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Abstract

The systematic deployment of next generation sequencing means patient tumors can be

genomically profiled and specific genetic alterations can be targeted with precision medicine

(PM) drugs. More therapeutic clinical trials are needed to test new PM drugs to advance

precision medicine, however, the availability of comprehensive patient sequencing data coupled

with complex clinical trial eligibility has made it challenging to match patients to PM trials. To

facilitate enrollment onto PM trials, we developed MatchMiner. MatchMiner is an open-source

platform to computationally match genomically profiled cancer patients to PM trials. Here, we

describe MatchMiner’s capabilities, outline its deployment at Dana-Farber Cancer Institute

(DFCI), and characterize its impact on PM trial enrollment. MatchMiner’s two primary goals are

to (1) facilitate PM trial options for all patients, and (2) accelerate trial enrollment onto PM trials.

MatchMiner has 3 main modes of use: (1) patient-centric, where a clinician looks up trial options

for an individual patient, (2) trial-centric, where a trial team identifies candidate patients for their

trial by setting up a filter, and (3) trial search, where a clinician can find trial options for patients

that have external genomic reports. From the time MatchMiner was first deployed at DFCI in

March 2016 through March 2021, we curated 354 PM trials containing a broad range of genomic

and clinical eligibility criteria and MatchMiner facilitated 166 trial consents (MatchMiner

consents, MMC) for 159 patients. To quantify MatchMiner’s impact on trial consent, we

retrospectively measured time from genomic sequencing report date to trial consent date for the

166 MMC compared to trial consents not facilitated by MatchMiner (non-MMC). We found

MMC consented to trials 55 days (22%) earlier than non-MMC. MatchMiner has enabled our

clinicians to match patients to PM trials and accelerated the trial enrollment decision making

process.

Introduction

Genomic profiling of patient tumors has become an integral part of cancer care as new

druggable targets are discovered and precision medicine (PM) treatments gain widespread use
1–5. Drugs targeting specific alterations such as EGFR mutations, BCR-ABL fusions, and BRAF

mutations have provided great clinical benefit 6–8. To continue to advance the state of cancer

therapy, more patients need to participate in clinical trials to test new PM drugs. Despite the
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more common use of genomic profiling, as few as 10-15% of patients with profiled actionable

mutations participated in genotype-driven trials 9–13. Low PM trial participation can be caused by

several factors including low clinician awareness of eligible trials, patient performance status,

and patient attitudes and financial concerns 14–16.

Another barrier for trial participation is matching patient genomic data to PM trial

eligibility criteria. Without advanced trial matching systems, individual oncologists must track

hundreds of active clinical trials, only a few of which may be relevant for any given patient 17,18.

In addition, PM trials are often basket trials that enroll patients across histologies with similar

genomic changes, making recruiting patients across multiple departments a laborious process
19–21. Thus, an informatics system would be useful to integrate both genomic data and clinical

trial eligibility criteria to support PM trial enrollment.

At Dana-Farber Cancer Institute (DFCI) over 40,000 patient tumor samples have been

genomically profiled. Patient tumors are sequenced with two next generation sequencing (NGS)

panels: (1) OncoPanel, which identifies mutations, copy number alterations, structural variants,

and mutational signatures in ~450 cancer relevant genes 22, and (2) Rapid Heme Panel, which

identifies mutations and copy number alterations in 88 genes relevant in hematological

malignancies 23. DFCI uses OnCore for its clinical trial management system and Epic for patient

electronic health records (EHR). To integrate these DFCI systems into a single platform for PM

trial matching and viewing patient and trial data, we developed MatchMiner, an open-source

software platform for matching cancer patients to PM trials.

The goals of this manuscript are to (1) outline the core functionalities of MatchMiner; (2)

describe the capabilities of Clinical Trial Markup Language (CTML) and how it is used to

encode PM trial eligibility criteria for MatchMiner; (3) explain how MatchMiner is used at

DFCI; (4) characterize the PM trials that have been curated into MatchMiner; and (5) assess the

clinical utility of MatchMiner by a) characterizing the PM trial consents that have occurred

because of MatchMiner and b) determining the impact of MatchMiner on the speed with which

patients consent to PM trials.

