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CAPSULE 
The image processing protocol can segment human blastocyst images and 
automatically extract 33 variables that describe quantitative aspects of the 
blastocyst's regions, with potential utility in embryo selection for ART. 
 
ABSTRACT 
 
OBJECTIVE 
To study the application of image processing for segmentation of blastocysts images 
and extraction of potential variables for prediction of embryo fitness. 

DESIGN 
Retrospective study. 
 
SETTING 
Single reproductive medical center. IVI-RMA (Valencia, Spain) between 2017 and 
2019. 

PATIENTS 
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An initial dataset including 353 images from EmbryoScope® and 474 images from 
Geri® incubators was acquired, of which 320 images from EmbryoScope® and 309 
images from Geri® incubators were used in this study.  
 
INTERVENTION(S) 
None. 

MAIN OUTCOME MEASURE(S) 
Successful segmentation of images into trophectoderm (TE), blastocoel, and inner 
cell mass (ICM) using the proposed processing steps. 

RESULTS 
A total of 33 variables were automatically generated by digital image processing, 
each representing a different aspect of the embryo and describing a different 
characteristic of the expanding blastocyst (EX), ICM, or TE. These variables can be 
categorized into texture, gray level average, gray level standard deviation, modal 
value, relations, and light level. The automated and directed steps of the proposed 
processing protocol exclude spurious results, except when image quality (e.g., focus) 
prevents correct segmentation. 

CONCLUSIONS 
The proposed image processing protocol that can successfully segment human 
blastocyst images from two distinct sources and extract 33 variables with potential 
utility in embryo selection for ART. 
 

KEY WORDS 
digital image processing, blastocyst, morphology-derived variables, segmentation, 
embryo selection.  

 
INTRODUCTION 

 
Digital image processing and artificial intelligence (AI) techniques are rapidly 

gaining acceptance in medical sciences, including reproductive medicine (1, 2), as 
tools for objective identification of lesions on medical images and even for disease 
diagnosis and prognosis. In the field of assisted reproduction technology (ART), 
these techniques are currently under investigation for identifying embryological 
parameters predictive of fitness for freezing and implantation (3). Further, automated 
image processing is now being used to improve the standardization and accuracy of 
diagnostics and prediction (4). 

In the field of ART, computer-aided analyses are especially suitable for 
evaluation and classification of gametes and embryos (5), and when combined with 
other methods, to predict embryo fate for ART (6). Considering the complexity of 
each step and the vast number of variables to be considered, ART is an ideal field to 
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test the potential of AI techniques (7). Indeed, several algorithms have been 
developed to classify embryos or predict reproductive success that applies classical 
statistical methods such as logistic regression or various AI techniques (8). 

The raw data for embryo evaluation is often acquired using a time-lapse 
system (TLS), which yields dynamic information on embryo morphology (9). Digital 
image processing of these TLS-acquired image series has improved the accuracy of 
human embryo evaluation (10, 11). For instance, selection based on TLS has 
resulted in a 20% increase in pregnancy rate using ART (12). However, embryo 
evaluation is still largely subjective and based on the embryologist’s experience, 
resulting in inconsistencies that contribute to the variability in clinical outcome (13, 
14). Therefore, automation of embryo evaluation, although challenging due to the 
complexity of embryological variants (15), may lead to more consistent ART 
success. 

Digital image processing as applied to ART includes multiple computational 
techniques that can extract mathematical variables from either conventional or TLS-
acquired embryo images. Further, AI techniques can automate this parameter 
selection process to obtain objective metrics associated with embryo morphology 
and quality (16, 17). Currently, the most widely used embryo classification system in 
Brazil and Argentina is that proposed by Gardner and Schoolcraft (18) and recently 
detailed by Puga-Torres et al. (19), which evaluates embryo fitness according to 
expansion of the blastocyst (EX), quality of the inner cell mass (ICM), and quality of 
the trophectoderm (TE) (20). Image processing can evaluate embryonic quality by 
combining metrics for each region of the blastocyst (including the zona pellucida and 
the segmented ICM and TE) as described for bovine embryos (21). In conjunction 
with AI tools, such image processing methods may help embryologists select the 
best oocyte or embryo for freezing, in addition to helping to distinguish euploid from 
aneuploid embryos (8, 22). 

