Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

Occurrence of relative bradycardia and relative tachycardia in individuals diagnosed with COVID-19

View ORCID ProfileAravind Natarajan, Hao-Wei Su, Conor Heneghan
doi: https://doi.org/10.1101/2022.02.02.22270342
Aravind Natarajan
Fitbit Research, 199 Fremont St, Fl #14, San Francisco, CA 94105
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Aravind Natarajan
Hao-Wei Su
Fitbit Research, 199 Fremont St, Fl #14, San Francisco, CA 94105
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Conor Heneghan
Fitbit Research, 199 Fremont St, Fl #14, San Francisco, CA 94105
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Data/Code
  • Preview PDF
Loading

Abstract

Background The COVID-19 disease caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has become one of the worst global pandemics of the century causing tremendous human and economic suffering worldwide. While considered a respiratory disease, COVID-19 is known to cause cardiac complications. Wearable devices are well equipped to measure heart rate continuously and their popularity makes them valuable devices in the field of digital health. In this article, we use Fitbit devices to examine resting heart rate from individuals diagnosed with COVID-19 a

Methods The Fitbit COVID-19 survey was conducted from May 2020 - June 2021. We collected resting heart rate data from 7,200 individuals (6,606 symptomatic, 594 asymptomatic) diagnosed with COVID-19 between March 2020 - December 2020, as well as from 463 individuals diagnosed with influenza between January 2020 - December 2020. Data from healthy individuals served as a control, in order to model the seasonal variation. We also computed heart rate variability and respiratory rate data for symptomatic COVID-19.

Findings Resting Heart Rate is elevated during COVID-19 symptom onset, with average peak increases relative to the baseline of 1.8%±0.1% (3.4%±0.2%) for females (males), where the quoted numbers are mean and standard error of the mean. After the initial peak, the resting heart rate decreased and reached a minimum on average ≈ 13 days after symptom onset. The minimum value relative to the baseline is more negative for females (−1.75% ± 0.1%) compared to males (0.08% ± 0.2%). The resting heart rate then increased, reaching a second peak on average ≈ 28 days from symptom onset, before falling back to the baseline ≈ 112 days from symptom onset. All estimates vary with disease severity.

Interpretation The resting heart rate is modified for several months following a COVID-19 diagnosis. Interestingly, this effect is seen with seasonal influenza also, although the bradycardia minimum and the second tachycardia peak are often more pronounced in the case of symptomatic COVID-19. By computing resting heart rate daily, wearable devices can contribute to monitoring wellness during recovery from COVID-19, and seasonal influenza.

Funding A.N., H.-W.S., and C.H. are supported by Fitbit Research, Google LLC.

Evidence before this study We searched PubMed, Google, and Google Scholar for research articles published in English up to Oct 31, 2021, using common search terms such as “bradycardia and COVID-19”, “cardiac complications and COVID-19”, etc. Articles were also retrieved by searching through citations of known literature. It is known that COVID-19 can cause cardiac complications such as bradycardia and arrhythmias. Using data from commercially available wearable devices, it has been shown previously that the resting heart is elevated during symptom onset, then decreases reaching a minimum, before rising again to attain a second peak, before finally returning to the baseline.

Added value of this study We present results from the largest (to our knowledge) dataset considered to-date, involving 7200 participants (6606 symptomatic and 594 asymptomatic) diagnosed with COVID-19. We also present results from 463 individuals diagnosed with influenza. Our large dataset allows us to perform more detailed examinations by age, disease severity, and sex. We also discuss the time evolution of heart rate variability and respiratory rate. The heart rate variability shows a similar time evolution as the resting heart rate but with opposite phase, while the respiratory rate decreases monotonously following the peak at symptom onset.

Implications of all the available evidence The results presented in this work show that commercially available trackers and smart-watches can help in monitoring heart health in the weeks and months following a COVID-19 diagnosis. An estimate of the amplitude of the bradycardia dip may provide information valuable to critical care.

Competing Interest Statement

All authors are employed by Fitbit Research, Google LLC.

Funding Statement

We acknowledge funding from Fitbit Research, Google LLC

Author Declarations

I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.

Yes

The details of the IRB/oversight body that provided approval or exemption for the research described are given below:

Advarra IRB gave ethical approval for this work.

I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.

Yes

I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).

Yes

I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.

Yes

Footnotes

  • ↵* anatarajan{at}google.com

  • ↵a This feature is not intended to diagnose or treat any medical condition and should not be relied on for any medical purposes. It is provided to Fitbit users to help manage well-being.

Data Availability

Fitbit's privacy policy does not permit us to make the raw data or aggregate data available to third parties including researchers.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.
Back to top
PreviousNext
Posted February 03, 2022.
Download PDF
Data/Code
Email

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Occurrence of relative bradycardia and relative tachycardia in individuals diagnosed with COVID-19
(Your Name) has forwarded a page to you from medRxiv
(Your Name) thought you would like to see this page from the medRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Occurrence of relative bradycardia and relative tachycardia in individuals diagnosed with COVID-19
Aravind Natarajan, Hao-Wei Su, Conor Heneghan
medRxiv 2022.02.02.22270342; doi: https://doi.org/10.1101/2022.02.02.22270342
Digg logo Reddit logo Twitter logo Facebook logo Google logo LinkedIn logo Mendeley logo
Citation Tools
Occurrence of relative bradycardia and relative tachycardia in individuals diagnosed with COVID-19
Aravind Natarajan, Hao-Wei Su, Conor Heneghan
medRxiv 2022.02.02.22270342; doi: https://doi.org/10.1101/2022.02.02.22270342

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Public and Global Health
Subject Areas
All Articles
  • Addiction Medicine (216)
  • Allergy and Immunology (496)
  • Anesthesia (106)
  • Cardiovascular Medicine (1110)
  • Dentistry and Oral Medicine (196)
  • Dermatology (141)
  • Emergency Medicine (275)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (505)
  • Epidemiology (9796)
  • Forensic Medicine (5)
  • Gastroenterology (481)
  • Genetic and Genomic Medicine (2327)
  • Geriatric Medicine (223)
  • Health Economics (463)
  • Health Informatics (1567)
  • Health Policy (737)
  • Health Systems and Quality Improvement (608)
  • Hematology (238)
  • HIV/AIDS (508)
  • Infectious Diseases (except HIV/AIDS) (11669)
  • Intensive Care and Critical Care Medicine (617)
  • Medical Education (240)
  • Medical Ethics (67)
  • Nephrology (258)
  • Neurology (2154)
  • Nursing (134)
  • Nutrition (340)
  • Obstetrics and Gynecology (427)
  • Occupational and Environmental Health (519)
  • Oncology (1185)
  • Ophthalmology (366)
  • Orthopedics (129)
  • Otolaryngology (221)
  • Pain Medicine (148)
  • Palliative Medicine (50)
  • Pathology (314)
  • Pediatrics (699)
  • Pharmacology and Therapeutics (303)
  • Primary Care Research (268)
  • Psychiatry and Clinical Psychology (2195)
  • Public and Global Health (4685)
  • Radiology and Imaging (786)
  • Rehabilitation Medicine and Physical Therapy (458)
  • Respiratory Medicine (625)
  • Rheumatology (276)
  • Sexual and Reproductive Health (226)
  • Sports Medicine (212)
  • Surgery (252)
  • Toxicology (43)
  • Transplantation (120)
  • Urology (94)