Results

MatchMiner capabilities
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We designed MatchMiner to provide patient matches to PM trials. MatchMiner trial

matching is performed via the MatchEngine, an algorithm that computes trial matches based on

patient genomic and clinical data and PM trial eligibility criteria (Fig. 1a). The MatchEngine

accepts many different data inputs for patient-trial matching and therefore is adaptable to data

available at any institution. Data inputs can include: (1) patient-specific genomic sequencing

data, including mutations, copy number alterations (CNA), structural variants, tumor mutational

burden and mutational signatures including mismatch repair deficiency, tobacco, and UV light,

(2) patient-specific clinical data, including primary cancer type, gender, age, and vital status, and

(3) trial criteria including genomic eligibility, cancer type, age, and accrual status. MatchMiner

can accept a range of genomic specificity in trial matching, ranging from any mutation in a gene

to specific amino acid changes. In addition to trial matching, patient genomic reports and PM

trial information are viewable in a user-friendly format, providing context to trial matching

results and acting as a resource for clinicians to view current PM trials. For data integrity and

security standards, MatchMiner meets HIPAA requirements when deployed within an

institutional firewall.

MatchMiner has several modes of clinical use: (1) patient-centric, where clinicians look

up patients to view all trial matches for that particular patient, (2) trial-centric, where clinical

trial teams identify patients for their particular PM trials of interest, and (3) trial search, where

clinicians manually enter search criteria of interest to identify available trials based on external

genomic reports (Fig. 1b). In general, MatchMiner serves as a pre-screening tool since not all

trial eligibility criteria are included in the matching process and there is no consideration about a

patient’s readiness to participate in a trial.

In patient-centric mode, a trial match summary page displays all potential NGS-based

trial matches and highlights the genomic alteration(s) responsible for each trial match

(Supplementary Fig. 1). While matches are shown per trial, MatchMiner actually matches

patients to specific arms of a trial, providing additional precision in the trial match results. Trial

matches are ranked according to variant actionability and can be filtered according to genomic

targets or other trial features. A clinician can also (1) view additional trial details (e.g., number of

arms, status of each arm, individual trial arm eligibility criteria) to determine whether a trial is

suitable for their patient; (2) contact the trial investigator through an embedded email icon; and

(3) access the patient’s full NGS report. Trial matches are updated nightly with matches to
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currently enrolling arms of open trials, making the patient-centric mode an up-to-date resource

for trial options.

In trial-centric mode, a clinical trial team sets up a filter based on the genomic and

clinical features of interest for a particular trial (Supplementary Fig. 2a). Filters match against all

living patients in the system, and matches (i.e., all candidate patients for their trial) are viewed on

the “Matches” page (Supplementary Fig. 2b). This page displays select clinical and genomic

features of each trial match and provides a link to email a patient’s physician to help determine

their eligibility and interest in a PM trial. As patient eligibility is reviewed, clinicians can place

patients in “bins” according to their eligibility status. Filter matches are updated nightly, and

clinical trial team members receive an email when new matches are identified for their filters.

Thus, trial-centric mode is a method to identify new candidate patients for a trial in real-time.

In trial search mode, users can explore all the curated trials that are used to generate

patient-centric matches (Supplementary Fig. 3). The trial search page can be used to find

matches for patients who have had external NGS (i.e., their NGS results are not available within

MatchMiner). Genomic and clinical features from the external report are inputted manually and

all available trials are searched. A faceted search interface allows for further filtering based on

multiple criteria, including genomic changes, cancer type, trial status, and trial phase. The trial

search page is also a convenient place for clinicians to view all the latest available PM trials at

their institution, including arm status and trial eligibility information. For example, all trials

targeting BRAF can be viewed, or specific drugs of interest can be searched. Trial search mode

helps match patients with external genomic sequencing data to PM trials and acts as a resource

for clinicians to view PM trial information.