Several previous studies have used computational techniques to extract 
various quantitative parameters describing the blastocyst stage. Santos Filho et al. 
(23) developed a method that yielded segmented images of the ICM and TE, while 
Singh et al. (24) applied identification and segmentation algorithms to isolate the TE. 
Matos et al. (25) even used digital image processing techniques for semiautomated 
selection of mouse blastocyst quality. 

The inclusion of more objective embryo features, such as blastocyst width 
and/or area, may further improve selection for successful pregnancy (26). The 
current study aimed to provide an objective and comprehensive assessment of 
human blastocyst morphology based on images captured by two distinct sources, 
EmbryoScope® and Geri® incubators, using various image processing techniques 
from the widely available Matlab® platform. 

 
MATERIALS AND METHODS 

Study Design 
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 The study was approved by the Institutional Review Board (IRB) of IVI 
Foundation, whose code corresponds to 1709-VLC-094-MM. In this research project 
encrypted data was used, i.e., it was not possible to associate identified persons 
because the link with all information that identifies the subjects has been destroyed. 
Consequently, it was estimated that it would neither be necessary nor feasible to 
obtain the Informed Consent of the subjects, as it is a study with anonymized data. In 
addition, there was not express opposition from the subjects for the use of the data 
for the intended purposes. 
 

Image Dataset 

All raw images were of blastocysts collected from patients receiving assisted 
reproduction treatment between 2017 and 2019 at IVI-RMA (Valencia, Spain) and 
grown in either the EmbryoScope® time-lapse incubator from Vitrolife or the Geri® 
time-lapse incubator from Genea Biomedx (Figure 1). 

 

Figure 1 Human blastocysts maintained in the EmbryoScope® incubator (a) or the 
Geri® incubator (b). 

The original dataset comprised 353 images of embryos growing in an 
EmbryoScope® incubator and 474 images of embryos growing in a Geri® incubator, 
of which 33 images from the EmbryoScope® incubator and 165 from the Geri® 
incubator were excluded. The 33 EmbryoScope® images were excluded due to poor 
focus (n = 16), display of a nonblastocyst stage embryo (n = 14), incomplete 
visualization of the entire blastocyst (n = 2), or insufficient light to recognize 
individual regions (n = 1). The 165 Geri® images were excluded due to display of a 
nonblastocyst stage embryo (n = 79), blurred inner cell mass (n = 82), or display of a 
hatched blastocyst (n = 4). Therefore, 320 EmbryoScope® and 309 Geri® images 
were included (629 images in total). Of these, 289 images from the EmbryoScope® 
incubator (90.3%) and 215 images from the Geri® incubator (69.6%) were correctly 
processed by the methods proposed in the following sections, while the other 125 
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images were not correctly segmented, mainly due to the low quality of the raw 
image. 

 
Image Processing and Variable Extraction 

The images provided by each incubator have unique characteristics (Figure 1) 
requiring different approaches for processing and feature extraction. The principal 
differences in processing relevant to image segmentation are presented in Table 1. 
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Table 1 Different segmentation steps required for images provided by Geri® and 
EmbryoScope® incubators, and the variables extracted by each step 

Segmentation Step EmbryoScope® Geri® Variable Extraction 

1 
Conversion of the input 

image to grayscale 
X X - 

2 
Edge detection using a 

Canny filter 
X X - 

3 Partial embryo isolation X X - 

4 
Histogram adjustment 

(contrast, stretching, and 
tone) 

X X - 

5 Prewitt adjustment X X - 

6 Binary conversion X X - 

7 
Isolation of the whole 

blastocyst 
X X 

Measurement of the area and 
radius of the blastocyst by 

equations using the Matlab® 
Image Processing ToolboxTM 

8 
TE and Blastocoel + ICM 

isolation 
X X 

Variables describing TE and 
the Blastocoel + ICM using 

the Matlab® Image 
Processing ToolboxTM, Local 

Binary Pattern (LBP) 
algorithm, and Gray level 

Cooccurrence matrix (GLCM)  

9 Threshold adjustment X X - 

10 
Segmentation based on 

the grayscale 
  X - 

11 
Determination of the 

binary distance 
  X - 

12 ICM isolation X X 
Variables describing the ICM 

using the Matlab® Image 
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Processing ToolboxTM, LBP
algorithm, and GLCM  

ICM: inner cell mass; TE: trophectoderm 

Segmentation of embryo images required between 10 and 12 steps to 
completely isolate the blastocyst, ICM, and TE. The steps used for segmentation of 
images from each incubator and typical changes to the image following each step 
are presented in Figures 2 and 3. 

