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Abstract  

Multiple sclerosis is a heterogeneous disease with an unpredictable course. We applied 

machine learning to generate individualised risk scores of disability worsening and stratify 

patients into subgroups with different prognosis.  

 

Clinical data and MRI scans from published randomised clinical trials in patients with 

relapsing-remitting and progressive MS were divided into training (n=5,483) and external 

validation data sets (n=2,668). We processed brain MRI scans to obtain 18 measures for 

lobar grey matter, deep grey matter and lesion volumes, and T1-/T2-weighted ratio of the 

normal-appearing white matter regions. We developed a machine learning model, called 

subpopulation risk stratification (SunRiSe), that combines multi-parametric clinical and MRI 

data to estimate individualised risk scores and stratify patients into subgroups on the basis 

of this risk; in particular, we entered MRI measures, the Expanded Disability Status Scale, 

age and gender to generate risk scores of disability worsening (i.e., the time to confirmed 

disability worsening). Based on SunRiSe risk scores, high-, medium-, and low-risk 

subpopulations were defined at study entry. We assessed whether selecting patients at high 

risk of disability worsening reduces sample size compared to when all risk groups were 

sampled together.  

 

In both the training and external validation data sets, SunRiSe-stratified patients in three 

groups associated with different levels of risk of disability worsening. In the external 

validation data set, patients at high risk were mainly progressive MS and had more disability 

events compared to those at medium-risk (hazard ratio [HR]=1.34, p<0.0001) and low-risk 

(HR=1.51, p<0.0001). At study entry, male gender, older age, higher lesion load, higher 

disability, lower lobar cortical grey matter, lower normal-appearing white matter T1/T2 ratio 

and lower deep grey matter volumes, were the most important variables in defining the 

SunRiSe risk score.  
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The inclusion of patients predicted to be at high risk, reduced (i) duration of an event-driven 

trial by an average of 4.5 months (±2.1 months); (ii) the number of participants in a 

randomised trial by approximately 200, with 80% statistical power to detect a 30% treatment 

effect. 

  

Machine learning provides a personalised risk score that can identify patients who have the 

greatest risk of disability worsening and therefore should be treated with the most effective 

medications and monitored more closely. Risk stratification allows the enrichment of clinical 

trials with patients more likely to worsen, and thereby reduces trial duration and sample size.  
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Introduction 

Predicting the disease course at an individual level in clinical practice is essential to achieve 

precision medicine. Predicting the future disease course in clinical trials allows recruiting 

individuals with similar characteristics and reducing participants needed to achieve statistical 

power by (1) increasing the chance of reaching the end point and (2) reducing between 

subject variability. Machine learning tools hold great promise to predict disease course in the 

clinical and research setting, because they can integrate routinely available information from 

different sources to objectively predict the future course of diseases at an individual level1–6.  

 

Multiple sclerosis (MS) is the most common demyelinating neurodegenerative disorder in 

young adults in Europe and the USA7. Previous studies have used clinical and imaging 

measures, alone or in combination, to predict short- and long-term MS disability7–10. These 

studies have used group-level statistical approaches, but more recent machine learning 

methods are more adept at predicting prognosis at the individual level8,11–16. Despite these 

advances, robust validations in external cohorts and clinical trials are lacking. It remains 

unclear whether we can generate meaningful risk scores for individuals to assist in decision 

making in clinical practice at an individual level and recruit patients at similar risk of disease 

worsening in clinical trials to maximise treatment effects or reduce adverse events.  In our 

recent work17, we used a cross-sectional method to differentiate data-driven subtypes of MS 

on the basis of patterns of MRI changes. Our previous model based on Subtype and Stage 

Inference (SuStaIn) algorithm 18 could not include clinical measures that fluctuate over time 

(non-monotonic variables). Here, we aimed to expand our previous cross-sectional MRI-only 

models with longitudinal and clinical information and learn the relationship between baseline 

MRI and clinical measures with the time to disability worsening.  

 

Machine learning integrates information from multiple sources, such as brain MRI scans and 

clinical measures, to enable objective prediction of future clinical course. Survival modelling 

estimates the effects variables have on the time to reach a pre-defined event. It is currently 
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applied at the group level to infer the average risk of reaching specific clinical events. Recent 

advances in machine learning have enabled personalised predictions and provided 

individual risk scores3. These models hold great promise to provide prognostic information in 

advance of recruitment, and in future, may help in designing and recruiting participants in 

machine learning-assisted clinical trials.  

 

We introduce a new model called SunRiSe (subpopulation risk stratification inference) to 

generate an individual risk score from a combination of quantitative MRI and clinical 

variables at study entry and predict the chance of developing disability worsening over time. 

Our experiments test the hypotheses that: (1) calculating SunRiSe risk scores with 

quantitative MRI and clinical data at study entry, improves prediction of disability outcomes 

when compared with the use of clinical data alone, and (2) screening in patients with a 

predicted high-risk for clinical worsening increases the statistical power of clinical trials to 

detect treatment effects. 
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Methods 

Overview 

We introduce a machine learning model called SunRiSe based on MRI measures of regional 

neuroanatomical volumes, T1/T2 in the normal-appearing white matter regions, lesion load 

and clinical information at study entry. This model generates risk scores for disability 

worsening at an individual level. We applied SunRiSe to unseen trial cohorts to confirm the 

prognostic ability of the model. We then used these risk scores to select higher-risk patients 

in simulated clinical trials and determined how SunRiSe can accelerate clinical trials by 

reducing the sample size. Below, we will explain the study setting, SunRiSe model 

development and related experiments.  

 

Data: study design, participants, and data sources  

This was a retrospective study on clinical trials collected under the auspices of the 

International Progressive MS Alliance (https://www.progressivemsalliance.org/). We used 

clinical and MRI data from 17 studies which included MS randomised-controlled trials 

(RCTs) of primary progressive MS (PPMS)19–23, secondary progressive MS (SPMS)24–29, and 

relapsing-remitting MS (RRMS)20,30,31, and observational cohorts with mixed MS subtypes, 

which were previously analysed and published17. We split our data set a priori into 14 

studies for training and cross-validating our model, and 3 RCTs to assess the model validity 

and generalisability. The training data sets consisted of 11 clinical trials and three 

observational cohorts. The external validation data set consisted of three clinical trials: one 

in PPMS19, one in SPMS24 and one in RRMS32.   