To ensure results provided in each clinical mode of use are timely, MatchMiner requires

daily data updates. Updated genomic data (e.g. from an institutional enterprise data warehouse),

patient vital status (e.g. from Epic or other EHR) and trial accrual status at both the trial and arm

level (e.g. from OnCore or other trial management system) are ingested daily. Following the

daily data update, the MatchEngine runs to compute updated matches for all living patients to all

open arms of open trials, as well as to all filters. As a result of these daily updates, MatchMiner

is able to provide clinicians with accurate and timely trial matches.
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Figure 1. MatchMiner overview of data flow and modes of use. (a) Data inputs from patients
and trials are utilized by the MatchEngine to match patients to trials. (b) Shown are the 3 modes
of matching patients to trials: patient-centric, trial-centric, and trial search. Orange lines indicate
patient-trial matches.

Clinical trial markup language (CTML)

Protocols for PM trials are often lengthy documents that contain genomic and clinical

eligibility criteria in an unstructured format, making it difficult to extract information for

patient-trial matching 24. To structure genomic eligibility data for trial matching, we developed

clinical trial markup language (CTML). CTML is a human-readable markup language that

allows users to structure clinical trial details including clinical and genomic eligibility. While

CTML may be used standalone as a means of encoding trial eligibility, its main utility is as part

of a trial matching system. Trial eligibility criteria can be translated into CTML documents via a

text editor. Alternatively, an open-source curation platform allows a user to pull in criteria from

clinicaltrials.gov25 – this can be helpful for extracting basic trial information, but specific

genomic and clinical eligibility may need to be entered manually.
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CTML supports a wide range of clinical trial information and is easily extended to

include new criteria. Eligibility criteria, including genomic, clinical, and demographic criteria,

are encoded with nested Boolean logic. In trial protocols, eligibility criteria are typically written

in a numbered list with subcriteria (Fig. 2a). CTML files are structured similarly to clinical trial

eligibility criteria but have defined core elements. They have an intrinsic tree-like structure

anchored by core trial details and extended by arms and dose levels (Fig. 2b). Each arm and dose

level component of a trial may have its own distinct eligibility criteria, which is encoded in the

CTML document. The flexibility to encode eligibility criteria, as well as accrual status, at any

arm or dose enables CTML to accurately capture complex trial structures and results in more

precise trial matches.

CTML has five core components:

● Trial: Basic metadata, such as short and long trial titles, the national clinical trial

(NCT) purpose and identifier from the public registry of trials at clinicaltrials.gov,

contact information, and study phase.

● Treatment: Steps, arms, doses, and expansion cohorts of a clinical trial, which

form a tree-like structure for complex trials. Nodes of this tree have match criteria

which contain genomic and clinical eligibility information.

● Match: Contains Boolean logic specifying genomic and clinical criteria.

Additional match components are referenced via logical operators (and/or/not).

● Clinical: A Boolean clause that contains specific clinical criteria. Currently

supported fields are age, gender, and cancer type according to the OncoTree

ontology 26.

● Genomic: A Boolean clause that contains specific genomic criteria. Currently,

supported alterations include mutations, which can be restricted to specific types

of mutations, exon locations or protein changes, gene-level copy number

alterations, structural variants and mutational signatures.

From a trial matching perspective, the most important part of any CTML document is the

match clause. All match clauses must be enclosed within an “and” or “or” clause which contains

eligibility attributes. “And” and “or” clauses may be nested within each other and there is no

limit to the depth or breadth of a single match clause. Any clinical or genomic criteria can be

marked as an exclusion criteria by prefacing the relevant criteria with “!” (Fig. 2b). For matching
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purposes, the eligibility criteria within CTML match clauses must reflect the available patient

data. For example, if a patient’s date of birth is unavailable, then the trial curations should not

include an age restriction. Thus, the match clause must consist of available data and be accurate

for successful trial matching.

Figure 2. Clinical trial markup language (CTML) provides a structured data format for
PM trial eligibility criteria.
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(a) Free text subject eligibility criteria from an example PM trial protocol. Arm A is enrolling
patients with colorectal cancer and any KRAS G12 mutation except G12C. Arm B is enrolling
patients with EGFR altered (specifically EGFR exon 19 insertions or EGFR amplifications) solid
tumors except breast cancer.
(b) Trial details transformed into CTML, with curated information related to basic trial metadata
(orange) and the treatment arms (dark blue) containing specific genomic (turquoise) and clinical
(light blue) match criteria. Arm A and B exclusions are annotated using exclamation points.

