_ 497775 EPI_ISL_ 419228 EPI_ISL_ 417187 

EPI_ISL_ 417188 EPI_ISL_ 497784 EPI_ISL_ 419229 EPI_ISL_ 417188 

EPI_ISL_ 417193 EPI_ISL_ 497786 EPI_ISL_ 419231 EPI_ISL_ 417193 

EPI_ISL_ 417197 EPI_ISL_ 497791 EPI_ISL_ 419232 EPI_ISL_ 417197 

EPI_ISL_ 417443 EPI_ISL_ 497796 EPI_ISL_ 419245 EPI_ISL_ 417443 

EPI_ISL_ 418815 EPI_ISL_ 497799 EPI_ISL_ 419247 EPI_ISL_ 418815 

EPI_ISL_ 419214 EPI_ISL_ 497806 EPI_ISL_ 419250 EPI_ISL_ 419214 

EPI_ISL_ 419215 EPI_ISL_ 497808 EPI_ISL_ 419252 EPI_ISL_ 419215 

EPI_ISL_ 419216 EPI_ISL_ 497810 EPI_ISL_ 434564 EPI_ISL_ 419216 

EPI_ISL_ 419217 EPI_ISL_ 497811 EPI_ISL_ 434565 EPI_ISL_ 419217 

EPI_ISL_ 419219 EPI_ISL_ 497818 EPI_ISL_ 434567 EPI_ISL_ 419219 

EPI_ISL_ 419221 EPI_ISL_ 497819 EPI_ISL_ 434568 EPI_ISL_ 419221 

EPI_ISL_ 419222 EPI_ISL_ 497821 EPI_ISL_ 434569 EPI_ISL_ 419222 

EPI_ISL_ 419224 EPI_ISL_ 497823 EPI_ISL_ 434570 EPI_ISL_ 419224 

EPI_ISL_ 419225 EPI_ISL_ 497824 EPI_ISL_ 434571 EPI_ISL_ 419225 

EPI_ISL_ 419226 EPI_ISL_ 497840 EPI_ISL_ 450405 EPI_ISL_ 419226 
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EPI_ISL_ 419227 EPI_ISL_ 497845 EPI_ISL_ 450408 EPI_ISL_ 419227 

