Title: Diagnostic Utility of Exome Sequencing for Polycystic Kidney Disease

Alexander R. Chang*‡1,2, Bryn Moore*3, Jonathan Z. Luo3, Gino Sartori4, Brian Fang1, Steven Jacobs2, Yoosif Abdalla2, Mohammed Taher1, Regeneron Genetics Center5, William Triffo4, Gurmukteshwar Singh1,2, Tooraj Mirshahi3‡

1Kidney Health Research Institute, 2Department of Nephrology, 3Department of Molecular and Functional Genomics, 4Department of Radiology, Geisinger, Danville, PA
5Regeneron Genetics Center, Sawmill Road, Tarrytown, NY

*Co-first author

‡Correspondence: Tooraj Mirshahi, Ph.D. E-mail: tmirshahi@geisinger.edu Alexander R. Chang M.D. e-mail: achange@geisinger.edu

Department of Molecular and Functional Genomics Geisinger Clinic
100 North Academy Avenue Danville, PA 17822-2621 Phone: (570) 271-5967

Department of Nephrology Kidney Health Research Institute
Geisinger Clinic 100 North Academy Avenue Danville, PA 17822-2621 Phone: (614)271-6393

Running Title: Whole exome sequencing for PKD
Abstract

Background: Large clinical cohorts with electronic health records (EHR) and genetic data allow estimating population prevalence of rare genetic disorders like polycystic kidney disease (PKD) and deciphering their genetics, allowing more precise diagnosis and management.

Methods: We performed genotype- and phenotype-based analyses to gain insight into the prevalence and genetic basis of PKD in an unselected health system-based cohort of 173,954 patients with EHR and exome sequencing data. We determined the diagnostic rate of PKD amongst patients with PKD1/2 variants, reviewed EHR data including imaging and family history when available to phenotype PKD cases of various severity, determined disease prevalence, and identified the genetic basis for most of these cases.

Results: In genotype-first analyses, individuals with a protein-truncating (PTV) or copy number variant deletion (CNV) in PKD1 and PKD2 had ADPKD rates of 94.3% (66/70) and 97.7% (43/44) respectively. For individuals with missense or in-frame deletion variants previously classified as likely pathogenic (LP) or hypomorphic, ADPKD diagnosis was infrequent (34/425 for PKD1 and 0 /12 for PKD2). Phenotype-first analyses identified 235 ADPKD cases (1.35/1,000), which were further subclassified by imaging findings (196 moderate/severe typical ADPKD, 16 mild typical ADPKD, 23 atypical ADPKD). The genetic diagnostic rate for moderate/severe typical ADPKD was 69% (135/196) and significantly lower for mild typical and atypical ADPKD (25.0% and 21.7% respectively). Specifically, for typical ADPKD, 125/196 (63.7%) had a diagnostic (CNV/PTV/LP) variant in PKD1 or PKD2, two had PKD1 missense variants previously classified as VUS, and 24 had novel PKD1 or PKD2 missense variants, 8 of which segregated with ADPKD in pedigree analysis. Genetic diagnostic yield was much higher in those with a family history of ADPKD than those without a family history.

Conclusions: Data from a large carefully phenotyped clinical cohort provides the population-based prevalence of PKD and establishes the utility of exome sequencing in ADPKD diagnosis which should lead to earlier diagnosis and improved care for PKD.
Introduction

Autosomal dominant polycystic kidney disease (ADPKD) is the most common genetic cause of kidney failure. Prevalence estimates range from 3.96 per 10,000 in a study examining clinically-determined cases in the European Union(1) to 1 per 1000 in large cohorts with whole genome sequencing(2). The most common genetic variants that cause ADPKD are in PKD1 (77%) and PKD2 (15%), which encode polycystin-1 and polycystin-2, respectively(3). Milder cases of polycystic kidney disease (PKD) without family history are often observed in clinical practice and are not well-represented in ADPKD research cohorts. As studies of other Mendelian diseases have demonstrated, the population penetrance and phenotypic severity of ADPKD may be lower than those described in disease-specific cohorts, which tend to be overrepresented by patients with more severe presentations (4-6). An analysis of the Toronto Genetic Epidemiology of Polycystic Kidney Disease study has revealed that roughly one half of participants without family history of ADPKD do not have a detectable PKD1 or PKD2 variant(7). It is possible some of these unexplained cases may be due to variants in other genes (e.g., ALG9, GANAB, DNAJB11, HNF1B) (8-10). However, the penetrance and expressivity of variants in these atypical PKD genes remains largely unexplored.