 

 

Figure 2 Flowchart of embryo segmentation from an image provided by the 
EmbryoScope® incubator. The first panel is the raw original image and the last panel 
presents each segment isolated by the software. The intermediate images are 
identified by the respective step numbers presented in Table I. Steps 10 and 11 are 
not represented in the figure since they are exclusive to Geri® image segmentation. 

BP 
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Figure 3 Flowchart of embryo segmentation from an image provided by the Geri® 
incubator. The first panel is the original raw image and the last panel shows each 
segment isolated by the software. The intermediate images are identified by the 
respective step numbers presented in Table I. 

 

Grayscale Conversion and Image Resizing 
 

To reduce the computational load associated with image processing, raw 
images were first converted to a grayscale (27, 28) and adjusted to a standard size 
using the Matlab® Image Processing Toolbox™ grayscale conversion and resizing 
functions (29). 
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Canny Filter Application for Edge Detection 

In this work, a Canny filter (CF) was applied to detect image edges 
(Supplemental Figure 1). In addition to a CF, Santos (30) added a Gaussian filter to 
reduce noise for improved location of edges. Therefore, the Gaussian filter described 
by Equation 1 was also applied, where σx and σy represent the standard deviations 
of pixels along the X and Y axes, respectively. 

  

This filter application is necessary to obtain information for isolating the region 
of interest (ROI), specifically the image of the blastocyst without surrounding 
background. A CF application can be found in the Matlab® Image Processing 
Toolbox™ (29). 

 

 

Supplemental Figure 1 Application of the Canny Filter (CF) on blastocyst images 
from (a) a Geri® incubator and (b) an EmbryoScope® incubator for edge detection, 
thereby distinguishing the blastocyst area from the background. 
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Detection of Circles by the Hough Transform 

The Hough transform (HT) algorithm is used to detect forms such as lines, 
circles, and ellipses in digital images (31). According to Seifozzakerini et al. (32), this 
technique is useful for the recognition of straight lines or circular forms, and so is 
appropriate for ROI detection since embryos present a circular form. Circle 
parameterization described by Hough (33) is presented in Equation 2, where (a, b) 
represents the central coordinate and r represents the radius. 

fc(x, y) = (x − a)² + (y − b)² − r² = 0 (2) 

These functions yield parameters such as the circle center and radius length 
that in turn allow for isolation of the ROI (Supplemental Figure 2). Hough 
transformation was then followed by a final contrast adjustment to enhance ROI 
boundaries. The Matlab® Image Processing Toolbox™ has all the functions needed 
to apply the HT as well as the contrast adjustment (29). 

 

Supplemental Figure 2 Partial detection of the embryo by the Hough transform 
(HT). (a, b) From the edges of the image obtained by the Canny filter, circles were 
detected by the Hough transform to isolate the ROI (red circumference). (c) Thus, 
the embryo is partially isolated from the rest of the image. 

 

Histogram Adjustment 

Contrast is an essential parameter determining image resolution (34). To 
further improve image quality, contrast was optimized by histogram adjustment using 
the Matlab® Image Processing Toolbox™ (29). However, different contrast 
adjustments are required for images obtained by Geri® (Supplemental Figure 3) and 
EmbryoScope® (Supplemental Figure 4) to maintain an adequate standard for the 
desired variable acquisition. 
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Supplemental Figure 3 Histogram adjustment for an image from the Geri® 
incubator. The histogram of the original image (a) is stretched to yield a higher 
contrast image (b). 

is 

Supplemental Figure 4 Histogram adjustment for an image from the EmbryoScope® 
incubator. The histogram of the original image (a) is stretched to yield a higher 
contrast image (b). 
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Maxima of Gradient Magnitude 

In a grayscale image, gradient magnitude (GM) is defined as the root mean 
square of the directional gradients along two orthogonal directions (35). In general, 
GM maxima can be detected at the boundaries (edges) of a region (36). For 
extracting the GM, several operators can be used, such as the Prewitt method, 
which is efficient for detecting edges. According to Yang et al. (37), this method can 
detect edges in the vertical (Gy) and horizontal (Gx) directions and calculate the GM 
using a pair of 3 × 3 convolution masks (Supplemental Figure 5). This technique is 
applied using the Matlab® Image Processing Toolbox™. 

