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Abstract 

Background: Despite the growing number of genetic risk loci identified for substance 

use traits (SUTs), the impact of these loci on protein abundance and their potential as 

therapeutic targets are unknown. Methods: To address this, we performed a proteome-wide 

association study (PWAS) by integrating human brain proteomes from discovery (Banner; N = 

152) and validation (ROSMAP; N = 376) datasets with genome-wide association study (GWAS) 

summary statistics for 4 SUTs. The sample comprised 4 GWAS of European-ancestry 

individuals for smoking initiation [Smk] (N = 1,232,091), alcohol use disorder [AUD] (N = 

313,959), cannabis use disorder [CUD] (N = 384,032), and opioid use disorder [OUD] (N = 

302,585). We conducted transcriptome-wide association studies (TWAS) with human brain 

transcriptomic data to examine the overlap of genetic effects at the proteomic and 

transcriptomic levels and tested significant genes for causality through Colocalization analysis. 

Results: Twenty-seven genes (Smk=21, AUD=3, CUD=2, OUD=1) were significantly 

associated with cis-regulated brain protein abundance. There was evidence for causality in 6 

genes (Smk: NT5C2, GMPPB, NQO1, SRR, and ACTR1B; AUD: CTNND1), which act by 

regulating brain protein abundance. Cis-regulated transcript levels for 8 genes (Smk=6, CUD=1, 

OUD=1) were associated with SUTs, indicating that genetic loci could confer risk for these 

SUTs by modulating both gene expression and proteomic abundance. Conclusions: Functional 

studies of the high-confidence risk proteins (SRR for Smk and CTNND1 for AUD) identified here 

are needed to determine whether they are modifiable targets and useful in developing 

medications and biomarkers for these SUTs. 
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Introduction 

Substance use traits (SUTs), including smoking (Smk), alcohol use disorder (AUD), 

cannabis use disorder (CUD), and opioid use disorder (OUD0, are highly prevalent and leading 

causes of morbidity and mortality globally1–3. An estimated 40-60% of the risk of SUTs have 

been attributed to genetic factors4–6. Recent large-scale genome-wide association studies 

(GWAS) of SUTs have provided initial insights into their underlying biological systems7–10. 

Despite the growing success of GWAS in identifying associated single nucleotide 

polymorphisms (SNPs), the identified SNPs, many of which are intronic or intergenic11, exert 

only small effects, which suggests that their phenotypic effects are mediated by the regulation of 

gene transcription.  

Recent advances aimed at understanding how SNPs influence gene transcription and 

contribute to disease pathogenesis have led to the development of analytic frameworks such as 

functional summary-based imputation (FUSION)12, S-PrediXcan13, summary data-based 

Mendelian randomization (SMR)14, and Coloc15. These frameworks utilize a transcriptome-wide 

association study (TWAS) approach, which integrates an external gene expression reference 

data and GWAS results to prioritize genes whose cis-regulated expression is associated with 

disease phenotypes.  

To facilitate the identification of genes with cis-regulated expression profiles for SUTs, 

TWASs have been conducted for cigarette smoking11, cocaine dependence11, AUD8, and 

OUD10. Although these TWASs shed light on potential mechanisms through which genetic loci 

associated with SUTs exert their effects, the evidence they provide of expression quantitative 

trait loci (eQTL) effects are at the level of messenger RNA (mRNA), rather than protein 

abundance. Genetic variation can influence protein abundance by altering the rate and stability 

of gene expression16, though it remains to be determined whether the identified genetic loci 

exert their effects on SUTs by modulating protein abundance in the brain. The importance of 
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this question lies in the fact that proteins, as the final products of gene expression, are the main 

functional components of cells and biological processes17, and comprise most drug targets and 

biomarkers17,18.  

The key question addressed in the current study is whether loci identified through GWAS 

of SUTs contribute to their pathogenesis by modulating protein abundance. To answer this 

question, we applied an integrative proteome-wide association study (PWAS) approach that 

combines genetic data from four large GWASs of SUTs (including Smk, AUD, CUD, and OUD)7–

10 with two independent human brain proteomic datasets (Banner19 and ROSMAP20) derived 

from brain dorsolateral prefrontal cortex (dPFC). To compare the effects of risk variants at both 

the proteomic and transcriptomic levels, we also performed TWAS using the CommonMind 

Consortium (CMC) dPFC21 and Genotype-Tissue Expression (GTEx) v7 frontal cortex22 

datasets. Figure 1 provides an overview of the study.  