 

Ethical approval and patient consent 

Each RCT and observational study had received ethical approval, and participants had given 

written informed consent at the time of data acquisition. In addition, the Institutional Review 

Board at the Montreal Neurological Institute (MNI), Quebec, Canada, approved this study 
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(Reference number: IRB00010120) under the auspices of the International Progressive MS 

Alliance.  

 

Brain MRI Protocol and image processing 

We used the following brain MRI sequences available in each trial cohort: T1-weighted, T2-

weighted, and Fluid Attenuated Inversion Recovery (T2-FLAIR) MRI. We used brain 2D and 

3D T1-weighted scans to segment grey and white matter tissues, T2-FLAIR to segment 

lesions, and T2-weighted scans, together with T1-weighted scans, to obtain T1/T2 ratio. 

Details of MRI protocols are explained in publications associated with each dataset19–22,24–

28,30–37 and our previous work17.  

We used regional brain volumes, lesion volume, and T1/T2 ratio values of the normal-

appearing white matter (NAWM), processed and quality checked and explained in detail in 

our previous work17. The image processing included correction for scanner inhomogeneity 

with N4 Bias Field Correction38  (part of Advanced Normalisation Tools or ANTs39). We used 

a fully automatic T2-FLAIR lesion segmentation40 tool and filled hypointense lesions with 

normal-appearing tissue in T1-weighted MRI to reduce segmentation errors with the 

NiftySeg software41, and segmentation of brain tissue into GM, WM and CSF with the 

Geodesic Information Flows (GIF) software version 3.042.  We extracted the following 

variables based on brain regions: 

- Volumes of the frontal, parietal, temporal, and occipital grey matter, limbic cortex, 

cerebellar grey matter and white matter, brainstem, deep grey matter and cerebral 

white matter. To obtain lobar GM volumes, we merged GM regions according to the 

brainCOLOR protocol (https://mindboggle.info/braincolor/).  

- Total T2 lesion volume  

- T1/T2 ratio (a proxy for the white matter integrity) of the NAWM in the corpus callosum, 

frontal, temporal, parietal, occipital lobes, cingulate bundle and cerebellum.  

 

Defining the event outcome 
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The Expanded Disability Status Scale (EDSS)43, which is a measure of neurological 

disability, was scored according to the individual study protocol. We used the EDSS at least 

one month after a protocol-defined relapse. We defined ‘confirmed disability worsening’ 

(CDW) as a worsening of EDSS sustained on subsequent visits for at least 12 weeks. We 

defined EDSS worsening as: ≥1.5-point increase from a baseline EDSS of 0, ≥1-point 

increase from a baseline score of 0.5 to 5.5, and ≥0.5-point increase from a baseline score > 

5.5. 

 

Preparing variables   

We adjusted MRI measures for clinical and demographic variables to disentangle the effects 

of demographic and clinical variables on MRI measures and report the independent 

contribution of variables to model predictions. We constructed univariate regression models 

in which age, age squared, gender, and the EDSS at study entry were the independent 

variables and each MRI measure was the dependent variable. Disease duration was not 

included in these models because it was highly correlated with age. We extracted the 

residuals of MRI measures and used them for further analysis to ensure that MRI measures 

were contributing independently of demographic and clinical outcomes in predictive models 

(see below).  

 

Model development  

Developing and training SunRiSe 

SunRiSe is a consensus of three diverse models that combine into a single model to provide 

superior performance when compared to each individual model, as shown in Figure 1. 

Combining different models to improve performance or ensemble learning is well-

established and has previously been applied to other neurodegenerative disorders2 and 

MS44. SunRiSe is trained using longitudinal data, but requires only cross-sectional data to 

perform predictions after training. The novelty of SunRiSe is using neural network and 
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classical mixture models to balance the accuracy of predictions with generalisability. The 

three components were: 

1) A deep neural network survival model with the “DeepHit” architecture (Lee et al.3) 

2) Trajectory-based classifier with multilevel mixture models45 

3) Gradient boosting survival trees  

DeepHit is a deep neural network with an architecture designed for survival modelling. It 

captures non-linear relationships across predictors better than Cox regression models3. 

DeepHit is explained in the Supplemental Material and in more detail elsewhere3.  The 

second model was a longitudinal (multilevel) mixture model. The mixture model is a 

probabilistic model that explores the presence of subpopulations without the need to rely on 

arbitrary thresholds (unsupervised learning). We used this model to answer the question: 

how many subgroups of EDSS worsening can best explain its pattern of variability over 

time? We explored the optimal number of subgroups with a similar pattern of EDSS 

worsening in the training data set, trained a classifier on baseline variables and used the 

probability of belonging to subgroups to weight predictions of a Cox survival model in 

external validation data. Time was nested as a random effect variable within the ‘subject’ 

variable to adjust for repeated measures in multilevel mixture models45,46. EDSS at each visit 

was the outcome in the mixture model, while time was the fixed effect variable. Our 

justification for using mixture models in addition to the neural network model was that 

mixture models are less sensitive to data heterogeneity and thereby will increase the 

generalisability of our models to external, unseen data.  In the third model, we used a 

gradient boosting approach with Cox proportional hazards models because they are among 

the most successful tools for classification and survival modelling47. The Supplemental 

Materials explain the methodological details of these models.  

 

We developed our models with two sets of variables: one with 18 MRI variables (called MRI-

only model henceforth) and another with 21 variables, which included the previously 

mentioned 18 MRI variables, EDSS, gender, and age at study entry (see Figure 1). The 
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outcomes were: (1) the time to the beginning of 12-week CDW for those who experienced 

CDW; (2) the time present in the study for those who did not experience CDW (i.e., right-

censored); and (3) a categorical variable, which indicated whether the patient experienced 

CDW or not (i.e., the patient completed or dropped out of the study without experiencing 

CDW [being censored]).  