 
Supplemental Figure 5 Directions of the Prewitt gradient operator. From the 
convolution masks, the Prewitt differentiation operator calculates the gradient in the 
vertical direction through the Gy matrix, while Gx calculates the gradient in the 
horizontal direction. Gy and Gx matrixes are also called derivative masks and are 
applied to calculate the difference of pixel intensities in an edge region of the image. 

 

Using this technique, GMs are obtained (Supplemental Figure 6b), which can 
later be converted into maximum values (Supplemental Figure 6c). This process 
allows brightness invariant areas (i.e., regions of the image with similar 
characteristics) to be captured and grouped. Based on the maximum magnitude 
values, pixels within a specific range can be extracted. 
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Supplemental Figure 6 Extraction of gradient magnitude (GM) maxima. (a) 
Grayscale image of the blastocyst. (b) Extraction of the GM. (c) Extraction of GM 
maxima. 

 

Binary Image Construction 

A binary image is composed of a matrix containing only 0s and 1s, where the 
1s represent the object of interest (38). To obtain a binarized image, pixel values 
within a defined range are converted to 1s, while all other pixels are set to 0 
(Supplemental Figure 7b). This process is important for applying the HT and allows 
total isolation of the blastocyst (Supplemental Figure 7c), TE (Supplemental Figure 
7d), and blastocoel plus ICM (Supplemental Figure 7e). 

 

Supplemental Figure 7 Isolation of the blastocyst, trophectoderm, and blastocoel 
plus inner cell mass (ICM). (a) Maxima of gradient magnitude. (b) Binary 
transformation using a defined range. (c–e) Isolation of the blastocyst (c), 
trophectoderm (d), and Blastocoel + ICM (e). 
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Segmentation of the image into blastocyst, TE, and blastocoel plus ICM 
allows the extraction of several variables. In this process, variation and similarity of 
texture, uniformity in gray level distribution, proximity of the grayscale to the GLCM 
diagonal in ICM and Blastocoel, mean gray level, and standard deviation of gray 
level are extracted. In addition, brightest and darkest regions, average brightness, 
most frequent light intensity (modal value), binary image sum, blastocyst radius, and 
area measurements are calculated. 

The textures were examined by the local binary pattern (LBP) algorithm and 
by constructing a gray level cooccurrence matrix (GLCM). The LBP algorithm is a 
widely applied approach to recognize and analyze texture in images (39). In this 
study, the LBP technique was applied to determine the textures of the ICM, TE, and 
EX. In Matlab®, the LBP algorithm is included in the Computer Vision ToolboxTM (40). 
Feature extraction using the LBP algorithm consists of two main steps 
(Supplemental Figure 8), thresholding and encoding. In the first step, all neighboring 
pixels in each defined area (e.g., pattern) are compared to the value of the central 
pixel. Then, all values of the neighboring pixels are changed to a binary value (0 if 
lower than the value of the central pixel or 1 if larger). After this transformation, the 
encoding step involves conversion of the binary number obtained to a decimal value 
(39). 

 

 
Supplemental Figure 8 Representation of the Local Binary Pattern (LBP) algorithm. 
(a) The initial blastocyst image. (b) The matrix of pixel values obtained from an area 
of the image. (c) The binary matrix derived using the LBP algorithm. The values of 
this matrix (0s and 1s) are read clockwise starting from the left-most upper quadrant 
following the arrow. (d) Through this process, a binary number is obtained and 
converted to a decimal number. This process is repeated until the entire image is 
processed. 

 
The GLCM algorithm was also applied to examine the textures of the ICM, 

TE, and the blastocoel plus ICM images obtained by segmentation. This statistical 
method, included in the Image Processing ToolboxTM, essentially examines texture 
by analyzing the spatial relationships among pixels, specifically how often pairs of 
pixels with specific values and in a specified spatial relationship occur in an image. 
This analysis yields the GLCM, from which statistical measures are extracted (29). 
Using this algorithm, it is possible to extract information such as variation of the 
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texture level, texture similarities, uniformity of the gray level distribution, and 
proximity of the grayscale to the GLCM diagonal. 

The brightness and darkness variables of the image were then extracted from 
the TE and Blastocoel + ICM images. The darkness of the image was measured as 
the sum of the top 10% darkest pixels, and the brightness as the sum of the 
remaining pixels. The mean brightness of each region was estimated using the 
pixels with values between the 10% darkest and the 10% brightest. Image metrics 
such as radius and area were extracted from the distribution of pixels obtained by 
the Matlab® Image Processing ToolboxTM (29). 