 

Methods 

Genome-wide association studies summary statistics 

We selected the largest GWASs of SUTs that were available to us as of July 2021. The 

summary statistics were derived from 1,232,091 EUR for Smk7; 313,959 EUR for AUD8; 

384,032 EUR for CUD9; and 302,585 EUR for OUD10. We limited the GWASs to participants of 

European ancestry (EUR) to match the proteomic datasets. Study details including sample 

demographics and methods for phenotyping, data processing, and statistical analyses are 

provided in the original articles7–10 and summarized in Supplementary Table 1. 

 

Human brain pQTL data  

We obtained human brain proteomic data from the study by Wingo et al.23,24, in which 

human protein abundance was quantified in the dorsolateral pre-frontal cortex (dPFC) of post-
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mortem brain tissues from 152 (Banner dataset)19 and 376 (ROSMAP dataset)20 EUR 

participants. By characterizing genetic control of the proteome in these human brain datasets, 

Wingo et al. identified 1,139 and 1,475 protein quantitative trait loci (pQTL) (hereafter referred to 

as protein weights) in the Banner and ROSMAP datasets, respectively. These protein weights 

were downloaded from http://doi.org/10.7303/syn23627957. Details on sample demographics, 

proteomic sequencing, quality control, and normalization can be accessed from Wingo et al23,24 

and are summarized in Supplementary Table 1.  

 

Proteome-wide Association Analysis 

To identify proteins whose genetically regulated expression is associated with SUTs, we 

performed PWAS analyses by integrating GWAS summary statistics of SUTs and pQTLs from a 

discovery (Banner) and validation (ROSMAP) datasets using the FUSION pipeline 

(http://gusevlab.org/projects/fusion/)12. For accuracy, FUSION employs 5-fold predictive models 

(top1, GBLUP, LASSO, Elastic Net, BSLMM) to compute the combined effect of SNPs on 

protein expression weights. The model with the largest cross-validation R2 was selected for 

downstream analyses. PWAS association statistics were Bonferroni corrected based on the 

number of proteins in the analysis (see the footnote in Table 1 and Supplementary Table 3).  

 

Human eQTL data 

Human brain transcriptome data, used as expression reference panels, were obtained 

from the CMC21 and GTEx frontal cortex v712,22. The CMC dataset consists of transcriptomic 

profiles for both gene-level (eQTL, n = 452) and intron-level (splicing – sQTL, n = 452) 

expression, which were generated from the dPFC21. CMC dPFC gene weights (eQTL and 

sQTL) and GTEx frontal cortex weights (eQTL, n = 136) were downloaded from the FUSION 

website (http://gusevlab.org/projects/fusion/)12.  
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To examine the association between the cis component of gene expression and SUTs, 

we performed a transcriptome-wide association analysis (TWAS) using the FUSION package12. 

TWAS was performed using gene and splicing expression profiles measured in the adult dPFC 

and gene expression profiles from the frontal cortex. For both PWAS and TWAS, we applied the 

default parameters recommended by FUSION. We also explored whether there was significant 

enrichment in the gene sets identified in the PWAS and TWAS. First, we identified genes that 

pass multiple correction testing in both PWAS and TWAS, defined as those which were 

significant in at least three analyses for PWAS-TWAS eQTL or two analyses for PWAS-TWAS 

sQTL. We then tested for significant overlap using a Binomial test (p < 0.05), as previously 

described25. 

 

Colocalization of PWAS and TWAS associations 

To explore plausible causal relationships between GWAS variants and proteome- or 

transcriptome-wide associations, we performed colocalization analysis using the coloc R 

package (version 3.2-1)15 in FUSION12. We used the FUSION parameter (-coloc_P 0.05) to 

indicate the inclusion of nominally significant proteins/genes (at p < 0.05) and performed 

colocalization based on the GWAS and pQTL (ROSMAP and Banner)23,24, eQTL (CMC and 

GTEx)21,22 and sQTL (CMC)21 data. A posterior colocalization probability (PP) of 80% was used 

to denote evidence of a shared causal signal.  