EPI_ISL_ 419228 EPI_ISL_ 497846 EPI_ISL_ 450409 EPI_ISL_ 419228 

EPI_ISL_ 419229 EPI_ISL_ 497847 EPI_ISL_ 450410 EPI_ISL_ 419229 

EPI_ISL_ 419231 EPI_ISL_ 497850 EPI_ISL_ 450411 EPI_ISL_ 419231 

EPI_ISL_ 419232 EPI_ISL_ 497856 EPI_ISL_ 476801 EPI_ISL_ 419232 

EPI_ISL_ 419245 EPI_ISL_ 497865 EPI_ISL_ 476802 EPI_ISL_ 419245 

EPI_ISL_ 419247 EPI_ISL_ 497870 EPI_ISL_ 476804 EPI_ISL_ 419247 

EPI_ISL_ 419250 EPI_ISL_ 516798 EPI_ISL_ 497769 EPI_ISL_ 419250 

EPI_ISL_ 419252 EPI_ISL_ 539820 EPI_ISL_ 497771 EPI_ISL_ 419252 

EPI_ISL_ 434560 EPI_ISL_ 539850 EPI_ISL_ 497783 EPI_ISL_ 434563 

EPI_ISL_ 434563 EPI_ISL_ 539851 EPI_ISL_ 497784 EPI_ISL_ 434564 

EPI_ISL_ 434564 EPI_ISL_ 610167 EPI_ISL_ 497791 EPI_ISL_ 434565 

EPI_ISL_ 434565 EPI_ISL_ 610168 EPI_ISL_ 497806 EPI_ISL_ 434566 

EPI_ISL_ 434566 EPI_ISL_ 610169 EPI_ISL_ 497810 EPI_ISL_ 434567 

EPI_ISL_ 434567 EPI_ISL_ 610170 EPI_ISL_ 497811 EPI_ISL_ 434568 

EPI_ISL_ 434568 EPI_ISL_ 610171 EPI_ISL_ 497813 EPI_ISL_ 434569 

EPI_ISL_ 434569 EPI_ISL_ 610172 EPI_ISL_ 497818 EPI_ISL_ 434570 

EPI_ISL_ 434570 EPI_ISL_ 610173 EPI_ISL_ 497821 EPI_ISL_ 434571 

EPI_ISL_ 434571 EPI_ISL_ 610174 EPI_ISL_ 497823 EPI_ISL_ 450405 

EPI_ISL_ 450404 EPI_ISL_ 610175 EPI_ISL_ 497824 EPI_ISL_ 450408 

EPI_ISL_ 450405 EPI_ISL_ 610177 EPI_ISL_ 497826 EPI_ISL_ 450409 

EPI_ISL_ 450408  EPI_ISL_ 497827 EPI_ISL_ 450410 

EPI_ISL_ 450409  EPI_ISL_ 497831 EPI_ISL_ 450411 

EPI_ISL_ 450410  EPI_ISL_ 497832 EPI_ISL_ 450412 

EPI_ISL_ 450411  EPI_ISL_ 497846 EPI_ISL_ 476802 

EPI_ISL_ 450412  EPI_ISL_ 497847 EPI_ISL_ 476804 

EPI_ISL_ 476801  EPI_ISL_ 497848 EPI_ISL_ 497769 

EPI_ISL_ 476802  EPI_ISL_ 497856 EPI_ISL_ 497771 

EPI_ISL_ 476803  EPI_ISL_ 497860 EPI_ISL_ 497773 

EPI_ISL_ 476804  EPI_ISL_ 497865 EPI_ISL_ 497783 

EPI_ISL_ 497769  EPI_ISL_ 539820 EPI_ISL_ 497784 

EPI_ISL_ 497771  EPI_ISL_ 539850 EPI_ISL_ 497791 

EPI_ISL_ 497773  EPI_ISL_ 539851 EPI_ISL_ 497797 
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EPI_ISL_ 497775  EPI_ISL_ 610165 EPI_ISL_ 497811 

EPI_ISL_ 497783  EPI_ISL_ 610166 EPI_ISL_ 497812 

EPI_ISL_ 497784  EPI_ISL_ 610167 EPI_ISL_ 497818 

EPI_ISL_ 497786  EPI_ISL_ 610168 EPI_ISL_ 497819 

EPI_ISL_ 497791  EPI_ISL_ 610169 EPI_ISL_ 497823 

EPI_ISL_ 497796  EPI_ISL_ 610171 EPI_ISL_ 497824 

EPI_ISL_ 497797  EPI_ISL_ 610173 EPI_ISL_ 497827 

EPI_ISL_ 497798  EPI_ISL_ 610174 EPI_ISL_ 497831 

EPI_ISL_ 497799  EPI_ISL_ 610175 EPI_ISL_ 497833 

EPI_ISL_ 497806  EPI_ISL_ 610177 EPI_ISL_ 497848 

EPI_ISL_ 497808   EPI_ISL_ 497850 

EPI_ISL_ 497810   EPI_ISL_ 497856 

EPI_ISL_ 497811   EPI_ISL_ 497860 

EPI_ISL_ 497812   EPI_ISL_ 497864 

EPI_ISL_ 497813   EPI_ISL_ 497865 

EPI_ISL_ 497818   EPI_ISL_ 539850 

EPI_ISL_ 497819   EPI_ISL_ 539851 

EPI_ISL_ 497820   EPI_ISL_ 610165 

EPI_ISL_ 497821   EPI_ISL_ 610166 

EPI_ISL_ 497823   EPI_ISL_ 610172 

EPI_ISL_ 497824   EPI_ISL_ 610177 

EPI_ISL_ 497826    

EPI_ISL_ 497827    

EPI_ISL_ 497831    

EPI_ISL_ 497832    

EPI_ISL_ 497833    

EPI_ISL_ 497840    

EPI_ISL_ 497845    

EPI_ISL_ 497846    
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EPI_ISL_ 497847    