MatchMiner use at Dana-Farber Cancer Institute

Since the launch of MatchMiner at DFCI, we have tailored the platform according to

institutional workflows and available NGS data. For ease of use in the clinic, we integrated

MatchMiner patient-centric and trial search modes into Epic. This allows clinicians to review

trial matches directly alongside the clinical data available in the electronic medical record to

further aid decision making (Supplementary Fig. 4). When viewing a patient’s chart in Epic, a

clinician can open a tab to view MatchMiner trial matches for that patient or search through all

MatchMiner trials. To leverage the evolution of available NGS data at DFCI, MatchMiner has

added support for additional assays and data types. Currently, MatchMiner supports trial

matching based on OncoPanel data in both patient-centric and trial-centric modes22, while Rapid

Heme Panel data is available within trial-centric mode27.

MatchMiner has been integrated into the specific workflows of various clinical groups. A

collaboration with the Center for Cancer Therapeutic Innovation (CCTI) resulted in a

MatchMiner tumor review board process, where a thorough assessment of potential trial-centric

matches was performed. Each week, matches for several CCTI trials were filtered based on

additional requirements, such as an upcoming appointment, and then manually reviewed by the

MatchMiner team for evidence of progression in radiology scan text impressions. The resulting

list of patients was reviewed with CCTI staff, and patients deemed ‘trial ready’ were flagged and

their treating physician contacted. In a separate collaboration with the Gastrointestinal Cancer

Center (GCC), we developed GI-TARGET, a program which integrates the patient-centric mode

of MatchMiner with additional molecularly driven therapy suggestions for holistic review by a

team of experts, resulting in patient-specific treatment suggestions. GI-TARGET continues to

evolve and be an essential component of the GCC.
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MatchMiner users span nearly all disease groups at DFCI, including Sarcoma, Breast,

Thoracic, and Pediatric. For some trial-centric users, the MatchMiner team supplements the

trial-centric mode by sending spreadsheets of patient-trial matches on a weekly or monthly basis.

The MatchMiner team also supports the monthly DFCI pan-cancer molecular tumor board where

we frequently review all available MatchMiner trial matches for specific patient cases. Thus,

MatchMiner has been adapted for the specific data available at DFCI and continues to be

integrated into departmental workflows for PM trial recruitment.

Features of PM trials in MatchMiner

At DFCI, PM trials are added to MatchMiner after a structured review process. Trial

protocol documents for newly opened trials are reviewed weekly and selected if they contain

genomic eligibility criteria. Selected protocols are then curated into CTML and reviewed by a

second team member prior to uploading into MatchMiner. CTML documents are updated

whenever a new arm is added to a trial or an existing arm is removed. Trial protocol documents

are also systematically reviewed every 3 months to capture any changes in eligibility from study

amendments. As of March 2021, we have 354 PM trials curated in MatchMiner, reflecting all

trials with genomic eligibility that have been open at DFCI since MatchMiner launched in 2016.

These trials provide a breadth of options for patients, as 80% of NGS-sequenced patients have at

least one trial option, with an average of 6 trial options for each patient.

To explore the landscape of PM trials available at DFCI, we quantified genomic and

cancer type inclusions in the 354 trials curated in MatchMiner. A total of 222 genes, 7 mutational

signatures, and 59 specific cancer types (OncoTree metatypes, 91% of 65 total metatypes) were

represented 26. In addition, general criteria for all solid or all liquid cancer types were also

commonly included as trial eligibility criteria. The gene most frequently included as an inclusion

criterion across all trials was BRAF (n=46 trials), followed by EGFR (n=42 trials), and KRAS

(n=38 trials) (Fig. 3a), reflecting the many therapies in PM trials for these oncogenic drivers
28–30. Other genes frequently leading to PM trial eligibility included IDH1 (n=24) and IDH2

(n=20), NTRK (n=15), ALK (n=27), and ROS1 (n=12), and homologous recombination repair

(HR) genes such as BRCA1/BRCA2 (n=35) and PALB2 (n=20). The majority of trials included

1-3 unique genes in their eligibility criteria (n=286, 81%) while a small proportion of trials had 4

or more unique genes (n=68, 19%) (Fig. 3b). For cancer types, trials most commonly enrolled all
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solid tumors (n=123), non-small cell lung cancer (n=97), and breast cancer (n=50) (Fig. 3c),

consistent with the abundance of Phase Ⅰ trials in solid tumors and targeted therapies for these

cancer types 1,31,32. To explore the diversity of included cancer types outside of trials with broad

all solid/liquid eligibility, we next examined how many specific cancer types are included for

each trial. Excluding trials with all solid/liquid eligibility, the majority of trials enroll one

specific cancer type (n=185, 81%) and few trials enroll 2 or more specific cancer types (n=44,

19%) (Fig. 3d).