Exome sequencing and next generation sequencing (NGS) allow for exploration of all the genetic variants in a population to better understand penetrance and expressivity for rare diseases. For a select group of genes where prior knowledge of genetic variants can lead to preventive clinical action, a genotype-based approach can be used to inform participants of their genetic findings(11). The American College of Medical Genetics (ACMG) has developed guidelines for identifying actionable genetic variants and reporting them back to providers and participants(12, 13). Despite recognition of high penetrance of pathogenic variants in PKD1 and PKD2, especially truncating PKD1 variants(14, 15), a primarily genotype-based approach for early ADPKD has not yet been implemented.
Early recognition of ADPKD may be important as an approved treatment for ADPKD exists\(^\text{16}\), and there are several ongoing clinical trials testing new therapeutic options\(^{17-19}\). Currently, diagnosis of ADPKD for most at-risk patients with family history of ADPKD is done by abdominal imaging\(^{20}\), and genetic testing is generally only performed when ADPKD is suspected in persons without family history or with equivocal kidney imaging findings, in the setting of related kidney donation, or for family planning purposes\(^{21}\).

NGS panels and exome sequencing services are increasingly available and affordable for kidney disease and other medical conditions. As a result, many incidental findings are expected to occur in individuals unaware of renal cystic disease. There is an urgent need to better understand the significance of protein-truncating variants (PTVs) in atypical cystic disease genes and clarify the clinical significance of missense variants in \(PKD1\) and \(PKD2\) to improve counseling and guide management decisions. However, genetic testing for \(PKD1\) can be complicated due to its large size, high guanine, and cytosine (GC) content, and the presence of 6 pseudogenes encompassing exons 1-33\(^{22}\).

In this study, we examine the utility of WES for deciphering monogenic causes of ADPKD in a large health-system based cohort including many patients without family history. We use a genotype-based approach to evaluate the prevalence of ADPKD and kidney and liver cyst diagnoses in PTV carriers of \(PKD1, PKD2, ALG8, ALG9, DNAJB11, GANAB, HNF1B, IFT40, LRP5, PKHD1, PRKCSH, SEC61B, \) and \(SEC63\). In parallel, we identified clinically-confirmed ADPKD cases in our largely unselected, health system-based research cohort gaining insight into true population prevalence and the genetic causes of ADPKD in these patients.

Results
Genotype-first analyses for pLOFs in PKD1 and PKD2

From exome sequencing data among 173,954 MyCode cohort participants, we identified 3,511 variants in PKD1. Allele frequencies for PKD1 variants ranges from 0.19 to 2.88x10^{-6} (1,415 variants in single patients). Among the variants, 1,919 are also in gnomAD exome sequencing and an additional 344 are in gnomAD genome sequencing. ClinVar interpretation is available for 460 of the variants we identified in our cohort. Using American College of Medical Genetics (ACMG) criteria as assessed by VarSome (www.varsome.com), PKD1 variants were classified as 58 benign, 667 likely benign (LB), 2,265 Variant of Uncertain Significance (VUS), 384 Likely Pathogenic (LP), and 137 as Pathogenic. For PKD2, we found 433 variants (AF range 0.36-2.88x10^{-6}) with 177 variants present in single patients. Among the PKD2 variants, 216 are in gnomAD exome sequencing and 47 are in gnomAD genome sequencing cohort. Variants were classified using ACMG criteria per Varsome as 7 benign, 39 LB, 339 VUS, 19 LP, and 29 pathogenic. ClinVar had pathogenic or LP with two-star review status classification for only 16 PKD1 and 7 PKD2 found variants in our cohort.

We identified 135 individuals with protein truncating variants (PTVs) in PKD1 or PKD2, which include early terminations, frameshift, and splice site variants, as well as large deletions (CNVs) that encompassed PKD1 or PKD2 (Figure 1A). We used two diagnostic approaches, first relying solely on “polycystic kidney” ICD codes in the EHR by using ICD9 codes 753.12 (Polycystic kidney, unspecified type), and 753.13 (Polycystic kidney, autosomal dominant) as well as ICD-10 codes Q61.2 (Polycystic kidney, adult type) and Q61.3 (Polycystic kidney, unspecified). In a second more in depth analysis, expert chart review by two nephrologists and reviews of available imaging by two radiologists, blinded to genotype, were performed to diagnose ADPKD. Comparing the ICD code-only analysis to chart review, we excluded 21 participants with ICD codes who lacked sufficient clinical or imaging information to make a determination about ADPKD of whom 11 were under the age of 40. Among these 21 patients, 16 had PKD1 PTVs, 4 PKD2 PTVs, and 1 had a PKD2 CNV.
ADPKD diagnosis among *PKD1* PTV and CNV