Grayscale Intensification 

Grayscale standardization alone cannot provide good texture segmentation 
results. In addition, it is important to intensify the light and dark tones of the image 
using an optimal threshold (ψ) specific for Geri® and EmbryoScope® incubators. 
Using Equation 3, it is possible to convert the values of a pixel matrix (���) and 

increase the frequency of maxima and minima, yielding a new higher contrast matrix 
(����) as depicted in Supplemental Figure 9. 

���� �  ����
�

�
�

� � (3) 

���: grayscale pixel matrix. 

�: threshold. 
����: matrix containing the converted values of ���. 
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Supplemental Figure 9 Grayscale intensification. (a) Representation of the 
intensification process by applying a threshold � to the lightest and darkest tones 
(top 10% highest and lowest pixel values). (b) Grayscale intensification based on a 
defined �

�
threshold for images from the Geri® incubator. (c) Grayscale intensification 

based on a defined �
�
 threshold for images from the EmbryoScope® incubator. 

 

ICM Partial Isolation Based on the Grayscale 

Segmentation based on grayscale is a step specific to images from the Geri® 
incubator, which have greater contrast between light and dark tones. In this process, 
the weight of each pixel in the image is calculated as the absolute difference 
between the pixel value (���) and a previously defined threshold (�) (Equation 4). 

Using these calculated weights, it is possible to generate a new image (�) containing 
the partially segmented ICM. Resources from Matlab® Image Processing Toolbox™ 
(29) were used for this process. The method is illustrated in Supplemental Figure 
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10a, and the results of partial ICM segmentation are shown in Supplemental Figure 
10b. 

 (4) 

 

 

Supplemental Figure 10 Grayscale segmentation. (a) A grayscale pixel matrix ( ) 
can be partially segmented by the difference between each pixel value and a set 
threshold ( ). The new partially segmented matrix is termed ( ). (b) Process applied 
to the blastocoel and ICM. It is possible to visualize the result of partial segmentation 
using a weight matrix logarithm. 

 

Determination of Binary Distance 

Another technique used only for Geri® images is binary Euclidean distance 
( ) calculation (Equation 5). The binary distance is defined as the distance from 
every pixel to the nearest nonzero pixel (41). After binary transformation of the 
partially segmented ICM, the inverse of this image is submitted to the distance 
calculation process (Supplemental Figure 11). This improves the quality of the final 
segmentation by eliminating noise present in the image. 

 (5) 
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Supplemental Figure 11 Noise removal by calculating binary Euclidean distance. 
(a) Euclidean distance is calculated for the binary matrix. The new matrix obtained 
( ) contains the distance from each pixel to the nearest nonzero pixel. (b) After 
binary conversion and inversion of 0s and 1s (yielding an inverse binary), this 
process is applied to the pixel matrix and an image with reduced noise is obtained. It 
is possible to visualize the new image after applying a logarithm to the pixel matrix 
[log(BDij)]. 

 

ICM Isolation by Gabor Filter 

Segmentation by Gabor multichannel filters is an established method in image 
processing. This technique allows characterization and separation of textures by 
creating channels for different frequencies and orientations, similar to the human 
visual system. To segment the ICM and obtain the Gabor magnitude, we initially 
used the combinations of frequency and orientation presented by Jain and 
Farrokhnia (42). After this process, Gaussian low-pass filters were applied 
(Supplemental Figure 12e and Supplemental Figure 13b), an important 
postprocessing step to normalize the different outputs and decrease the magnitude 
variations according to Kim and Kang (43). Gaussian low-pass filters enhance 
smoothness and reduce noise (the difference between neighboring gray levels). In 
this way, it is possible to differentiate image regions in different planes 
(Supplemental Figure 12f and Supplemental Figure 13c) and fully segment the ICM 
(Supplemental Figure 12g and Supplemental Figure 13d). In the last steps, 
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clustering is performed using the Matlab® Statistics and Machine Learning Toolbox™ 
(44). 

 

 

Supplemental Figure 12 Isolation of the ICM by Gabor filtering of an image from the 
Geri® incubator. (a) Isolation of the Blastocoel + ICM. (b) Partial isolation of the ICM. 
(c) After partial isolation, an inverse binary matrix was obtained. (d) Binary distance 
matrix. (e) When applying the Gabor filter, low-pass Gaussian filtering is also used to 
differentiate regions of the previous image. (f) Two main planes are obtained, each 
representing the different textures of the image. (g) Isolation of the ICM. 