 

Drug-gene interaction 

We examined the proteins identified in the PWAS for known interactions with 

prescription drugs using the Drug Gene Interaction Database (DGIdb) v3.0 

(https://www.dgidb.org)26. We categorized each identified prescription drug using the Anatomical 
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Therapeutic Chemical (ATC) classifications obtained from the Kyoto Encyclopedia of Genes and 

Genomics Kyoto Encyclopedia of Genes and Genomics (KEGG: 

https://www.genome.jp/kegg/drug/). 

 

Protein-protein interaction 

We used STRING database v11.027 to assess whether PWAS genes were enriched for 

direct protein-protein interactions (PPIs). For these analyses, both discovery and replication 

proteome-wide significant (PWS) genes for Smk and AUD were used as input. STRING reports 

the confidence level for observed PPI using a scoring scheme (low confidence: < 0.4; medium: 

0.4 – 0.7; high: > 0.7). We defined PWS genes within the observed PPI network as having the 

highest degree of network connections based on a STRING cut-off score > 0.4. We also used a 

whole genome reference model in STRING to determine whether the number of identified PPI 

were significantly enriched.   

 

Results 

PWAS identifies brain proteins for smoking initiation and other substance use traits 

Using the FUSION pipeline to integrate pQTL and GWAS results to identify proteins 

whose abundance is correlated with the 4 SUTs7–10, in the discovery stage (using the Banner 

dataset) we identified 13 proteome-wide significant (PWS) genes for Smk (Table 1, Figure 2A) 

and 1 PWS gene each for AUD and CUD (Supplementary Table 2; Figure 1A). No gene was 

PWS for OUD in the Banner dataset (Figure 2A). Using the ROSMAP dataset for validation, we 

identified 15 PWS genes for Smk (Table 1, Figure 1B), 3 PWS genes for AUD (Supplementary 

Table 2, Figure 2B), and 1 PWS gene each for CUD and OUD (Supplementary Table 2, Figures 

2B).  
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We next compared the PWS genes implicated in the discovery and replication stages for 

Smk, AUD, and CUD. Of the 13 high-confidence Smk PWS genes identified in the discovery 

Banner dataset (Table 1, Figure 2A), 7 were PWS (NT5C2, GMPPB, NQO1, SRR, RHOT2, 

ACTR1B, and BTN2A1) and 2 (BTN3A3 and WIPI2) were nominally significant in the ROSMAP 

dataset (Table 1). The gene identified for AUD in the discovery dataset (CTNND1) was also 

PWS in the replication dataset (Supplementary Table 2) and the gene (GMPPB) that was PWS 

in the discovery cohort for CUD was near PWS (p = 3.75 × 10-5) in the replication dataset 

(Supplementary Table 2).  

 In addition to the replicated genes, 12 SUT genes were PWS in the replication stage 

only, including 8 genes for Smk (Table 1, Figure 2B), 2 genes for AUD and 1 gene each for 

CUD and OUD (Supplementary Table 2, Figures 2B). Of the 12 SUT risk genes identified in the 

replication stage, 1 was nominally significant for Smk (PRKCD, p = 4.05 × 10-2) (Table 1) and 1 

for AUD (SLC5A6, p = 7.92 × 10-4) (Supplementary Table 2) in the discovery stage. In sum, by 

combining two independent human brain proteomic and SUT GWAS datasets, we identified 27 

loci that could confer SUT risk through their effects on brain proteomic abundance.  

 

PWAS and TWAS overlap reveals high-confidence genes associated with SUTs 

To identify SUT PWS genes with evidence of transcriptional regulation, we examined the 

extent of overlap at the protein and transcript levels. Specifically, we performed eQTL- and 

sQTL-based TWAS, followed by an analysis of the overlap between the transcriptome-wide 

significant (TWS) and PWS genes. For the discovery TWAS, we integrated SUT GWAS 

summary statistics7–10 and CMC dPFC eQTL datasets21. We detected 48 genes (38 for Smk, 6 

for AUD, 2 for CUD, and 2 for OUD) whose cis-regulated expression was significantly 

associated with SUTs (Supplementary Tables, Supplementary Figures 1A - D) after Bonferroni 

correction. To validate these results, we also conducted TWAS using the GTEx frontal cortex 
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eQTL dataset22, which identified 44 genes (36 for Smk, 4 for AUD, 2 for CUD, and 2 for OUD) 

with significant transcriptome-wide associations (Supplementary Tables 3, Supplementary 

Figures 2A – D). 