 

Classification of patients into risk groups 

We ranked the predicted risk scores for developing CDW at two years from each of the three 

models and calculated one “consensus” risk score for each patient (referred to as the 

SunRiSe risk score henceforth) using a linear model. We chose two years because it is a 

common duration for phase 2 and 3 clinical trials.  We used a ‘meta’ survival model to 

predict the disability outcomes from individual models’ risk scores. To avoid post hoc and 

arbitrary thresholds in defining subgroups, we used multilevel mixture models which showed 

the three subgroups that optimally described EDSS worsening (see Supplemental Methods). 

We defined thresholds of high-, medium- and low-risk groups based on tertiles of the 

consensus generated risk scores in training data set (to avoid circular reasoning we did not 

use external validation data set) and defined these three risk groups in the external 

validation set. We used the Cox-regression models to compare the risk of developing CDW 

over time across these three groups, separately in training and external validation data sets. 

We used Kaplan-Meier curves to visualise the relationship between CDW events and 

predicted risk groups. We also looked at the relationship between the SunRiSe risk scores 

with EDSS at study entry and over time. For this analysis, we used a mixed-effects model in 

which EDSS was the outcome, with risk score and time (and their interaction) as predictors. 

The “subject” was the random effect variable used for nesting observations in the mixed 

effects model.  

 

Treatment response calculation  
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From the three clinical trials in the external validation data set, we used the ASCEND and 

ORATORIO clinical trials to calculate the treatment response and set BRAVO aside. Our 

justification for this was that the BRAVO clinical trial was a negative study32, while 

ORATORIO was a positive trial and ASCEND had evidence of treatment response in 

secondary outcome measures.19,24 For each subgroup (high-risk, medium-risk and low-risk), 

we used mixed-effects models in which the outcomes were EDSS, Timed-Walk Test and 9-

Hole Peg Test. Time and RCT arms (placebo vs treatment) and interaction between time 

and RCT arm were predictors. We used the beta coefficient of the interaction term (Time x 

RCT arm) as the treatment response.  

 

Selecting high-risk patients to enrich event-driven clinical trials 

We determined whether selecting patients at high risk of developing CDW could increase 

statistical power compared to clinical trials without risk stratification (i.e. we sampled high, 

medium and low risk groups with equal weighting). We randomly sampled patients' first visits 

in the placebo groups of the three clinical trials in the external validation data set and 

calculated the power to detect 12-week CDW. For this, we used the trained SunRiSe model 

to predict risk scores and sampled 1,300 patients based on model-predicted risk scores.  We 

performed two simulations for event-driven and clinical trials with pre-defined sample sizes:  

1) Event-driven clinical trials: We sampled patients classified as high-risk from the 

placebo groups. In both scenarios, we used 1, 2, and 3 years of follow-up to detect 

CDW with a simulated hazard ratio of 0.7 (approximately 30% treatment effect in line 

with phase 3 clinical trials showing treatment effects in progressive MS19,48) and 

reported the statistical power at a two-sided alpha level of 0.05. We also calculated 

the power for clinical trials when patients were sampled randomly.  We used a 

constant screening time of 12 months for all the sample size calculations.  

2) Full-duration (“regular”) clinical trials: We repeated the simulations to calculate the 

number of participants needed to achieve 80% statistical power over three years of 

follow up with the same simulated treatment effects.  
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We used Schoenfeld’s approximation method49 and repeated the sampling with replacement 

for 5,000 times to obtain standard deviations (i.e. bootstrapping50).  

 

Software toolboxes  

We used Pytorch version 1.5.0, PyCox version 0.2.2, and Sksurv version 0.15.1 for machine 

learning experiments51. We used MPlus version 8.4 for longitudinal mixture modelling45. We 

used R Version 4.0.3 for all the remaining statistical analyses and plotting of results52 and 

gsDesign package version 3.2.1 for the power analysis.  

 

Data Availability  

The data sets are controlled by pharmaceutical companies. Requests to access data can be 

forwarded to data controllers listed in our previous publication17. Processed CSV files can be 

from the corresponding author by any qualified investigator for reproducing the results of this 

study.  
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Results 

Demographic characteristics  

There were 5,483 patients with RRMS (3,194), SPMS (1,182) and PPMS (1,107) in the 

training data set. There were 2,668 patients in the external validation data set including1,116 

RRMS, 851 SPMS, and 701 PPMS. The average age (±standard deviation or SD) for RRMS 

was 36.9 years in the training data set and 37.60 in the external validation data set, 53.07 

(±7.40) for SPMS in the training set and 46.67 (±7.67) in the external validation set. The 

average age was 49.26 (±8.47) years for PPMS in the training set and 44.57 (±8.00) in the 

external validation data set. The training and external validation data sets did not differ in 

age, EDSS, gender distribution, and disease duration (p-values>0.05 for all comparisons). 

Table 1 shows the demographic and clinical characteristics of patients at study entry.  

 

Predicting the risk of CDW: added value of MRI with multimodal prediction models 

Using clinical data at study entry, in the training data set, patients classified as high-risk 

were more likely to experience 12-week CDW compared to the low-risk group (HR = 1.27, 

95% CI =1.1 to 1.44, p < 0.001). Patients classified as medium-risk were more likely to 

experience CDW compared to the low-risk group (HR=1.14, 95% CI=1.02 to 1.55, p<0.03). 

Similarly, in the external validation data set, patients predicted to be high-risk were more 

likely to experience CDW than those classified as low-risk (HR=1.31, 95% CI = 1.07 to 1.61, 

p=0.007). This means that patients classified by the model as high-risk were approximately 

31% more likely to experience CDW than the low-risk group. On average, patients predicted 

to be high-risk experience more CDW events than the medium-risk group (HR=1.16, 95% 

CI: 0.94 to 1.43), but this was not statistically significant (p=0.15).  