In addition to quantifying genes and cancer types, we also examined the distribution of

trial phases and the disease centers running each trial. Phase Ⅰ (38%) and Phase Ⅱ trials (31%)

were the most common, followed by Phase Ⅰ/Ⅱ (17%), Phase Ⅲ (11%), and Phase Ⅱ/Ⅲ

(0.8%) trials (Supplementary Table 1). The higher proportion of earlier phase trials is consistent

with the large number of novel PM drugs emerging, and the fact that most drugs do not progress

to later phase trials 33. Most trials (23%) were run out of the CCTI followed by thoracic oncology

(17%) and pediatric oncology (11%). Thus, MatchMiner at DFCI has mostly Phase Ⅰ and Ⅱ

trials, involving a range of genomic criteria and cancer types.

Figure 3. The landscape of genes and cancer types in DFCI precision medicine trials.
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(a, b) Number of trials in MatchMiner for select genomic criteria (≥ 10 trials) and number of
trials that have 1, 2, 3, 4, and ≥ 5 genomic criteria.
(c, d) Number of trials in MatchMiner for select cancer types (> 4 trials) and number of trials that
have 1, 2, 3, and ≥ 4 specific cancer types. NSCLC = non-small cell lung cancer, GIST =
gastrointestinal stromal tumor. MNT = Miscellaneous Neuroepithelial Tumor. Trials with
eligibility for all solid or all liquid tumors were not included in (d).

Impact of MatchMiner on PM trial consent

We analyzed PM trial enrollment data to determine whether MatchMiner led to earlier

identification of trials among NGS-sequenced patients. We have identified 166 MatchMiner

patient consents, derived from 159 patients (7 patients consented to multiple trials) and 65 trials.

These 166 patient consents were attributed to MatchMiner (i.e., considered MatchMiner consents

[MMC]), because MatchMiner identified the potential match and the provider or trial team

viewed the match in MatchMiner prior to the patient consenting to the PM trial. The average age

of MMC patients is 60 years old (min=8, max=86) with most patients between 50-64 years old

(n=70, 44%) (Supplementary Table 2). 67% of patients are female (n=106) and 33% are male

(n=53). Most patients are white (n=137, 86%), followed by African American (n=7, 4%), Asian

(n=6, 4%), and other/unknown (n=6, 4%). The socio-demographic features of the MMC cohort

are similar to the total DFCI patient population.

To further assess the impact of MatchMiner, we compared the time to consent (i.e., time

from NGS sequencing to PM trial consent) for the 166-patient MMC cohort to a ‘control’

population. The control population was composed of patients who also had NGS sequencing and

had consented to one of the 65 trials for which there was a MatchMiner-linked consent, but for

which there was no record that their matches had been viewed in MatchMiner.

As outlined above, the primary outcome was the number of days from when an

OncoPanel report was uploaded into MatchMiner (i.e., the MatchMiner ingestion date) to when

the patient consented to the PM study. We chose this outcome because clinicians only have the

potential to view trial matches after an OncoPanel report is added to MatchMiner. We found the

time to consent for the MMC was 55 days faster than for the non-MMC cohort (195 days

[IQR=85-341 days] vs 250 days [IQR=99-491 days], P=0.004,  Fig. 4b). An analysis of the

distribution of time-to-consent data for the MMC and non-MMC cohorts found no evidence that
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outliers were skewing our data. Thus, MatchMiner may provide clinical impact by accelerating

time to consent for these PM trials.