Notably, 12 risk genes for Smk (AS3MT, C10orf32, CPSF4, SFMBT1, SRR, ITIH4, 

TYW5, GPX1, CCDC88B, HYAL3, CNTROB, and NAT6) from the discovery stage also showed 

TWS associations in the replication stage (Supplementary Table 3, Supplementary Figure 2B). 

For CUD, 2 TWS genes (HYAL3 and NAT6) were replicated (Supplementary Table 3, 

Supplementary Figure 2B) while no TWS gene was replicated for AUD or OUD (Supplementary 

Table 3, Supplementary Figures 2C – D). 

We next compared the replicated TWS eQTL genes with PWS genes (from both the 

discovery and replication stages) to ascertain whether there was significant overlap in SUT 

candidate risk genes. For Smk, 4 (SRR, TYW5, C10orf32 and NAT6) of 21 PWS genes were 

confirmed by TWAS (Table 1, Supplementary Figure 3A), for which there was significant 

evidence of overlap with the binomial test (p = 3.58 × 10-6). One of the 2 PWS genes for CUD 

(Supplementary Table 2) – NAT6 – was confirmed by TWAS (Supplementary Table 3). The 

binomial test was not run for CUD due to the small number of genes. No PWS gene was 

supported by TWAS for AUD (Supplementary Figure 3B) and OUD (Supplementary Tables 2 - 

3).  

At the level of splicing, we detected significant overlap between TWS sQTL genes and 

PWS genes for Smk (binomial test: p = 2.2 × 10-16; NT5C2, NQO1, and MCTP1) (Table 1, 

Supplementary Table 4). No overlapping genes were identified for AUD, CUD and OUD.  

In sum, TWAS identified high-confidence genes with substantial evidence linking 

expression changes in SRR, TYW5, C10orf32 and NAT6, and splicing of NT5C2, NQO1, and 

MCTP1 to Smk risk.   
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Colocalization of PWAS and TWAS genes 

For the replicated genes in the proteomic (7 for Smk and 1 for AUD) and transcriptomic 

(7 for Smk) analyses, we explored whether there was evidence for a causal effect on SUTs. 

Colocalization analysis showed strong causal evidence for Smk in five PWS genes (NT5C2, 

GMPPB, NQO1, SRR, and ACTR1B) and six TWS eQTL genes (AS3MT, TYW5, CCDC88B, 

CNTROB, SRR and C10orf32) (coloc posterior probability (PP4) ≥ 80%; Supplementary Tables 

5 – 9). We also found evidence of colocalization for the replicated AUD PWS gene (CTNND1) 

(PP4 ≥ 80%; Supplementary Table 10). These findings suggest that the same risk variants drive 

the associations between SUTs and both PWAS (for AUD and Smk) and TWAS eQTL (for 

Smk). None of the TWS sQTL genes were causal for Smk (Supplementary Table 9). 

 

Drug-gene and Protein-protein interaction 

Because existing prescription medications can be repurposed to target encoded 

proteins, we queried all SUT risk genes (n = 27) that were detected by PWAS for interaction 

with prescription medications via DGIdb. We observed 33 interactions between 5 genes (SRR, 

PRKCD, PLD1, NT5C2, and NQO1) (Figure 3, Supplementary Table 11). SRR, which showed 

significant associations with Smk in PWAS and eQTL TWAS, was prioritized as a potential 

target of serine and pyridoxal phosphate in the antimycobacterials and vitamins drug classes, 

respectively. DGIdb also prioritized NQO1, a Smk risk gene in the PWAS and sQTL TWAS 

analysis, as a target of 15 drug interactions, which include analgesics (acetaminophen) and 

antiepileptics (cannabidiol).  

Direct protein-protein interaction was identified for two protein pairs (C10orf32 – NT5C2, 

interaction score = 0.567; MAP1LC3A – WIPI2, interaction score = 0.986) (Supplementary 

Table 12). However, these PPIs were not significantly enriched (p = 0.33), possibly due to the 
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small number of proteins (N = 21) included in the PPI analysis or the limited proteomic 

reference information in the STRING database.  