 

Using MRI at study entry   

Predicting risk using only MRI at study entry in training and external validation data sets 

In the training data set patients classified as high-risk were more likely to experience 12-

week CDW compared to the low-risk group (HR = 1.69, 95% CI =1.48 to 1.92, p < 0.001) 
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and more likely to experience CDW compared to the medium-risk group (HR = 1.52, 95% CI 

=1.34 to 1.72, p<0.001).  This means that patients classified by the model as high-risk were 

more likely to develop CDW, by approximately 52% relative to the medium-risk group and 

69% relative to the low-risk group. There was no significant difference in reaching the 12-

week CDW between the medium and low-risk groups, although this risk indicated on 

average greater CDW events in patients classified as medium risk (HR= 1.10, 95% CI = 0.96 

to 1.24, p=0.13). Similarly, in the external validation data set, patients classified as high-risk 

were more likely to experience EDSS progression than those classified as low-risk 

(HR=1.21, 95% CI = 1.00 to 1.48, p=0.05). This means that patients predicted to be at high-

risk were approximately 21% more likely to experience CDW than the low-risk group. On 

average, patients classified as high-risk experience more CDW events than the medium-risk 

group (HR=1.17, 95% CI: 0.96 to 1.43), but this was not statistically significant (p=0.11). 

When we looked at the model-derived risk scores (SunRiSe risk scores), for every unit 

standard deviation increase in the risk score at study entry, there was 0.36 (standard 

error=0.03) increase in EDSS at baseline (p<0.001). Over time, for every unit standard 

deviation increase in baseline risk, there was 0.02 increase (standard error = 0.07) in the 

rate of EDSS worsening (p=0.02). 

 

Using a combination of MRI and clinical data at study entry to predict the risk at study entry 

In the training set, when we added baseline EDSS, age and gender to MRI measures to 

predict 12-week CDW, the high-risk group had a hazard ratio of 1.75 (95% CI: 1.48 to 2.06) 

compared to the low-risk group (p<0.0001). This means that patients classified by the model 

as high-risk were approximately on average 75% more likely than the low-risk group to 

experience CDW during the follow-up. The medium-risk group had a greater hazard ratio of 

1.19 (95% CI: 1.02 to 1.39) relative to the low-risk group, which was statistically significant 

(p<0.02). This means that the medium-risk group, on average, was approximately 19% more 

likely to experience CDW than the low-risk group. Similarly, the risk of developing CDW in 

the high-risk group compared with the medium-risk risk group was significantly higher 
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(HR=1.46, 95%CI: 1.30 to 1.65, p< 0.0001). This means that patients classified as high-risk 

were 46% more likely to experience CDW than the medium-risk group.  

 

When looking at the external test data set, the predicted high-risk group had a statistically 

significantly higher risk of EDSS progression in comparison with the low-risk group 

(HR=1.51, 95% CI: 1.18 to 1.92, p<0.0001) and the medium-risk group (HR=1.34, 95% CI: 

1.11 to 1.62, p<0.01). This means that patients predicted to be in the high-risk group were 

51% more likely than the low-risk group and 34% more likely than the medium-risk group 

and to experience CDW. More patients in the medium-risk groups than the low-risk group 

experienced EDSS progression (HR=1.12, 95% CI: 0.89 to 1.4), but this was not statistically 

significant (p=0.3).  Figure 3 shows the number of patients in each group and the Kaplan 

Meier curves for the 12-week CDW. Figure 3 shows the Kaplan-Meier curves for the training 

and external validation data sets. Figure 2 shows the frequency of risk groups within clinical 

MS phenotypes.  

 

Importance of variables in defining the risk score  

Variables measured at study entry that contributed to higher risk scores in order of 

importance were male gender, older age, higher lesion load, higher EDSS, lower GM 

volumes of the cortical lobes, lower T1/T2 in normal-appearing white matter in the cingulate 

and insular region, lower deep grey matter volume and lower T1/T2 of the corpus callosum 

(p=0.01 for all, see Figure 2b for the complete list). Our findings in Figure 2b and Table 2 

show that increasing age, disease duration, baseline EDSS, lesion volume, male gender, 

smaller volumes of the cortex and deep grey matter, and lower T1/T2 in normal-appearing 

white matter contribute to and predict an increased risk of CDW.  

 

Disease activity: risk scores were not associated with relapses  

When we used the model trained with MRI measures, there were no statistically significant 

differences in the annual relapse rate over time across the three risk groups in the external 
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validation set (annual relapse rates were: low-risk=0.28, medium-risk=0.27, high-risk=0.25). 

When we used the model trained with MRI, age, gender and EDSS, there was a small but 

statistically significant difference across the three groups in the annual relapse rates. The 

low-risk group had the highest average (±standard error) annual relapse rate of 0.31 ± 0.02, 

which was statistically significantly different from the high-risk group with an average relapse 

rate of 0.22 ±0.03 (p=0.002). These two groups were not significantly different from the 

medium-risk group, which had an average annual relapse rate of 0.26 ± 0.03 (p=0.12).  

 

Treatment response  

In two clinical trials in the external validation data set (ASCEND and ORATORIO), patients 

in the high-risk group had a significant treatment response according to the rate of slowing of 

the 9-Hole Peg Test (p<0.001). The rate of 9-Hole Peg test performance in the high-risk 

group improved by 2.3 (±0.81) seconds per year on treatment, while it worsened by 3.13 

seconds (±0.62) the high-risk patients on placebo (p=0.004).  There were no differences in 

treatment response (difference between rate of 9-Hole Peg test performance between the 

placebo and treatment groups) between the medium and low risk groups. There were no 

differences in treatment response as measured by EDSS and the Timed Walk Test. Figure 

2d shows the percentage change in the 9-Hole Peg test across the three groups and the 

treatment response.   

 

Selecting patients predicted to be at high risk of disability worsening increased the statistical 

power compared to when all risk groups were sampled with equal weighting 

Event-driven clinical trials 

The average (±standard deviation) of the statistical power for a sample of 1,200 participants 

with three years of follow up, for an enriched trial of high-risk patients was 82% (±2.0) 

compared to 76% (±2.4) without patient enrichment. This corresponds to 266.71 ±14.6 CDW 

events for enriched trials enrolling high-risk patients compared to 224.31±13.4 events when 

patients with any level of risk are recruited (p<0.0001). This means that risk stratification and 
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enrolment of high-risk patients reduced the duration of a phase 3, event-driven, clinical trial 

by an average of 4.5 months (±2.1 months). 