Figure 4. MatchMiner decreases time to consent for precision medicine trials.
(a) 2,071 consents from 65 trials in MatchMiner were filtered to generate comparison consents
for MMC. 1,552 consents were excluded due to the patient not having an OncoPanel report or
only having a failed OncoPanel report, the OncoPanel report or trial consent date were prior to
the launch of MatchMiner, or the trial consent date preceded the ingestion of the OncoPanel
report in MatchMiner. The remaining 519 enrollments were divided into MMC and non-MMC.
(b) Density plot of time period from MatchMiner ingestion date to consent date. MMCs had a
median of 195 days (IQR = 85, 341 days) compared to non-MMCs with a median of 250 days
(IQR = 99, 491 days). Medians compared with a Wilcoxon rank-sum test.

Discussion

Here, we described MatchMiner, an open-source software platform for matching cancer

patients to PM trials. Previous informatics platforms have been developed to match patients to

PM trials including academic cancer center solutions 17,34 and commercial solutions from

companies such as Foundation Medicine, IBM Watson, and Syapse. However, the impact of

these solutions on clinically relevant outcomes is not well characterized, many of these solutions

are proprietary, and some of these solutions are not portable to other institutions. MatchMiner is

a trial matching platform that solves many of these limitations and has clinical impact at DFCI.

MatchMiner decreased time to consent by 55 days, demonstrating impact for a clinically

relevant outcome. Timely trial enrollment is critical for patient care in part because a major
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barrier for trial enrollment is poor performance status. Earlier trial identification could provide

options for patients before performance status declines 15,16. Timely enrollment is also critical for

PM trials, where it can be difficult to find genomically eligible patients. In addition, MatchMiner

decreased time to PM trial enrollment regardless of the mode of use (patient-centric, trial-centric

or collaboration with clinical groups).

We are aware that there are potential confounding factors because we performed a

retrospective analysis. For example, we were not able to control for interdepartmental variability

in the trial enrollment process. We also were not able to control for the number of enrollments

for each trial and individual trial recruitment rates. Despite these limitations, a significant median

difference of 55 days between MMC and non-MMC is strongly suggestive of clinical impact for

MatchMiner.

In addition to MatchMiner’s clinical impact, we highlighted several key advantages that

make MatchMiner suitable as a clinical tool for trial matching. (1) MatchMiner has consistent,

structured genomic eligibility criteria using the CTML standard, which can be easily adapted for

data inputs at other institutions. CTML allows complex eligibility criteria to be curated for more

accurate matching. (2) MatchMiner gives clinicians real-time access to comprehensive structured

NGS and trial status data. Real-time trial matching allows clinicians to make more accurate trial

enrollment decisions. (3) With EHR integration, MatchMiner can be more easily adopted into

existing clinical workflows. At DFCI, we integrated MatchMiner into Epic, allowing

departments easier access to MatchMiner and more efficient cross-referencing with patient

medical history. These advantages, in addition to being open-source, make MatchMiner a viable

option for adoption at other institutions nationwide.

While MatchMiner has been successfully established as a trial matching tool throughout

DFCI, we are also focused on continuing to grow the platform. Integrating all of MatchMiner’s

features into an EHR system (e.g. Epic) is challenging, especially for an open-source platform

that aims to be EHR-vendor agnostic. To address this issue, we are exploring open standards for

future releases such as SMART on FHIR, a set of open specifications to integrate apps with

EHRs 35,36. A second major challenge is integrating additional clinical eligibility criteria, such as

prior therapies and laboratory values, into trial matching. This requires modifying the CTML to

include additional clinical criteria, and adjustments to interoperable standards for extracting

structured clinical data from EHRs. We envision proposing a formal standard for CTML via
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widely used collaborative standard development processes such as the Global Alliance for

Genomics and Health (GA4GH) 37. Third, as the number of data sources integrated into

MatchMiner grows, standardization and data processing workflows will become more

challenging. Genomic and clinical data harmonization is important since pipelines call variants

differently and cancer ontologies can differ amongst institutions 38. Lastly, it is difficult to

determine whether a patient is ready to enroll on a trial (trial readiness) from limited clinical

data. Further enrichment of patient-trial matches with radiology data, for example, could more

precisely identify patients ready for trials.

In summary, MatchMiner is an open-source tool for matching patient genomic profiling

to PM trials. With three modes of use, MatchMiner can be used to look up trials for individual

patients or to recruit patients for a trial. MatchMiner uses CTML to structure trial eligibility

criteria, and we continue to advocate for CTML as the standard for structuring trial data.