When using ICD code-alone diagnoses, 3/3 (100%) patients with large genomic deletions in *PKD1* had ADPKD and 63/83 (75.9%) with *PKD1* PTVs had ADPKD. Among 67 patients with chart and imaging review confirmed diagnosis and a *PKD1* PTV variant, 63 had ADPKD (94%). Therefore, 4 individuals with *PKD1* PTVs had imaging sufficient to rule out ADPKD and did not have a family history of ADPKD. Among the 66 with confirmed ADPKD and radiologist imaging review, 100% had typical ADPKD on imaging, with moderate-severe replacement of kidney tissue with cysts in a bilateral and diffuse distribution. Overall, from 70 patients with a *PKD1* PTV or CNV, 66 (94.3%) had radiologically confirmed ADPKD indicating approximately 6% false positive rate for ADPKD for *PKD1* truncating, or large genomic deletion variants detected from exome sequencing.

ADPKD diagnosis among *PKD2* PTV and CNV

For *PKD2*, 7 out of 10 patients with large genomics deletions, and 30/39 patients with PTVs had ADPKD ICD codes ([Figure 1A](https://doi.org/10.1101/2022.02.01.22269973)). After expert chart review, we excluded 5 individuals, 4 with *PKD2* PTVs and 1 with *PKD2* CNV, all of whom were under the age of 40 and lacked sufficient clinical or imaging information to make a determination about ADPKD. Furthermore, 5 *PKD2* PTV and 1 *PKD2* CNV deletion carriers that did not have ADPKD ICD codes were diagnosed as ADPKD upon chart and imaging review. Among patients with large genomic deletions in *PKD2*, 8 of 9 (88.9%) had ADPKD and among those with *PKD2* PTVs 35 of 35 (100%) had ADPKD. Overall, from 44 patients with a *PKD2* PTV or CNV, 43 (97.7%) had radiologically confirmed ADPKD indicating an almost perfect diagnostic rate for ADPKD among *PKD2* truncating and large genomic deletion variants carriers identified from exome sequencing. *PKD2* variant carriers showed a wider spectrum of ADPKD severity with 74% showing typical ADPKD, 17% with mild PKD, and 9% with atypical PKD with unilateral atrophy (see Methods for detailed description of each PKD type).
ADPKD diagnosis among carriers of known PKD1 and PKD2 missense variants

The Mayo clinic maintains PKDB (http://pkdb.pkdcure.org), a large repository of variants in PKD1 and PKD2 that is curated to include information such as variant type, clinical significance, per ACMG classification, and information on the number of pedigrees and publications associated with each variant. We examined the presence of rare missense variants in PKD1 or PKD2 in our cohort that had also been reported in the PKDB (Figure 1B). For those with in-frame deletion in PKD1, 6/6 (100%) had a diagnosis of ADPKD per ICD code and chart and imaging review. Among those with PKD1 missense variants designated as LP in PKDB, 22/98 (22.4%) had an ADPKD diagnosis. We found no in-frame deletions in PKD2 in our cohort, and the one participant with a PKD2 LP missense variant listed in PKDB, did not have an ADPKD diagnosis. After expert chart review, we removed 21 patients who had insufficient data to diagnose ADPKD. Among the remaining patients 24/77 (31.2%) with a PKD1 LP variant, 6/6 with in-frame deletions had ADPKD, and the one patient with a PKD2 LP variant had ADPKD.

Genotype-first analyses for ALG8, ALG9, DNAJB11, GANAB, HNF1B, IFT40, LRP5, PKHD, PRKCSH, SEC61B, SEC63