Clinical trials with pre-defined sample sizes (conventional clinical trials) 

In clinical trials with pre-defined sample sizes, the estimated sample of patients to achieve 

80% power was 1,100, while without enrichment this was 1,300 participants to detect a 30% 

treatment effect on 12-week CDW. Figure 4 shows the results of sample size calculations.  
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Discussion 

We developed a risk score by combining baseline multi-modal imaging, demographic, and 

clinical data to predict disability worsening. Our risk scoring model generates values for 

individual patients. We defined risk groups based on individual risk scores in the training 

using both baseline and longitudinal data, and in validation, using only baseline data, we 

found that these groups had different risk of developing 12-week CDW when evaluated over 

time. When we applied our model to independent data we confirmed its generalisability and 

demonstrated its ability to increase statistical power and predict treatment response for 

clinical trials. Important variables at study entry that defined greater risk scores were male 

gender, increasing age, lesion load and EDSS, decreasing cortical volumes, decreasing 

deep grey matter volumes, and decreasing T1/T2 ratio in normal-appearing white matter. 

Our model can be used prospectively in clinical trials to screen and stratify patients across 

treatment arms.  

 

Characteristics of subgroups between the training and external validation data sets were 

consistent. In these data sets, patients classified as high-risk were more likely to be men, 

older, more disabled at baseline, and have MS for longer. These are well-established risk 

factors for MS7 and are consistent with previous studies on EDSS, age, male gender10,14–

16,44, and radiological findings8,9,53. Most of these studies have used group-level statistical 

models to estimate the degree to which such factors contribute to long-term disability. The 

novelty of our work lies in our approach that exploits widely available quantitative 

neuroimaging data and provides individual-level risk stratification. Our study is unique in 

applying machine learning to large datasets with external validation and with the potential 

utility to increase statistical power in event-driven48 clinical trials that rely on the number of 

CDW events, thereby potentially reducing the duration of drug development. A downside is 

that about one-third of patients were predicted to be high-risk, and recruitment based on risk 

scores may increase the screening period of clinical trials.  
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We found that the loss of cortical and deep grey matter, a reduction in normal-appearing 

white matter T1/T2 ratio and lesion volume contribute to a higher risk score for disability 

worsening. We and others have previously shown that brain volume loss and lesion volume 

accumulation contribute to disability37,54. T1/T2 ratio is a proxy for microstructural integrity, 

which may change because of several different underlying pathological processes, including 

demyelination55,56.  It is important to note that we adjusted MRI measures for demographic 

and clinical variables before entering them into our risk prediction models, to show the 

added value, rather than the MRI measures just acting as a proxy for demographic features. 

When looking at the relative importance of variables in defining the risk score extracted from 

the model, we found that in the order of importance, male gender, greater age, higher lesion 

load and higher EDSS were the most important variables. The volume of cortical lobes, 

T1/T2 ratio in the white matter surrounding the cingulate cortex, insular cortex, followed by 

deep grey matter, were the next important variables. Therefore, we can conclude that more 

extensive damage in normal-appearing white matter T1/T2 ratio, MRI-visible injury and grey 

matter volume loss contribute to our model-derived (SunRiSe) risk scores to different 

degrees independently of age, gender, and disability.  

  

The risk scores were largely independent of relapse disease activity. There were no 

associations between annual relapse rate and risk scores. This can partly be related to our 

pre-processing steps and the outcome (CDW) we used to train our models. We excluded 

clinical assessments within (before or after) 30 days of a protocol-defined relapse. Recent 

studies have shown that more than 80% of the disability accumulation can be independent 

of relapses, even in relapsing-remitting MS57. Therefore, it is likely that the risk scores 

represent more of the neurodegenerative component and the underlying insidious 

progressive disability worsening across clinical phenotypes of MS, rather than relapse 

disease activity, and therefore there was no difference in response to anti-inflammatory 

treatments across the three risk strata. We did not find a significant reduction in the rate of 

disability worsening according to EDSS and Timed-Walk Test in treatment arms relative to 
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the placebo arms in different risk groups. However, we found a small but statistically 

significant response to treatment in the high-risk group according to the change in the rate of 

9-Hole Peg Test worsening in two clinical trials of SPMS and PPMS patients in our external 

validation data set. We believe that this relates to a more rapid decline in the hand function 

in patients who have less walking ability when entering trials (baseline EDSS for the high-

risk group was 5.0), thus making it more likely for statistical models to detect a change. It 

has been previously reported that hand function may be more sensitive in assessing 

treatment response in more disabled populations whose walking function may not change24. 

Patients classified as high-risk had higher disease burden (according to higher lesion load 

and lower brain volumes) at study entry but a less active disease according to relapse rates 

over time. This means that these patients had a higher disease burden to start with but a 

less active disease and were more likely to experience disability worsening. In our previous 

work, using the same cohort of patients, we found a significant treatment response when 

patients were grouped based on MRI-derived patterns 17. In our previous work, we predicted 

CDW by using the Subtype and Stage Inference or SuStaIn algorithm on MRI to classify 

patients into data-driven MRI subtypes. We found that an MRI-derived group coined lesion-

led had a higher disease activity, faster disability progression, younger age, and greater 

treatment response17.  SunRiSe risk scores introduced here for the first time could predict 

CDW more strongly than our previous model, though not treatment response. The largest 

hazard ratio across MRI-based subtypes was 1.32 for the SuStaIn model, while for the 

SunRise model, this was 1.51. This is because SunRiSe is a supervised survival model 

trained to predict time to CDW directly. The factors that contribute to higher risk of disability 

act in opposite directions in defining treatment response to anti-inflammatories. For example, 

older age contributes to higher disability but reduces treatment response, and a more active 

inflammatory disease (higher/new T2 lesion) increases disability accumulation but increases 

the likelihood of responding to anti-inflammatory therapies. We believe this is a reason why 

the SunRiSe model could not predict treatment response as well as SuStaIn, while 

outperforming SuStaIn in predicting future disability. Overall, our findings across these two 
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studies mean that the risk-groups based on the SunRiSe ensemble model and our previous 

SuStaIn model distinguish patients with different characteristics, thereby they have the 

potential to complement each other in future works.   