EPI_ISL_ 497848    

EPI_ISL_ 497850    

EPI_ISL_ 497856    

EPI_ISL_ 497860    

EPI_ISL_ 497864    

EPI_ISL_ 497865    

EPI_ISL_ 497870    

EPI_ISL_ 516798    

EPI_ISL_ 539820    

EPI_ISL_ 539850    

EPI_ISL_ 539851    

EPI_ISL_ 610165    

EPI_ISL_ 610166    

EPI_ISL_ 610167    

EPI_ISL_ 610168    

EPI_ISL_ 610169    

EPI_ISL_ 610170    

EPI_ISL_ 610171    

EPI_ISL_ 610172    

EPI_ISL_ 610173    

EPI_ISL_ 610174    

EPI_ISL_ 610175    

EPI_ISL_ 610177    

 

 

Supplementary Table 3: Accession ID of each Amazonas State, Brazil sequence for each 

sampling strategy used within this study 

 

Unsampled Proportional Uniform Reciprocal-

proportional 

EPI_ISL_ 1034306 EPI_ISL_ 1034304 EPI_ISL_ 1034304 EPI_ISL_ 1034306 



44 

EPI_ISL_ 1060876 EPI_ISL_ 1034306 EPI_ISL_ 1034306 EPI_ISL_ 1060913 

EPI_ISL_ 1060877 EPI_ISL_ 1060877 EPI_ISL_ 1060877 EPI_ISL_ 1060914 

EPI_ISL_ 1060881 EPI_ISL_ 1060881 EPI_ISL_ 1060881 EPI_ISL_ 1068149 

EPI_ISL_ 1060888 EPI_ISL_ 1060897 EPI_ISL_ 1060888 EPI_ISL_ 1068150 

EPI_ISL_ 1060889 EPI_ISL_ 1060900 EPI_ISL_ 1060889 EPI_ISL_ 1068156 

EPI_ISL_ 1060894 EPI_ISL_ 1060902 EPI_ISL_ 1060897 EPI_ISL_ 1068198 

EPI_ISL_ 1060897 EPI_ISL_ 1060904 EPI_ISL_ 1060900 EPI_ISL_ 1068258 

EPI_ISL_ 1060900 EPI_ISL_ 1060906 EPI_ISL_ 1060912 EPI_ISL_ 1068260 

EPI_ISL_ 1060902 EPI_ISL_ 1060912 EPI_ISL_ 1060913 EPI_ISL_ 1068262 

EPI_ISL_ 1060904 EPI_ISL_ 1060913 EPI_ISL_ 1060956 EPI_ISL_ 1068263 

EPI_ISL_ 1060906 EPI_ISL_ 1060914 EPI_ISL_ 1061026 EPI_ISL_ 1068264 

EPI_ISL_ 1060911 EPI_ISL_ 1060918 EPI_ISL_ 1068111 EPI_ISL_ 1068278 

EPI_ISL_ 1060912 EPI_ISL_ 1060956 EPI_ISL_ 1068149 EPI_ISL_ 1068286 