 

Discussion 

In this study, we sought to characterize the effect of genetic loci on the proteomic 

architecture of SUTs by performing PWASs that integrate human brain pQTL data23,24 with 

GWAS results for four SUTs7–10. We identified 27 SUT risk genes, of which 8 (CTNND1 for AUD 

and NT5C2, GMPPB, NQO1, SRR, RHOT2, ACTR1B and BTN2A1 for Smk) showed PWS 

associations in two independent brain proteomes. Notably, of the 8 replicated PWS genes, 

evidence for 6 (CTNND1 for AUD and NT5C2, GMPPB, NQO1, SRR, and ACTR1B for Smk) 

was consistent with a causal effect based on Colocalization analysis. Thus, these genes could 

confer SUT risk by modulating protein abundance in the brain.  

Three of the potentially causal genes identified at the protein level – SRR, NT5C2, and 

NQO1 – showed significant associations with Smk at the transcript level. TWAS also identified 

12 additional genes with evidence for eQTL replication, of which two showed PWS associations 

in one of the proteomic datasets for Smk  (C10orf32 and NAT6) and one for CUD (NAT6 – an 

eQTL in the CUD GWAS9) (Table 1). The greater number of PWS and TWS genes for Smk than 

other SUTs may reflect the larger sample size and genome-wide significant loci in the Smk 

discovery GWAS7. Although the number of TWS genes exceeds that for PWS genes identified 

for Smk, only about 30% of PWS genes overlap at the transcript level. This observation has 

been made in prior PWASs of psychiatric disorders23,28, and supports prior conclusions that 

mRNA transcript levels can explain between one-third and two-thirds of the variance in steady 

state protein abundance29,30. Moreover, mRNA and protein abundance levels are weakly 

correlated31 and have different genetic architectures32. Because gene expression is not a 
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perfect proxy for protein expression31 studying brain proteins directly provides novel insights into 

the impact of genetic variation. 

A proteomic effect for AUD was supported by the signal at CTNND1, a gene that harbors 

risk variants for anxiety disorder33, autism spectrum disorder34, and other neurodevelopment 

conditions35. The gene encodes a p120-catenin protein that is involved in regulating neuronal 

excitability and synaptic maturation36. Importantly, CTNND1 has been implicated as a risk 

protein in recent PWASs of depression23,28, a psychiatric disorder that shows high comorbidity 

and genetic overlap with AUD37. Our results, akin to other recent reports23,28, suggest that 

CTNND1 may confer shared risk on AUD and depression by affecting neuronal signaling and 

development. 

Our Smk PWAS prioritized 5 causal genes, 3 of which (also supported by the TWAS) 

play roles in synaptic plasticity (SRR)38,39, neurodevelopment (NT5C2)40,41, and brain oxidative 

stress (NQO1)42. SRR encodes serine racemase, the enzyme that converts L- to D-serine, a co-

activator of N-methyl-D-aspartate receptors (NMDAR), a key component in glutamatergic 

synaptic signaling in the brain38,39. SRR variants have been linked with prognosis in 

methamphetamine-induced psychosis43 and schizophrenia44. SRR deletion in mice reduces the 

cortical level of D-serine45, resulting in reduced NMDAR activation46, which has been associated 

with a reduced ability to extinguish conditioned responses to amphetamine47 and cocaine-

associated stimuli48. Here, we report an association between smoking initiation and reduced 

SRR protein and transcript expression. We hypothesize that protein and expression changes in 

SRR, due to a shared risk variant, could mediate the adaptive processes involved in smoking 

initiation by altering NMDAR-dependent neurotransmission. 

NT5C2 encodes a phosphatase that interacts with adenosine monophosphate (AMP) to 

maintain cell proliferation and differentiation during neurodevelopment40,41. The gene regulates 

AMP-activated protein kinase (AMPK) signaling41,49 and harbors cis-eQTLs for Smk50 and 
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schizophrenia51. Animal studies indicate that the AMPK signaling pathway is upregulated in 

mouse hippocampus following chronic nicotine exposure52. Our PWAS findings suggest that 

individuals who initiate smoking have a higher abundance in brain of the NT5C2 protein, which 

could negatively impact AMPK activity and, in turn, neuronal expression. Complementary to this 

notion, reduced NT5C2 expression in fetal and adult dPFC, due to a common schizophrenia risk 

locus in NT5C251, has been shown to disrupt AMPK signaling41. The underlying regulatory 

mechanism that mediates the effect of NT5C2 on AMPK activation in the context of smoking 

behavior is not known and warrants further investigation.  