 

Supplemental Figure 13 Isolation of the ICM by Gabor filtering of an image from the 
EmbryoScope® incubator. (a) Isolation of the Blastocoel + ICM. (b) Application of the 
Gabor filter and low-pass Gaussian filter. (c) Two main planes representing different 
textures of the image. (d) Isolation of the ICM. 

 

 Additional variables were extracted by isolation of the ICM. The textures were 
then analyzed by the LBP algorithm and the GLCM. The area was calculated by the 
distribution of the pixels in this segmentation. The blastocoel area was calculated by 
subtraction of the area of the ICM (Supplemental Figure 12g and Supplemental 
Figure 13d) from the total area of the Blastocoel + ICM image (Supplemental Figure 
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12a and Supplemental Figure 13a). Expansion of the embryo was estimated 
indirectly by calculating the area of embryo (without the TE) occupied by the ICM. 

 
RESULTS 
 

The image processing steps summarized in Table I automatically generated a 
total of 33 variables, each representing a different feature of the expanding embryo 
(EX) or a subregion (ICM or TE). These variables can be divided into three main 
categories, EX, ICM, and TE, according to the ROI represented (Supplemental Table 
1). 

 
Supplemental Table 1 Variables obtained through image processing categorized 
according to region of interest represented: Expansion of the blastocyst (EX), inner 
cell mass (ICM), and trophectoderm (TE) 

EX ICM TE 

Local Texture Descriptor  Local Texture Descriptor  Local Texture Descriptor 

Brightest region in ICM and 
Blastocoel 

Texture variation  Brightest region 

Mean luminosity in ICM and 
Blastocoel 

Texture similarities   Mean luminosity 

 

Blastocyst radius 

 

 Uniformity of the gray 
level distribution  

Darkest region  

 Blastocyst sum of binary 
image 

Proximity of the 
grayscale to the GLCM 

diagonal  

 Modal value 

 

 Blastocyst gray level 
average 

ICM Area  Gray level average 

Gray level standard 
deviation in ICM and 

Blastocoel 

 Gray level standard 
deviation 

 

ICM and Blastocoel gray 
level average 

 Texture variation  
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Modal value of ICM and 
Blastocoel 

 Texture similarities 

Darkest region in ICM and 
Blastocoel 

  Uniformity of the gray 
level distribution  

Texture variation in ICM 
and Blastocoel 

 Proximity of the grayscale 
to the GLCM diagonal  

Texture similarities in ICM 
and Blastocoel 

  

 Uniformity of gray level 
distribution in ICM and 

Blastocoel 

  

Proximity of the grayscale 
to the GLCM diagonal in 

ICM and Blastocoel 

  

Blastocoel area   

Ratio between ICM and 
Blastocoel area 

  

 
 These variables can also be divided into six categories according to the image 
property represented: texture, gray level average; gray level standard deviation, 
modal value (most frequent pixel value), relations, and light level (Supplemental 
Table 2). 
 Texture variables denote repeating random regular patterns that provide 
measures of structural arrangements on surfaces. They represent the different 
interactions among pixels, from the differences in gray level from pixel to pixel in 
local regions of the image to the spatial arrangement of gray levels throughout the 
image. Gray level average, gray level standard deviation, and modal value represent 
the overall brightness/darkness and variation in brightness of the embryo. Relations 
refer to associations between otherwise distinct features, such as radius and area of 
the blastocyst. Finally, the light level variables represent the brightness variation in 
different regions of the embryo. 
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Supplemental Table 2 Variables derived from image processing categorized 
according to image property 

Texture Gray level 
average 

Gray level 
standard 
deviation 

Modal value Relations Light level 

Texture 
variation in 
ICM and 

Blastocoel 

Gray level 
average in 
ICM and 

Blastocoel 

Gray level 
standard deviation 

in ICM and 
Blastocoel 

Modal value in 
ICM and 

Blastocoel 

Blastocyst 
sum of binary 

image 

Mean 
luminosity 
in ICM and 
Blastocoel 

 