While ADPKD has traditionally been interpreted based on genetic variation in PKD1 and PKD2, several more genes have recently been associated with development of kidney and liver cysts, and possibly ADPKD (10, 23). We assessed exome sequencing data for PTVs and CNVs among the following genes: ALG8, ALG9, DNAJB11, GANAB, HNF1B, IFT40, LRP5, PKHD, PRKCSH, SEC61B, SEC63 and examined the association of PTVs in these genes with kidney/liver cysts. Based on our and others’ prior studies examining ALG9 and DNAJB11(8, 23), we anticipated that ADPKD and PLD diagnoses would be rare and therefore used a broader composite outcome of any kidney/liver cyst ICD code, which included ADPKD, cystic kidney disease, acquired renal cyst, and liver cyst diagnoses. There were 3,793 patients with rare PTVs in these 11 genes (243 ALG8, 30 ALG9, 11
DNAJB11, 22 GANAB, 7 HNF1B, 300 IFT40, 2187 LRP5, 754 PKHD1, 102 PRKCSH, 4 SEC61B, 44 SEC63). One ALG8 PTV carrier, 1 GANAB PTV carrier and 4 PKHD1 PTV carriers had ADPKD ICD diagnosis in the absence of a diagnostic PKD1 or PKD2 variant. Additionally, there were 61 CNV carriers in these genes (2 ALG8, 1 ALG9, 26 HNF1B, 21 IFT40, 2 LRP5, 3 PKHD1, 1 SEC61B, 6 SEC63). Table 1 shows data comparing prevalence of PKD diagnosis and any kidney/liver cyst diagnosis among PTV and CNV deletion carriers for these genes as well as PKD1 and PKD2. There were too few SEC61B PTV carriers for analysis. Most of the LRP5 PTV's are from a splice site variant in the last exon which may not cause loss of function. For this analysis we removed first and second-degree related individuals to avoid false positive. Having a PTV or CNV deletion in PKD1 or PKD2 was strongly associated with the PKD diagnosis as well as kidney and liver cystic phenotypes as expected and consistent with the detail from Figure 1. For PTV or CNV deletion in the other genes, GANAB, HNF1B and PKHD1 were significantly associated with PKD. PTV or CNV deletion in ALG9, ALG8, GANAB, HNF1B, and SEC63 were significantly associated with for the composite outcome of any kidney or liver cyst ICD diagnosis. Only two 17q12 deletion carriers (that encompasses HNF1B) and two PKHD1 CNV deletion carriers had ADPKD diagnoses in their EHR.

Overall, these data show that a genotype-first approach using high quality exome sequencing and well curated EHR to determine susceptibility to ADPKD is feasible with high positive predictive value. Our data from a large clinical cohort also show that PTV variants in other genes that have been associated with development of ADPKD, other than PKD1 and PKD2, are much less penetrant and associated with milder cystic phenotypes.

Prevalence and phenotypic landscape of PKD

Of the 173,954 individuals with WES data, there were a total of 303 participants with at least 1 ADPKD ICD code in their EHR. Closer inspection of the EHR showed that 42 of the 303 either did not have enough data or were negative for ADPKD, so it is not clear why they received ADPKD ICD
diagnoses (Figure 2A). We chart reviewed the remaining 261 patients and found 235 with ADPKD of some degree, with an additional 26 who had phenotypes more closely aligned with other kidney phenotypes (6 with suspected ARPKD, 2 with tuberous sclerosis, 2 with CAKUT), 4 who had only ADPKD family history but no personal history of ADPKD, and 10 who had kidney cysts, but not enough for an ADPKD diagnosis per expert review (Figure 2B). We broke down the 235 with ADPKD and sufficient data, into 3 groups: 196 Typical ADPKD, 23 atypical ADPKD, 16 mild-ADPKD (Figure 2A, see methods for description). Supplemental Table 1 provides specific information for the 16 patients in the other kidney diseases category, including, demographics, EHR data, genetic information and prevalence and pathogenicity assertion from previous cohorts or public data where available.

PKD1/2 PTVs and CNVs account for most of ADPKD cases

Of the 196 patients with typical ADPKD, 99 had PTVs or CNVs in **PKD1** or **PKD2**. Specifically, 69 had a **PKD1** PTV [large deletion, stop gain, frame shift, splices site variant], 2 had chromosomal deletions encompassing **PKD1**, 23 had a **PKD2** PTV, and 5 had large chromosomal deletions encompassing **PKD2** (Figure 3A). Using genetically determined relatedness data we built pedigrees enabling genotype-phenotype segregation analyses for cases who had relatives in the cohort. We performed pedigree analysis for most of the cases with typical ADPKD and a PTV/CNV for **PKD1** or **PKD2**. Figure 3B is an example of pedigree analysis for carriers of the protein truncating variant **PKD1_Glu1061Ter**, where the variant perfectly segregates with ADPKD diagnosis. Kidney CT scan images are shown for the 4 variant carriers (Figure 3C).