As a member of the NADPH dehydrogenase (quinone) family, NQO1 encodes a 

cytoplasmic 2-electron reductase that helps to regulate oxidative stress in brain by altering the 

level of reactive oxygen species in cells and by detoxifying carcinogens53. NQO1 has been 

implicated in cigarette smoking54,55 and altered expression of NQO1 in response to smoking has 

also been documented in animal56 and human57 studies. Exposure to cigarette smoke increases 

brain oxidative stress, thereby attenuating the brain defense mechanism in rats58,59 and mice60. 

In line with our findings that NQO1 splicing and protein expression are associated with smoking 

initiation, a recent animal study revealed that cigarette smoke exposure is associated with 

upregulation of the antisense and mouse homolog of NQO1 (Nqo1-AS1) in lung tissue of mice, 

resulting in attenuated oxidative stress in vitro61. Although requiring replication of these effects 

in brain, the findings suggest that NQO1 expression changes can disrupt oxidative stress and 

contribute to the pathogenesis of smoking initiation. 

Drug-gene interaction results prioritized pyridoxal phosphate (PLP), in the vitamins drug 

class, as a cofactor for SRR (the Smk risk protein), highlighting prior preclinical evidence that 

the human SRR is PLP-dependent62–64. As the metabolically active form of vitamin B6, PLP 

binds to SRR and stimulates NMDAR signaling, which is involved in brain metabolism and 

cellular antioxidant defense62,63,65. Tobacco smoke contains a substantial number of reactive 
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oxygen species that could trigger oxidative stress in the brain60, blood-brain-barrier66 and 

periphery67, leading to vitamin B6 deficiency67. Of note, in humans, smoking reduced circulating 

plasma vitamin B6 and PLP levels68,69, with concentrations increasing significantly after a few 

days of smoking cessation70. This suggests that cigarette smoking could deplete circulating 

vitamin B6 and PLP levels by modifying the activity of the brain antioxidant defense triggered by 

PLP enzymatic interaction with SRR. Functional studies that investigate SRR as a druggable 

gene target for PLP enzyme activity following smoking exposure could provide a basis for the 

development of novel smoking-related treatments. 

Our study should be interpreted in the context of limitations. First, the relatively small 

sample size from which the brain proteome reference dataset was derived, which contributed to 

an imbalance between pQTLs and eQTLs/sQTLs, limited our ability to capture the full spectrum 

of genetic effects on the proteome and transcriptome. This is reflected in the disparity between 

PWAS and TWAS results, in that larger samples in TWAS (CMC eQTL = 48/5419, GTEx eQTL 

= 44/3106, and CMC sQTL = 52/7771) provided higher statistical power for gene expression 

detection than for the PWAS (Banner = 15/1139; ROSMAP = 20/1475). Future PWAS of SUTs 

will require larger brain proteome datasets to permit better pQTL detection. Second, although 

we identified PWS and TWS genes and highlighted their plausible mechanistic pathways, we 

could not pinpoint the causal variants associated with these genes. Further efforts are needed 

to map the role of causal variants and functionally validate the described pathways in the 

context of SUTs. Thirdly, only participants of European descent were included in this study due 

to the lack of available data required to conduct the analyses in other population groups, thus 

limiting the generalizability of our findings. Future PWAS of SUTs should include samples from 

diverse populations but will depend on the availability of relevant reference data.    

In conclusion, using PWAS, we identified 6 high-confidence genes that modulate brain 

protein abundance, thereby potentially altering biological pathways linked to the pathogenesis of 
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SUTs. These genes are potentially modifiable targets for the development of medications and 

biomarkers for SUTs and thus warrant further investigation. These findings underscore the 

potential utility of the approach applied here to advance precision medicine efforts in diagnosing 

and treating SUTs. 
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Figure legends 

Figure 1: Overview of the study 

GWAS summary statistics included in the study were based on four substance use traits (SUT): 

smoking initiation (Smk), alcohol use disorder (AUD), cannabis use disorder (CUD) and opioid 

use disorder (OUD). For PWAS, human brain proteomes from Banner (discovery) and 

ROSMAP (replication) datasets were integrated with each set of GWAS summary statistics. 