 

We used three different types of survival machine learning models to address potential 

pitfalls of one with another and enable symbiosis in our ensemble model to achieve superior 

performance compared to using any one model on its own (Figure 3 and Supplemental 

Table 1). Deep learning models are known to be sensitive to centre effects and changes in 

data distributions. To alleviate this issue, we used two other models (mixture models and 

gradient boosting survival trees) multi-centre datasets (details of centre effects explained 

elsewhere17). When we applied our model to independent, external cohorts, our results were 

reproduced, which underpins the robustness of our model to changes in scanner and centre.  

 

Models developed only with MRI measures were able to distinguish across two (high risk vs 

low risk) of the three risk groups as shown in Figure 3. Adding EDSS along with age and 

gender increased the performance of our model (maximum hazard ratio in the MRI-only 

model was 1.69 while it was 1.75 in the model that included both MRI and clinical data) and 

could distinguish across the three groups. Our MRI-extracted variables were adjusted for 

age, disease duration and EDSS, and therefore present independent contributions from the 

demographic values. A recent study showed that age at onset and EDSS are important 

predictors of ‘aggressive’ multiple sclerosis 14. Several previous studies have shown that 

higher EDSS and age are predictors of a worse prognosis. However, it remained unclear 

whether quantitative MRI measures which can be extracted from widely available MRI 

sequences may add value to clinical variables.  

 

 

Although SunRise risk scores are predicted for individuals, our models are still not suitable 

for robust prediction of disability worsening at an individual level, but still moves us from a 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted February 3, 2022. ; https://doi.org/10.1101/2022.02.03.22270364doi: medRxiv preprint 

https://doi.org/10.1101/2022.02.03.22270364


Eshaghi et al. 

 23 

group-wise approach towards a actionable subgroup-based risk prediction. We trained our 

model to explain disease worsening according to EDSS (we observed similar results in the 

9-Hole Peg Test and Timed-Walk Test, results not shown) which has well recognised 

limitations 58 which may in part explain the still limited predictive power at an individual 

level.  Future research on emerging measures of disability will provide outcomes with lower 

variability and greater neural network specificity, and so may enable more personalised 

predictions. However, we believe that using EDSS is also a strength our study, because of 

its wide acceptance by regulators across the world which in turn enables our models to have 

a wider clinical impact in the future. 

 

In conclusion, we developed a risk stratification model and predicted short-term disability 

worsening using a combination of neuroimaging and clinical measures. Our model 

generalised to unseen, independent cohorts of patients in phase two and phase three 

clinical trials and can be used prospectively to stratify the risk of disability worsening.  
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Table 1. Patient characteristics of the development and external validation data sets.  

 Development and cross-validation 

(n=5,483) 

External validation 

(n=2,668) 

 RRMS SPMS PPMS RRMS SPMS PPMS 

Percentage of 

population1 

3,194 

(58%) 

1,182 

(22%) 

1,107 

(20%) 

1,116 

(42%) 

851 

(32%) 

701 

(26%) 

Age at study 

entry2 

36.94 

(±9.35) 

53.07 

(±7.40) 

49.26 

(±8.47) 

37.60 

(±9.49) 

46.67 

(±7.67) 

44.57 

(±8.00) 

Female (%) 69% 68% 50% 69% 62% 49% 

EDSS 3 
2 

(1.5-3.5) 

6 

(5.5-6.5) 

4.5 

(4-6) 

2.5 

(1.5-3.5) 

6 

(5.0-6.5) 

4.5 

(3.5-6) 

Disease 

duration at 

study entry 

(SD) 2 

5.68 

(±6.83) 

17.71 

(±9.82) 

4.52 

(± 4.60) 

3.23 

(±4.42) 

12.02 

(±6.89) 

2.77 

(3.10) 

Progression 

duration at 

study entry 

(SD) 2 

– 7.63 

(±5.56) 

– – 4.64 

(±3.36) 

– 
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Table 2. Subpopulation characteristics in the training and external validation data sets.  

 Training and cross-validation 

(n=5,483) 

External validation 

(n=2,668) 

 Risk group Risk group 

Low  Medium High Low  Medium  High 

Percentage 

of population1 

18 60 23 22 55 23 

Age (SD2) 
36.95 

(9.59) 

42.59 

(11.53) 

48.44 

(9.26) 

37.38 

(9.36) 

42.22 

(9.47) 

47.20 

(6.78) 

Female (%) 88% 67% 41% 88% 62% 36% 

EDSS 

(Interquartile 

range) 3 

2.5 

(1.5 – 3.5) 

3.5 

(2.0-6.0) 

4 

(3.5-6.0) 

3 

(2.0-4.0) 

4 

(3-6) 

5.5 

(4-6) 

Disease 

duration (SD)  

4.7 

(6.04) 

6.06 

(6.36) 

 

8.12 

(8.99) 

3.47 

(4.58) 

6.01 

(6.78) 

 

 

7.95 

(6.93) 

 

Lesion load 

in mL (SD) 2 

13.29 

(15)  

19.85 

(21) 

25.08 

(33) 

16.12 

(16) 

21.90 

(22) 

33.87 

(34) 

 

 

1 Percentage numbers are automatically rounded and therefore may not add up to 100%.  

2 Lesion load values are adjusted for age.  

The model that was used to classify patients into risk groups used 21 measures (18 MRI 

variables, baseline EDSS, age and gender).  

SD, standard deviation.  
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Figure 1. Overview of the training and validation. 

 

Caption: This flowchart shows how we trained the ensemble SunRiSe model. (A) shows the 
input variables from different modalities (each circle represents a variable and different 
colours represent modalities). Each model generates a risk score, the meta-model 
generates a final risk score from the three risk scores. The risk scores are grouped into high, 
medium and low risk. The threshold to define these three groups are based on the tertiles of 
the risk scores in the training data set; (B) shows the training and cross-validation of the 
model; (C) shows how we applied the trained model to the data at study entry in the external 
validation trial cohorts to assess validity and generalisability of the risk stratification 
framework.  
Abbreviations: CDW, confirmed disability worsening.   
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Figure 2. Population risk stratification and variable importance in defining the SunRiSe risk 

score.  