Identifying known missense **PKD1/PKD2** variants in typical ADPKD**

Utilizing PKDB, we identified carriers of **PKD1** and **PKD2** inframe deletion or missense variants classified as likely pathogenic (LP). We found 26 participants with a previously reported LP missense
or in-frame deletion in PKD1 (Figure 4A), and none for PKD2. Pedigree analysis of a family with the likely pathogenic PKD1_Arg3719Gln variant shows segregation with ADPKD diagnosis (Figure 4B). Polycystic kidneys are observed in both young and older carriers of PKD1_Arg3719Gln and polycystic liver disease can be seen in the older carrier (Figure 4C).

Using family and cohort data to classify VUS and novel missense variants

We identified 25 ADPKD patients who had PKD1 or PKD2 variants that were reported as VUS or likely benign in PKDB or were not reported in that database (Figure 5A). The list of these patients and their variants in shown in Supplemental Table 2. For 9 of these patients, we found sufficient clinical and genetic data, from EHR and other clinical genetic testing, that corroborated presence of ADPKD. The phenotype and additional genetic data strongly suggest these variants are likely pathogenic. For instance, we identified a carrier of PKD1_Ala2511Pro who had a diagnosis of ADPKD who had several family members in our electronic health records that were not part of the MyCode exome sequencing project (Figure 5B, C). Among the family members, 5 had a diagnosis of ADPKD, and 2 had prior clinical genetic testing identifying the same variant as the proband in the exome sequencing cohort.

We also found that several ADPKD patients had novel PKD1 and PKD2 variants, not reported in PKDB. We noticed that several of these patients carried the same variant (e.g., PKD1_Gly2034Val, PKD1_Asp3304Asn, PKD1_Ser3591Phe, PKD1_Cys51Tyr and PKD2_Arg320Leu), so we investigated all carriers of those variants for ADPKD. We identified 4 carriers of PKD1_Gly2034Val; 3 of whom had ADPKD (2 with ICD diagnosis, 1 on additional imaging review), and 1 had insufficient clinical information as she was less than 25 years of age. Pedigrees and abdominal imaging are shown for two of the PKD1_Gly2034Val patients (Figure 5D, E). We identified 11 carriers of PKD1_Asp3304Asn in 2 families; 7 had imaging data, of which 6 had ADPKD (4 had PKD ICD code in EHR, 2 on additional imaging review). Two pedigrees and associated
imaging data are shown (Figure 5 F, G). All 3 carriers of the PKD1_Ser3591Phe in two families had ADPKD, and none of the unaffected family members of these carriers had ADPKD (Figure 5 H, I).

Further detail for the rest of VUS, novel or LB from PKDB are in Supplemental Table 2. Of 2 unrelated individuals with the PKD1_Cys51Tyr variant, 1 had ADPKD and the other individual had congenital solitary kidney with multiple cysts. The two carriers of PKD2_Arg320Leu are unrelated and had no known relatives, so pedigrees analysis was not possible. Both PKD1_Cys51Tyr and PKD2_Arg320Leu are classified as VUS with minor pathogenic evidence per ACMG criteria in VarSome (https://doi.org/10.1093/bioinformatics/bty897). Our data suggest that these VUS need to be classified as likely pathogenic.

Atypical PKD genes in those diagnosed with ADPKD

Finally, 46 individuals with ADPKD did not have a rare variant in PKD1 or PKD2 (Figure 6A). We therefore searched for rare variants in the "atypical" ADPKD genes ALG8, ALG9, DNAJB11, GANAB, HNF1B, IFT40, LRP5, PKHD1, PRKCSH, SEC63, and SEC61B. We identified 9 patients with rare variants in any of these genes, of whom 4 had a missense VUS in ALG9, HNF1B, or PKHD1, one had a previously unreported GANAB variant and 4 had missense variants in IFT40 (Figure 6B). GANAB_Asp647Val segregates with ADPKD phenotype in one family and is present in an affected individual in another family with two unaffected non-carriers (Figure 6C, D). In addition to this GANAB_Asp647Val carrier with typical ADPKD, there were 7 other carriers of GANAB Aasp647Val, 4 had mild or atypical ADPKD, 1 had multiple hypodensities in kidneys and liver, 1 had bilateral kidney cysts before age 20, and 1 had no imaging available for review. CT images for 4 carriers of IFT40 missense variants are shown in Figure 6E. Whether variants in other atypical ADPKD genes identified in this group are the genetic cause of ADPKD remains undetermined.