TWAS based on brain eQTL datasets from discovery (CommonMind Consortium - CMC) and 

replication (Genotype-Tissue Expression - GTEx) datasets was conducted for each SUT. TWAS 

splicing expression analysis (CMC - sQTL) was also performed for all four traits. Colocalization 

analysis was based on nominally significant proteins and transcripts for Smk, and proteins for 

AUD. All significant proteins (after Bonferroni correction) were used as input for drug-gene 

interaction analysis for all four traits. Only proteome-wide significant proteins for Smk and AUD 

were included for Protein-protein interaction analysis. 

 

Figure 2: PWAS identified 27 genes and replicated 6 genes for substance use traits. (A) 

Manhattan plot for smoking initiation (Smk), alcohol use disorder (AUD), cannabis use disorder 

(CUD) and opioid use disorder (CUD) in the discovery proteome dataset. (B) Manhattan plot for 

Smk, AUD, CUD and CUD in the replication proteome dataset. Each dot on the x-axis denotes a 

gene and on the y-axis the strength of association (-log10 p-value). Proteome-wide significance 

level for discovery dataset; Bonferroni corrected p-value < 4.36 × 10-5 and replication; 

Bonferroni corrected p-value < 3.39 × 10-5. Replicated genes are in bold letters.  

 

Figure 3: Drug-gene interaction prioritized 5 genes. Chord diagram of proteome-wide significant 

genes for SUTs and the Anatomical Therapeutic Chemical classification of drugs. Each gene is 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 4, 2022. ; https://doi.org/10.1101/2022.02.02.22270270doi: medRxiv preprint 

https://doi.org/10.1101/2022.02.02.22270270
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

16 
  
 

 

linked with drug classes and the width of each line is determined by the number of drugs in each 

class known to interact with each gene.  
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Table 1 - Results of the PWAS of smoking initiation 

Gene Chr 
Banner ROSMAP Evidence for pQTL 

replication 
Overlap with 
TWAS eQTL 

Overlap with 
TWAS sQTL PWAS Z PWAS pa PWAS Z PWAS pb 

NT5C2 10 7.29 3.09E-13 7.58 3.35E-14 Yes - Yes 

ARPC1B 7 5.95 2.77E-09 - - - - - 

HEBP1c 12 -5.79 7.05E-09 -0.68 4.94E-01 No - - 

GMPPB 3 5.62 1.89E-08 5.01 5.36E-07 Yes - - 

NQO1 16 -5.32 1.02E-07 -5.16 2.41E-07 Yes - Yes 

SRR 17 -5.04 4.73E-07 -5.36 8.26E-08 Yes Yes - 

RHOT2 16 4.95 7.50E-07 5.65 1.65E-08 Yes - - 

ACTR1B 2 -4.92 8.71E-07 -4.77 1.82E-06 Yes - - 

BTN3A3c 6 -4.91 8.96E-07 -3.24 1.19E-03 No - - 

WIPI2c 7 -4.23 2.34E-05 -2.89 0.00382 No - - 

BTN2A1 6 4.22 2.48E-05 4.55 5.26E-06 Yes - - 

GFM1 3 -4.20 2.66E-05 - - - - - 

MAP1LC3A 20 -4.10 4.12E-05 - - - - - 

C10orf32 10 - - -6.92 4.50E-12 - Yes - 

TYW5 2 - - 5.24 1.60E-07 - Yes - 

MCTP1 5 - - -4.85 1.21E-06 - - Yes 

PLD1 3 - - 4.66 3.13E-06 - - - 

RFT1 3 - - -4.66 3.19E-06 - - - 

NAT6 3 - - 4.64 3.55E-06 - Yes - 

AAGAB 15 - - 4.31 1.67E-05 - - - 

PRKCDc 3 2.05 4.05E-02 4.25 2.14E-05 No - - 

Chr - Chromosome; PWAS - proteome-wide association study; pQTL - protein quantitative trait loci; eQTL - expression quantitative trait 
loci; sQTL - splicing quantitative trait loci; ROSMAP - Religious Orders Study and Rush Memory and Aging Project 
aBonferroni correction p-value for Banner proteome-wide significant (PWS) genes was set at 4.36E-5 
bBonferroni correction p-value for ROSMAP PWS genes was set at 3.39E-5 
cGenes that were PWS one human brain reference dataset and nominally significant (p < 0.05) in other brain proteome reference 
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