 

Caption: (a) shows the distribution of the three risk strata in the training and test dataset. 

The multi-level mixture models showed that three groups in the training set could best 

explain the data heterogeneity. We used the training set to normalise the risk scores (Z-

scores) in the training and external validation data sets. The bar plots on the right-hand side 

show the frequency of risk groups within clinical phenotypes. When using clinical and MRI 

data, within the external validation set, a total of 50% of RRMS, 19% of SPMS, and 22% of 

PPMS patients were predicted to be at low risk. 31.8% of RRMS, 35% of SPMS, and 32.4% 

of PPMS were predicted to be at medium risk. 18.1% of RRMS, 45.9% of SPMS, 44.6% of 

PPMS were predicted to be at high-risk. When using MRI data, a total of 41.6% of RRMS, 
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25.9% of SPMS, and 27.8% of PPMS patients were predicted to be at low risk. 34.8% of 

RRMS, 30.5% of SPMS, and 32.9% of PPMS patients were predicted to be at medium risk. 

23.4% of RRMS, 43.4% of SPMS, and 39.2% of PPMS were predicted to be at high risk. (b) 

Shows the variable importance analysis. The risk score was the outcome variable, and 

variables at study entry (horizontal axis) were predictors. Age, gender, lesion load, EDSS 

had a positive coefficient (greater values correspond to greater risk), while other variables 

had a negative coefficient (lower values correspond to greater risk score). Each unit 

increase in the variables in the horizontal axis corresponds with the standard deviation units 

(Z-score) of the risk score in the vertical axis. One standard deviation increase in EDSS 

score corresponds with a 0.4 standard deviation increase in the risk score while being a 

male corresponds to a 0.4 standard deviation increase in the risk score. (c) Shows the 

treatment response in ASCEND and ORATORIO trials. Patients in the high-risk group had a 

4% annual reduction in the 9-Hole Peg Test worsening (absolute difference of 2.34 annual 

reduction compared to the placebo group, p=0.004). The error bars represent a 95% 

confidence interval.  

  

Abbreviations: GM, grey matter; DGM, deep grey matter; EDSS, expanded disability status 

scale.  
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Figure 3. Stratifying subpopulations.  

 

Caption: The upper panel left panel shows the data-driven subpopulation inference using 

longitudinal data in the training data set. The three subpopulations could best explain the 

heterogeneity in EDSS worsening and time to CDW. We chose three as the optimal number 

of subgroup trajectories because by increasing the number of subgroups (4 and more), there 

were no statistically significant differences between all the pairs of subgroups. Additionally, 

by adding more than three subgroups, we did not find meaningful subgroups. We considered 

a subgroup to be “meaningful” when there were more than 100 patients and the difference in 

hazard ratios across subgroups was statistically significant (all comparisons in the training 

data set). The upper right panel shows the performance of the ensemble model in the 

external validation data set using baseline clinical and demographic data (EDSS, age, 

gender, and disease duration). The lower left panel shows the model that was trained with 
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MRI data only, and the right column shows the model that was trained with MRI, 

demographic and EDSS measures at baseline. The model that integrates both the clinical, 

demographic and MRI data has the best performance.  The log-rank test p-value is shown 

alongside survival curves for each data set. In the lower left panel the p-value of the 

comparison of the hazard ratio between the high risk and low risk group is shown.  
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Figure 4. Statistical power of event driven clinical trials when patients at high risk of 

disability are selected.  

 

Caption: The figure shows that recruiting patients at high-risk of disability progression 

identified by the ensemble survival model significantly increase the statistical power of event 

driven (a) and regular (b) clinical trials. We used the external validation data set to sample 

1,200 participants with replacement using baseline characteristics. To calculate the power, 

we used a hazard ratio of 0.7, and number of actual events based on the external validation 

data set.   
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Supplemental methods 

We discuss the methodological details of the three models that contribute to a final risk 

score (SunRiSe risk) in this section. In all these models EDSS, a well-established outcome 

accepted by regulators and used in clinical trials, was the clinical variable of interest. The 

three models that constituted the ensemble model included two supervised models (1 and 3) 

and one unsupervised classifier (model 2) as below: 

1) Deep neural network model: DeepHit  

We used the original implementation3 of DeepHit architecture. DeepHit learns the joint 

distribution of CDW and the time to CDW while taking into account the right censoring of 

data for those who completed (or were dropped out of) the study without experiencing CDW. 

DeepHit makes no assumptions about the form of underlying data distributions and that of 

the relationship between covariates and the hazard rate. This enables learning non-linear 

relationships between covariates and hazard rates, thus outperforming some of other deep 

neural network-based architectures such as DeepSurv that rely on Cox-regression model 

assumptions.58 We hypothesised that the ability of learning non-linear relationships will 

provide a boost in predicting the disability because of the well-known bimodal distribution of 

EDSS.59 

2) Trajectory-based classification and risk scoring with longitudinal multilevel 

mixture models  

Mixture models are an unsupervised algorithm that we used to classify the trajectory of 

EDSS worsening. Here we aimed to separate subgroups of patients whose rate of disability 

worsening measured by EDSS differed. The justification for using clustering of subgroups, 

as opposed to individual-level prediction, was the well-known limitations of EDSS in having a 

bimodal distribution and relatively high variability and lower sensitivity to subtle disease 

worsening. This enabled us to use EDSS as the outcome and choose the optimal number of 

subgroups in a data-driven way to maximise generalisability. During the training, we applied 

longitudinal mixture models to the EDSS data to explore the optimal number of 

subpopulations with similar worsening rates over time45. We performed leave-one-out cross-
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validation to select the optimal number of subgroups that could best explain different 

trajectories of EDSS worsening (trajectory-based classification). We iterated the cross-

validation for ten times, each time fitting the model on 9 folds and applying it on the 

remaining, held-out fold. We chose the optimal number of subgroups as the one providing 

statistically significant hazard ratios across all data-driven subgroups in the training data set 

and cross-validation folds. After choosing the optimal number of subpopulations, in the 

second step, we trained a gradient boosting classifier based on the cross-sectional 

characteristics of the members of each subtype at study entry (baseline). For each 

subgroup, we used a Cox model to generate risk scores for individuals. In the external 

validation, we only used the trained cross-sectional classifier to define the most likely 

subgroup membership and weighted the Cox model predictions according to the 

membership probability. Ranking the outputs of the Cox model allowed to generate 

individual risk scores.  