EPI_ISL_ 1060913 EPI_ISL_ 1061026 EPI_ISL_ 1068150 EPI_ISL_ 1068288 

EPI_ISL_ 1060914 EPI_ISL_ 1068110 EPI_ISL_ 1068154 EPI_ISL_ 1166615 

EPI_ISL_ 1060918 EPI_ISL_ 1068111 EPI_ISL_ 1068158 EPI_ISL_ 1213190 

EPI_ISL_ 1060956 EPI_ISL_ 1068112 EPI_ISL_ 1068160 EPI_ISL_ 1261690 

EPI_ISL_ 1061026 EPI_ISL_ 1068114 EPI_ISL_ 1068169 EPI_ISL_ 1261694 

EPI_ISL_ 1068110 EPI_ISL_ 1068149 EPI_ISL_ 1068198 EPI_ISL_ 2777236 

EPI_ISL_ 1068111 EPI_ISL_ 1068150 EPI_ISL_ 1068222 EPI_ISL_ 2777320 

EPI_ISL_ 1068112 EPI_ISL_ 1068151 EPI_ISL_ 1068225 EPI_ISL_ 2777363 

EPI_ISL_ 1068114 EPI_ISL_ 1068154 EPI_ISL_ 1068226 EPI_ISL_ 2777375 

EPI_ISL_ 1068149 EPI_ISL_ 1068156 EPI_ISL_ 1068243 EPI_ISL_ 2777376 

EPI_ISL_ 1068150 EPI_ISL_ 1068158 EPI_ISL_ 1068248 EPI_ISL_ 2777384 

EPI_ISL_ 1068151 EPI_ISL_ 1068160 EPI_ISL_ 1068249 EPI_ISL_ 2777388 

EPI_ISL_ 1068154 EPI_ISL_ 1068169 EPI_ISL_ 1068260 EPI_ISL_ 2777397 

EPI_ISL_ 1068156 EPI_ISL_ 1068198 EPI_ISL_ 1068261 EPI_ISL_ 2777399 

EPI_ISL_ 1068158 EPI_ISL_ 1068221 EPI_ISL_ 1068262 EPI_ISL_ 2777401 

EPI_ISL_ 1068160 EPI_ISL_ 1068222 EPI_ISL_ 1068263 EPI_ISL_ 2777403 

EPI_ISL_ 1068169 EPI_ISL_ 1068225 EPI_ISL_ 1068264 EPI_ISL_ 2777404 

EPI_ISL_ 1068198 EPI_ISL_ 1068248 EPI_ISL_ 1068266 EPI_ISL_ 2777409 

EPI_ISL_ 1068221 EPI_ISL_ 1068249 EPI_ISL_ 1068268 EPI_ISL_ 2777410 

EPI_ISL_ 1068222 EPI_ISL_ 1068258 EPI_ISL_ 1068269 EPI_ISL_ 2777414 

EPI_ISL_ 1068225 EPI_ISL_ 1068260 EPI_ISL_ 1068270 EPI_ISL_ 2777415 

EPI_ISL_ 1068226 EPI_ISL_ 1068261 EPI_ISL_ 1068271 EPI_ISL_ 2777465 
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EPI_ISL_ 1068243 EPI_ISL_ 1068262 EPI_ISL_ 1068272 EPI_ISL_ 2777466 