Overall, among 235 patients with confirmed typical, atypical, and mild ADPKD, 69 (29.3%) had no identified candidate variant in the 12 cystic genes examined to explain their ADPKD diagnoses.
Mild and Atypical ADPKD

In addition to the 196 participants with typical ADPKD, we found 16 participants with mild ADPKD, and 23 with atypical ADPKD (Figure 7A). Definitions for mild and atypical ADPKD are based on specific clinical and imaging criteria (details provided in the methods). Breakdown of genetic variants among these patients is shown in Figure 7B. Four subjects with mild or atypical ADPKD had PTVs in PKD2, 1 had a LP variant in PKD1, 1 had a VUS variant in PKD1, 1 had the PKD1_Gly2034Val variant described in Figure 5, and 4 had unreported PKD1 variants. Three more carriers of the GANAB_Asp647Val were identified with mild or atypical ADPKD in two unrelated families (see Figure 6C, D). Out of 39 participants with mild or atypical ADPKD 18 (46%) did not have a candidate variant identified.

ARPKD, 17q12 syndrome, tuberous sclerosis, and CAKUT participants with ICD codes for PKD

Among the 6 patients with clinical phenotype consistent with ARPKD, there were 2 related patients who had a large deletion in PKHD1 along with PKHD1_Gln3407Ter, as expected with the recessive inheritance of ARPKD. One patient was heterozygous for a PKHD1 stop gain (Arg496Ter), 1 was heterozygous for a PKHD1 missense variant classified as pathogenic in ClinVar, and 2 had no protein-changing variants in the genes examined. Two patients had 17q12 syndrome, a large chromosomal deletion encompassing HNF1B, and exhibited the clinical phenotype renal cysts and diabetes syndrome (Supplemental Table 1). The 2 participants with a tuberous sclerosis clinical phenotype had TSC2 variants detected. Among the 3 participants with CAKUT, 1 had a large deletion in PKD2, 1 had 2 rare missense variants in FRAS1 and a rare missense variant in SALL1, and 1 had a pathogenic variant in PKHD1.

Discussion
Utilizing both a phenotype-based and genotype-based approach in a large, unselected patient population, we show that exome sequencing has high diagnostic accuracy for ADPKD. Our findings from the genotype-first approach show a high predictive value for exome sequencing for ADPKD in carriers of pLOFs (PTV/CNV deletions) in \textit{PKD2} and \textit{PKD1}. We see almost perfect diagnostic accuracy among \textit{PKD2} PTV/CNV deletion as well as \textit{PKD1} CNV deletion carriers, and only 6\% false positive among \textit{PKD1} PTV individuals. Since CLIA certified Sanger sequencing is almost always used in clinic prior to taking clinical action, the ~6\% false positive \textit{PKD1} rate can be easily excluded by sequencing. Therefore >95\% of those with PKD1 or PKD2 PTV or CNV identified in exome sequencing will receive a correct prediction from exome sequencing with significant clinical value.

The size of our cohort allowed us to examine atypical PKD genes and whether we can extract clinically valuable information from identifying PTVs among these genes. We find that carriers of atypical PKD genes have rare diagnoses of ADPKD but increased prevalence of a composite of any kidney/liver cyst diagnoses, reflecting the lower severity of disease caused by PTVs in these genes.

Interestingly, very few individuals who had missense variants in \textit{PKD1} or \textit{PKD2} previously described as likely pathogenic had ADPKD diagnoses, and therefore the potential for false positives exists among carriers of that class of variants. This discordance may be reflective of a lower penetrance among these types of variants. Alternatively, interpretation from older studies identifying these missense variants as the causal variant for ADPKD may be incorrect since those were likely reported from isolated cases with limited genetic data. Data from increasingly larger clinic cohorts, such as ours, will continue to address this discordance and help identify and verify causal \textit{PKD1} and \textit{PKD2} missense variants.

Our data clearly show that exome sequencing is a great starting point for population-based identification of the vast majority of ADPKD patients, many of whom may be undiagnosed or unaware of their susceptibility to developing ADPKD. A prior study found limited utility in exome sequencing \textit{PKD1}, showing only 50\% sensitivity due to issues with low read depth and sequencing quality in
exons 1-33, which are also present in PKD1P1-PKD1P6 pseudogenes (22). In our cohort, we had excellent read depth and sequencing quality throughout most of the PKD1 gene. Out of 58 PKD1 PTVs that we identified, only 2 variants were misassigned to a pseudogene (see supplemental Figure 1 A and B), for 1 variant our splice prediction didn’t agree with spliceAI (https://spliceailookup.broadinstitute.org/) and 2 variants had either poor sequencing quality or occurred in a DNA region with a string of Gs, which was difficult to interpret. Therefore 53/58 variants were correctly assigned to PKD1. Therefore, good chromosome capture and high-quality deep sequencing, augmented with manual sequence curation as needed for some variants, maximizes the utility of exome sequencing in identifying causal PKD1 variants.