 Texture 
variation in 

ICM 

Gray level 
average in TE 

Gray level 
standard deviation 

in TE 

 Modal value in 
TE 

Blastocyst 
radius 

Mean 
luminosity 

in TE 

Texture 
variation in 

TE 

Blastocyst 
gray level 
average 

  ICM area Brightest 
region in 
ICM and 

Blastocoel 

Texture 
similarities 
in ICM and 
Blastocoel 

   Blastocoel 
area 

Brightest 
region in TE 

Texture 
similarities 

in ICM 

    Ratio 
between ICM 

and 
Blastocoel 

area 

Darkest 
region in 
ICM and 

Blastocoel 

Texture 
similarities 

in TE 

    Darkest 
region in TE 

Uniformity 
of the gray 

level 
distribution 
in ICM and 
Blastocoel 
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Uniformity 
of the gray 

level 
distribution 

in ICM 

     

Uniformity 
of the gray 

level 
distribution 

in TE 

     

Proximity 
of the 

grayscale 
to the 
GLCM 

diagonal in 
ICM and 

Blastocoel 

     

Proximity 
of the 

grayscale 
to the 
GLCM 

diagonal in 
ICM 

     

Proximity 
of the 

grayscale 
to the 
GLCM 

diagonal in 
TE 

     

 Local 
texture 

descriptor 
in EX 

     

 Local 
texture 
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descriptor 
in ICM 

 Local 
texture 

descriptor 
in TE 

     

 

 

Variable definitions 

Texture 

1. Texture variation in ICM and Blastocoel 

Represents the texture gray level differences in ICM and Blastocoel. Reflects image 
sharpness and depth of grooves. Deeper grooves are related to greater variation and 
sharpness. 

2. Texture similarities in ICM and Blastocoel 

Represents the linear dependency of gray levels. 

3. Uniformity of the gray level distribution in ICM and Blastocoel 

Represents the uniformity of the gray level distribution through the sum of GLCM 
elements squared. 

4. Proximity of the grayscale to the GLCM diagonal in ICM and Blastocoel 

Represents the distribution of elements in the GLCM according to the diagonal 
reference values. 

5. Texture variation in ICM; 6. Texture similarities in ICM; 7. Uniformity of 
gray level distribution in ICM; 8. Proximity of the grayscale to the GLCM 
diagonal in ICM 

These variables correspond to variables 1, 2, 3, and 4, respectively, but are 
calculated from the ICM segmented image. 

9.  Texture variation in TE; 10. Texture similarities in TE; 11. Uniformity of 
the gray level distribution in TE; 12. Proximity of the grayscale to the GLCM 
diagonal in TE 

These variables correspond to variables 1, 2, 3, and 4, respectively, but are 
calculated from the TE segmented image. 
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13. Local texture descriptor in EX 

Texture pattern descriptor used to describe the local texture patterns of an image. 
The algorithm extracts information about the local texture by establishing a threshold 
for “n” neighbors relative to the value of the central pixel. The result is a binary 
number between 0 and 255. 

14. Local texture descriptor in ICM; 15. Local texture descriptor in TE 

These variables correspond to variable 13, but are calculated from ICM and TE 
segmented images, respectively. 

 
Gray level average 

16. Gray level average in ICM and Blastocoel 

Represents the average pixel intensity (gray level value) within the segmented ICM 
plus Blastocoel image. 

17. Gray level average in TE 

Represents the average pixel intensity (gray level value) within the segmented TE. 

18. Blastocyst gray level average 

Represents the average pixel intensity (gray level value) for the entire blastocyst with 
zona pellucida. 

 

Gray level standard deviation 

19. Gray level standard deviation in ICM and Blastocoel 

Represents the standard deviation of pixel intensity within the segmented ICM and 
Blastocoel. 

20. Gray level standard deviation in TE 

Represents the standard deviation of pixel intensity within the segmented TE. 

 

 
Modal value 

21. Modal value in ICM and Blastocoel 

Represents the most frequent light intensity value in the segmented ICM and 
Blastocoel. 
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22. Modal value in TE 

Represents the most frequent light intensity value in the segmented TE. 

 
Relations 

23. Blastocyst sum of binary image 

The image threshold is given by the sum of the binary image divided by the area of 
the isolated blastocyst calculated from the radius. 

24. Blastocyst radius 

Radius of the blastocyst. 

25. ICM area 

Area of the segmented ICM. 

26. Blastocoel area 

Area of the segmented blastocoel. 

27. Ratio between ICM and Blastocoel 

Represents the expansion of the blastocyst. 

 
Light level 

28. Mean luminosity in ICM and Blastocoel 

All pixels with a luminous intensity between 10 greater than and 10 less than the 
average intensity are counted, and this value is then divided by the total area of the 
blastocyst. 