EPI_ISL_ 1068248 EPI_ISL_ 1068263 EPI_ISL_ 1068273 EPI_ISL_ 2777467 

EPI_ISL_ 1068249 EPI_ISL_ 1068264 EPI_ISL_ 1068274 EPI_ISL_ 2777469 

EPI_ISL_ 1068258 EPI_ISL_ 1068266 EPI_ISL_ 1068279 EPI_ISL_ 2777470 

EPI_ISL_ 1068260 EPI_ISL_ 1068268 EPI_ISL_ 1068282 EPI_ISL_ 2777472 

EPI_ISL_ 1068261 EPI_ISL_ 1068269 EPI_ISL_ 1068283 EPI_ISL_ 2777473 

EPI_ISL_ 1068262 EPI_ISL_ 1068270 EPI_ISL_ 1068284 EPI_ISL_ 2777474 

EPI_ISL_ 1068263 EPI_ISL_ 1068271 EPI_ISL_ 1068285 EPI_ISL_ 2777475 

EPI_ISL_ 1068264 EPI_ISL_ 1068272 EPI_ISL_ 1068286 EPI_ISL_ 2777482 

EPI_ISL_ 1068266 EPI_ISL_ 1068273 EPI_ISL_ 1068287 EPI_ISL_ 2777483 

EPI_ISL_ 1068268 EPI_ISL_ 1068274 EPI_ISL_ 1068288 EPI_ISL_ 2777485 

EPI_ISL_ 1068269 EPI_ISL_ 1068275 EPI_ISL_ 1068290 EPI_ISL_ 2777503 

EPI_ISL_ 1068270 EPI_ISL_ 1068276 EPI_ISL_ 1068291 EPI_ISL_ 2777508 

EPI_ISL_ 1068271 EPI_ISL_ 1068278 EPI_ISL_ 1068292 EPI_ISL_ 2777509 

EPI_ISL_ 1068272 EPI_ISL_ 1068279 EPI_ISL_ 1166615 EPI_ISL_ 2777516 

EPI_ISL_ 1068273 EPI_ISL_ 1068280 EPI_ISL_ 1213190 EPI_ISL_ 2777599 

EPI_ISL_ 1068274 EPI_ISL_ 1068281 EPI_ISL_ 1213204 EPI_ISL_ 2777698 

EPI_ISL_ 1068275 EPI_ISL_ 1068282 EPI_ISL_ 1261683 EPI_ISL_ 2777986 

EPI_ISL_ 1068276 EPI_ISL_ 1068283 EPI_ISL_ 1261685 EPI_ISL_ 2777987 

EPI_ISL_ 1068278 EPI_ISL_ 1068284 EPI_ISL_ 1261690 EPI_ISL_ 2777993 

EPI_ISL_ 1068279 EPI_ISL_ 1068285 EPI_ISL_ 1261694 EPI_ISL_ 2777999 

EPI_ISL_ 1068280 EPI_ISL_ 1068286 EPI_ISL_ 2777236 EPI_ISL_ 2778002 

EPI_ISL_ 1068281 EPI_ISL_ 1068287 EPI_ISL_ 2777248 EPI_ISL_ 2778004 

EPI_ISL_ 1068282 EPI_ISL_ 1068288 EPI_ISL_ 2777249 EPI_ISL_ 2778005 

EPI_ISL_ 1068283 EPI_ISL_ 1068289 EPI_ISL_ 2777250 EPI_ISL_ 833138 

EPI_ISL_ 1068284 EPI_ISL_ 1068290 EPI_ISL_ 2777320 EPI_ISL_ 833140 

EPI_ISL_ 1068285 EPI_ISL_ 1068291 EPI_ISL_ 2777363 EPI_ISL_ 906071 

EPI_ISL_ 1068286 EPI_ISL_ 1068292 EPI_ISL_ 2777364 EPI_ISL_ 918505 

EPI_ISL_ 1068287 EPI_ISL_ 1166615 EPI_ISL_ 2777373 EPI_ISL_ 918506 

EPI_ISL_ 1068288 EPI_ISL_ 1213190 EPI_ISL_ 2777374 EPI_ISL_ 918508 

EPI_ISL_ 1068289 EPI_ISL_ 1213204 EPI_ISL_ 2777375 EPI_ISL_ 918509 

EPI_ISL_ 1068290 EPI_ISL_ 1261683 EPI_ISL_ 2777376  

EPI_ISL_ 1068291 EPI_ISL_ 1261685 EPI_ISL_ 2777377  

EPI_ISL_ 1068292 EPI_ISL_ 1261690 EPI_ISL_ 2777378  

EPI_ISL_ 1166615 EPI_ISL_ 1261694 EPI_ISL_ 2777380  
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EPI_ISL_ 1213190 EPI_ISL_ 2777236 EPI_ISL_ 2777383  

EPI_ISL_ 1213204 EPI_ISL_ 2777238 EPI_ISL_ 2777384  

EPI_ISL_ 1261683 EPI_ISL_ 2777248 EPI_ISL_ 2777385  

EPI_ISL_ 1261685 EPI_ISL_ 2777249 EPI_ISL_ 2777388  

EPI_ISL_ 1261690 EPI_ISL_ 2777250 EPI_ISL_ 2777397  
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