We also show that the phenotypic spectrum of PKD1 and PKD2 may be wider than previously appreciated as the prevalence of ADPKD was very low for those with likely hypomorphic and likely pathogenic missense variants in PKD1 and PKD2. This was also noted in a study examining the Exome Aggregation Consortium (ExAC), where there was 6.9-fold higher than expected rate of previously reported disease-causing variants in PKD1 and PKD2 (25). Thus, additional work is needed to assess pathogenicity of many missense variants in PKD1 and PKD2.

In our cohort of 196 typical ADPKD participants, 118 (60.2%) of participants had self-reported family history of ADPKD and 78 (39.8%) had no self-reported family history. In the positive family history group, 110/118 (93.2%) had a variant of some kind in PKD1 or PKD2, with 96 being CNV/PTV or reported LP variants and 7 that co-segregated within families with the ADPKD phenotype. One patient had GANAB_As647Val that segregated with typical ADPKD. Only 40/78 (51.2%) with no family history had a PKD1/PKD2 variant. Among these 40 patients, 29 had a CNV/PTV or reported LP variants and 1 had a variant that co-segregated in a family with ADPKD. The lower diagnostic yield for PKD with no family history was similar to what was seen in an analysis of Toronto Genetic Epidemiology Study of Polycystic Kidney Disease (26).
In addition, we demonstrate that several, but not all, putative atypical ADPKD/PLD genes are associated with increased risk of cystic kidney/liver disease. The overall prevalence of diagnosed ADPKD was very low, and zero for many atypical ADPKD/PLD genes. In analyses using expanded kidney or liver cystic ICD codes, we found that \textit{ALG8, ALG9, DNAJB11, GANAB, and SEC63} carriers were at increased risk, compared to non-carriers. However, neither \textit{LRP5} nor \textit{PRKCSH} were associated with increased risk of kidney/liver cysts. The implications of mild cystic kidney disease are unclear at this time and our study was not designed to thoroughly describe prevalence of cystic kidney and liver disease that was not deemed severe enough to justify an ICD diagnosis by a clinician. For example, while no patients with an \textit{ALG9} PTV had a PKD ICD code, we showed that 88\% of patients above the age of 50 had at least 4 cysts on imaging (8). Future studies are needed to better understand the significance of mild cystic disease and whether cystic disease caused by atypical genes are responsive to therapies to slow ADPKD progression such as vasopressin receptor 2 antagonism (16).

Most individuals with ADPKD have not undergone genetic testing in real-world clinical practice. However, new clinical genetic testing panels are becoming more common place in nephrology practice, many of them using exome capture technology to report exonic variants in tens or hundreds of genes. Our data demonstrate that most of these approaches, as well as sequencing of the entire exome in a clinic setting like ours, will have good positive predictive value to identify causal variants in \textit{PKD1} and \textit{PKD2}, if followed by additional bioinformatic steps and Sanger sequencing in some cases. In addition to an increase in exome sequencing services for medical genetic testing and research purposes, there has been an increase in direct-to-consumer genetic testing with some including exome sequencing in their packages and with some offering return of results for certain actionable conditions (27). Careful curation of any of these types of exome sequencing data should facilitate early identification of at-risk individual for ADPKD.
Acknowledgments: This work was supported by NIDDK106515 to A.C and GM111913 to T.M. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Data Availability: The data supporting the findings of this study are available within the article and its Supplementary Data files. Additional information for reproducing the results described in the article is available upon reasonable request and subject to a data use agreement.

Competing Interest: Authors declare no conflict of interest.

Ethics Declaration: This research was approved by the Geisinger Clinic Institutional Review Board and included 173,954 participants in the MyCode Health Initiative who have exome sequencing data obtained as part of the Geisinger-Regeneron DiscovEHR collaboration. All participants provided written informed consent, and all experiments were performed in accordance with relevant guidelines and regulations. The authors did not have access to any identifying information for the participants. The human phenotype and genotype data in this study were all deidentified by a “data broker” who was not involved in the study before any analysis was performed. De-identified clinical data was obtained from electronic health records (EHR).
References

Methods

Study Population

The Geisinger Institutional Review Board approved this study. Informed consent was waived as participants were previously consented in the MyCode™ Community Health Initiative as part of the Geisinger-Regeneron DiscovEHR collaboration(28). For this study we included 173,954 participants from the MyCode cohort who had exome sequencing and health record data available.