29. Mean luminosity in TE 

Calculated as described for variable 28 but using values from the segregated TE. 

30. Brightest region in ICM and Blastocoel 

Brightest area in the segmented ICM and Blastocoel. 

31. Brightest region in TE 

Brightest area in the segmented TE. 

32. Darkest region in ICM and Blastocoel 

Darkest area in the segmented ICM and Blastocoel. 
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33. Darkest region in TE 

Darkest area in the segmented TE. 

While 33 variables were extracted, it is unclear if all can be modulated 
independently. Collinearity refers to a strong association between two independent 
variables and multicollinearity as a strong association among more than two 
independent variables. Multicollinearity alters the grouping because the collinear 
variables end up implicitly receiving a greater weight. A collinearity analysis can be 
performed to identify if any of these 33 variables are related (45). 
 
DISCUSSION 
 

In this work, we present a sequence of digital processing steps to segment 
human embryo images obtained from two distinct sources. The method produced 33 
mathematical variables from the whole embryo and its specific regions (ICM, TE, and 
blastocoel). We speculate that these variables may help in identifying embryos most 
suitable for freezing and ultimate implantation for ART. 

This sequence of steps was adapted from previous studies by our group on 
murine embryos (25) and bovine embryos (21, 45, 46). The relatively high success 
rate of segmentation, especially for embryos photographed in the EmbryoScope® 
incubator (90.3%), suggests that these previous findings were beneficial for analysis 
human of embryo images, a more challenging application due to both greater 
variability in embryo morphology compared to mice and cattle (47) and the more 
rigorous standards that must be meet for ART. 

In addition to work on nonhuman species, preliminary results have been 
published on digital processing of human blastocyst images from EmbryoScope® for 
implantation selection (48, 49). In contrast, Geri® images have been used much less 
extensively for AI development (50). This paucity of research may reflect less ideal 
imaging conditions. Indeed, the rate of successful segmentation was much lower 
using Geri® images (69.6%) and required extra steps. 

Several of these proposed steps, such as application of the HT algorithm, 
have already been applied in previous image processing studies. Van den Heuvel et 
al. (51) used the HT to detect the center of the fetal skull and a dynamic 
programming algorithm to detect the outside of the fetal skull. They also fitted an 
ellipse to the dynamic programming result to measure head circumference, estimate 
gestational age, and monitor fetal growth. Huang et al. (52) also used the GLCM 
approach to identify textural features on ovarian adenocarcinoma cells indicative of 
chemoresistance. Specifically, the GLCM was used to calculate contrast, energy, 
entropy, and homogeneity, variables that collectively can reveal the disordered 
surface morphology characteristic of cancer cells. Alternatively, Nanni et al. (53) 
used the LBP algorithm to derive texture descriptors for classifying 2D HeLa images, 
cells in pap smear datasets, and pain levels from the facial images of newborns. 
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Thus, our chosen algorithms constitute a set of mathematical tools already used for 
a wide range of image processing applications. 

Some of the variables extracted may have little or no biological significance 
despite conveying information on texture, intensity of edges, and other features. 
However, these quantifiable features may still be advantageous over the subjective 
imaging criteria used to grade embryos (18, 54). As proof of concept for the potential 
utility of these variables in embryo selection, we are performing a pilot study (in 
progress) on prediction of pregnancy and aneuploidy. Briefly, the same 33 extracted 
variables were used as inputs for artificial neural network (ANN)-based programs to 
predict aneuploidy or pregnancy (fetal heartbeat) from blastocyst images. The ANNs 
were chosen based on a genetic algorithm search for the fittest model, like that 
described by Rocha et al. (21, 45). We recently obtained 96% predictive accuracy for 
the presence of a fetal heartbeat based on processing of 172 images from 
EmbryoScope® and receiver operating characteristic curve analysis as well 95% 
accuracy for prediction of aneuploidy based on 277 images using the same analytic 
processes. Fine tuning the image processing protocol by creating high-resolution 
mosaic images of the whole embryo in segmentation masks to provide additional 
information on certain structures (e.g., ICM or TE) or features (texture, contrast, 
brightness, or edges) inscrutable by visual inspection may further enhance predictive 
efficacy. 

In summary, we describe an image processing protocol that can successfully 
segment human blastocyst images from two distinct sources and extract 33 variables 
with potential utility in embryo selection for ART. 
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