 

 

3) Gradient boosting survival trees  

Gradient boosting survival model is an ensemble of sequential weak decision trees that 

provide boosted performance and has extensively been used in classification, regression 

and survival models.47 They are similar to random forest models (except that they use 

sequential trees), with robust performance in defining variable importance when categorical 

(e.g., gender) and ordinal (e.g., EDSS) variables are used.  

 

Consensus risk score and subgroup stratification 

Each of the above three models provides a risk score of developing 12-week CDW. To 

combine the outputs of the three predictive models into one risk score, we used a linear 

model (meta-model) that received the risk scores from individual models and provided a 

consensus risk score. We grouped patients based on the consensus risk score into three 

groups of high, medium and low risk score based on the consensus risk score tertiles that 
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we defined in the training data set. To prevent bias and inflating false positives, we did not 

use the external validation in defining the threshold. 
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Supplemental results 

Ten-fold cross-validation 

The two subgroup and three subgroup models showed statistically significant differences in 

all cross-validation folds across the subgroups. Therefore, we chose the three groups as the 

optimal model to best classify the differing subgroup trajectories. The results of mixture 

models with up to 5 subpopulations applied to all 10-folds in the training set is shown in 

Figure 3 (upper panel).  
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Supplemental Table 1. Results for individual models and the ensemble (SunRiSe) model.  

 High-risk vs low risk 

 

p-value High-risk vs medium-risk p-value 

Stratified 

predictions 

(mixture 

model) 

1.41 

(1.10-1.57) 

P=0.005 1.32 

(1.10-1.57) 

P=0.002 

DeepHit 1.54 

(1.25 -1.91) 

P<0.001 1.40 

(1.13-1.71) 

P=0.001 

GBS* 1.19 

(0.98-1.45) 

P=0.08 1.03 

(0.84-1.27) 

P=0.7 

Ensemble 

model 

1.75 

(1.48-2.06) 

P<0.0001 1.46 

(1.30-1.65) 

P<0.0001 

 

*Gradient boosting survival trees 
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Collaborators and investigators of the International Progressive MS Alliance (PMSA)  

Name Institution 

Douglas L Arnold McConnell Brain Imaging Centre, Montreal 

Neurological Institute, McGill University, 

Montreal, Quebec, Canada 

Sridar Narayanan McConnell Brain Imaging Centre, Montreal 

Neurological Institute, McGill University, 

Montreal, Quebec, Canada 

Frederik Barkhof Queen Square Multiple Sclerosis Centre, 

Department of Neuroinflammation, UCL 

Queen Square Institute of Neurology, 

Faculty of Brain Sciences, University 

College London, WC1B5EH, UK 

Olga Ciccarelli  Queen Square Multiple Sclerosis Centre, 

Department of Neuroinflammation, UCL 

Queen Square Institute of Neurology, 

Faculty of Brain Sciences, University 

College London, WC1B5EH, UK 

Declan Chard Queen Square Multiple Sclerosis Centre, 

Department of Neuroinflammation, UCL 

Queen Square Institute of Neurology, 

Faculty of Brain Sciences, University 

College London, WC1B5EH, UK 

Louis Collins McConnell Brain Imaging Centre, Montreal 

Neurological Institute, McGill University, 

Montreal, Quebec, Canada 

Tal Arbel McConnell Brain Imaging Centre, Montreal 
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Neurological Institute, McGill University, 

Montreal, Quebec, Canada 

Charles R.G Guttman Center for Neurological Imaging, Brigham 

and Women’s Hospital, Harvard Medical 

School, Massachusetts, USA 

Jerry S Wolinsky McGovern Medical School, The University 
of Texas Health Science Center at Houston 
(UTHealth), Houston, Texas, USA 

Garry R Cutter University of Alabama at Birmingham 
School of Public Health, USA 

Nicola De Stefano University of Siena, Italy 

Maria Pia Sormani University of Genoa, Italy 

Ludwig Kappos University Hospital Basel, Switzerland 

Jack H Simon Oregon Health and Sciences University, 
Portland Veterans Affairs Medical Center, 
Oregon, USA 

Jeremy Chataway Queen Square Multiple Sclerosis Centre, 
Department of Neuroinflammation, UCL 
Queen Square Institute of Neurology, 
Faculty of Brain Sciences, University 
College London, WC1B5EH, UK 

Raj Kapoor Queen Square Multiple Sclerosis Centre, 
Department of Neuroinflammation, UCL 
Queen Square Institute of Neurology, 
Faculty of Brain Sciences, University 
College London, WC1B5EH, UK 

Howard L. Weiner (CLIMB Investigator) Brigham and Women’s Hospital, Ann 
Romney Center for Neurologic Diseases, 
Department of Neurology, Boston, MA, 
02115 

Tanuja Chitnis (CLIMB Investigator) Brigham and Women’s Hospital, Ann 
Romney Center for Neurologic Diseases, 
Department of Neurology, Boston, MA, 
02115 

Rohit Bakshi (CLIMB Investigator) Brigham and Women’s Hospital, Ann 
Romney Center for Neurologic Diseases, 
Department of Neurology, Boston, MA, 
02115 

 

  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted February 3, 2022. ; https://doi.org/10.1101/2022.02.03.22270364doi: medRxiv preprint 

https://doi.org/10.1101/2022.02.03.22270364


Eshaghi et al. 

Supplemental Figure 1. Flowchart of the model-based stratification.  
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Supplemental Figure 2. Predicting disability in external validation data set with individual 

models.  
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