MatchMiner can be used with a trial management system to show real-time trial status at the arm

level. The combination of real-time trial arm status with detailed genomic eligibility down to the

variant level allows MatchMiner to provide highly specific matches to PM trials. MatchMiner at

DFCI has many PM trials with a range of genomic and clinical eligibility criteria. MatchMiner

accelerated PM trial enrollment and future studies will aim to determine its impact within

specific departments at DFCI.

Methods

MatchMiner technical details

MatchMiner is a two-tier web application with a mongo database serving a Python-based

REST application programming interface (API) server and AngularJS 1.5 client. The

MatchMiner UI is written in AngularJS and displays the user interface. The UI interfaces with

the REST API and displays relevant trial match information, as well as displaying a clinical trial

search interface. Institution specific ETL pipelines are used to load genomic and clinical data as

well as retrieve trial data from clinical trial management systems. Authentication of users is

performed via single sign-on configured through Security Assertion Markup Language (SAML).
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DFCI trial analysis

DFCI trials are run in collaboration with members of the Dana-Farber/Harvard Cancer

Center (DF/HCC) consortium which includes six other Harvard-affiliated institutions, including

Beth Israel Deaconess Medical Center, Boston Children’s Hospital, Brigham and Women’s

Hospital, Harvard Medical School, Harvard T.H. Chan School of Public Health, and

Massachusetts General Hospital. We used 354 trial json files from the DFCI MatchMiner

application for our analysis. We extracted all inclusions of genes and cancer types from each of

our 354 trial json files. Inclusions are defined as genes and cancer types without the “!”

exclusion symbol, and genes not labeled “wild type”. Extraction of genes and cancer types was

performed by recursively traversing trial CTMLs with custom scripts and summarized with R

ggplot2 and gtsummary 39,40. All cancer types from trials were annotated with their corresponding

OncoTree metatype (OncoTree version: oncotree_legacy_1.1) 26. Trial phases and disease center

were extracted from the summary field of trial json files with Python (v. 2.7) pandas

json_normalize function 41. Mutational signatures include tumor mutational burden, APOBEC,

MSI-H/MMR-D, UVA, temozolomide, POLE, and tobacco.

MatchMiner impact consent filtering

166 MMCs were identified through an automated system that recorded patient-centric

and trial-centric page visits, followed by manual review by the MatchMiner team. For a given

putative MMC, the MatchMiner team looks for evidence that a relevant clinician viewed the

patient in the context of the trial prior to the patient consenting to the trial. For example, a breast

oncologist viewed trial matches for one of their patients in MatchMiner and the patient then

consented to one of the listed trials.

Our 166 MMC were distributed among 65 PM trials. A comparison group, non-MMC,

was therefore defined as all other consents to the same 65 PM trials as the MMCs. For patients

with multiple OncoPanel reports, each trial consent was paired with the closest OncoPanel report

prior to the consent date. To generate the analytic cohort, we applied the following filters: (1)

patient had a successful OncoPanel report, (2) the patient’s OncoPanel report and trial consent

date were both after the launch of MatchMiner, and (3) the consent date is after the OncoPanel
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report was added to MatchMiner. After filtering, we identified 353 non-MMC to compare to our

MMC.

Consent dates were extracted from DFCI’s OnCore trial registration database. For our

analytic cohort, time from MatchMiner ingestion date to consent date was calculated on a DFCI

HIPAA compliant server. Filtering was performed with Python (v. 2.7) pandas commands and

the MatchMiner ingestion date to consent date time period was analyzed for MMC and

non-MMC using a Wilcoxon rank sum test with R gtsummary 40,41. This study was approved by

the Dana-Farber Cancer Institute/Harvard Cancer Center investigational review board (protocol

#20-733), which determined that neither the physicians nor the patients needed to be consented

for this retrospective study.

Code Availability

The MatchMiner MatchEngine, API, and UI is available in the Github repository:

https://www.github.com/dfci/matchminer under a GNU Affero License. More comprehensive

documentation on MatchMiner deployment and data inputs is available at

https://www.matchminer.gitbook.io/matchminer/. For more information or questions about

MatchMiner at DFCI please visit our website: https://www.matchminer.org.
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