Whole exome sequencing

Exome sequencing was performed in collaboration with Regeneron Genetics Center as previously described (28). A modified version of the xGEN probe from Integrated DNA Technologies (IDT) was used for target sequence capture (29). Sequencing was performed by paired end 75bp reads on either an Illumina HiSeq2500 or NovaSeq. Coverage depth was sufficient to provide more than 90% coverage of the targeted bases in for 99% of samples. Alignments and variant calling were based on GRCh38 human genome reference sequence. Copy number variants for PKD1, PKD2, and atypical ADPKD genes were estimated using lattice-aligned mixture models (CLAMMS) software(30).

Nonsense or PTVs (protein truncating variants) are defined in this study as variants that cause a start-loss, frameshift, or early termination/stop-gain of the encoded protein. Variants in PKD1, PKD2, ALG8, ALG9, DNAJB11, GANAB, HNF1B, IFT40, LRP5, PKHD1, and SEC61 were annotated using the Ensembl Variant Effect Predictor with Ensembl 90 definitions (31). We included PTV variants that had GQ score >20, AD_ALT>3, AD_ALT/AD_REF ≥ 0.5, and MAF<0.01 in the MyCode population. Missense variants in PKD1 and PKD2 were included using the same criteria, but only if previously reported in the PKDB as Likely Pathogenic, or Likely Hypomorphic. We cross-referenced all variants with ClinVar interpretation and stars rating system (32). PKD1 and PKD2 were additionally cross-referenced with the PKDB (33) as well as Varsome (https://doi.org/10.1093/bioinformatics/bty897), a
database that considers case-control, computational, functional, and family segregation data to provide ACMG-guided classification of variants’ pathogenicity(32). For patients with clinical diagnosis of ADPKD, we also cataloged any accompanying rare (MAF <0.001) missense variants in \textit{PKD1} and \textit{PKD2} and rare pLOF or missense variants in 11 other genes that have been described in patients with cystic kidney disease (\textit{ALG8, ALG9, DNAJB11, GANAB, HNF1B, IFT40, LRP5, PKHD1, PRKCSH, SEC61B, SEC63}).

Phenotyping using EHR

We used data from the electronic health record (EHR) to determine whether participants had been diagnosed with PKD using 9th and 10th International Classification Diseases (ICD) diagnosis codes (Q61.2, Q61.3, 753.13, 753.12). Additional diagnoses examined included other cystic kidney diseases (Q61.5, Q61.8, Q61.9, 753.10), acquired kidney cyst (N28.1, 593.2), congenital kidney cyst (Q61.00, Q61.01, Q61.02, 753.11, 753.19), or liver cystic disease (Q44.6, 573.8); a composite outcome of “any kidney/liver cyst diagnosis” included all the ICD codes.

Chart Reviews

To enhance genotype-phenotype analyses, additional chart review was performed on 1) patients with ICD diagnosis codes for PKD; 2) patients who had \textit{PKD1} or \textit{PKD2} variants that were PTVs, or missense variants previously described as LP or likely hypomorphic in PKDB; 3) family members of patients with chart-confirmed PKD who also had available exome sequencing data. Chart review including review of imaging was done by at least 1 nephrologist with focus on kidney and liver imaging, nephrolithiasis, cerebral aneurysms, history of dialysis, transplant, family history of ADPKD or cerebral aneurysms, and clinical genetic testing. Additionally, blinded review of imaging was done by at least 1 radiologist with additional review by a senior radiologist with expertise in abdominal imaging for questionable cases, and cases were discussed until consensus was achieved.
Participants who had a PKD ICD code but whose clinical diagnosis/phenotype was more consistent with autosomal recessive polycystic kidney disease (ARPKD), tuberous sclerosis complex (TSC), or congenital abnormalities of kidney and urinary tract (CAKUT) were examined separately from the ADPKD cohort.

Defining typical, atypical, and mild ADPKD

Imaging phenotypes were classified per the Mayo clinic imaging classification. Most cases were assigned to Class 1: typical ADPKD (bilateral and diffuse distribution, with mild, moderate, or severe replacement of kidney tissue by cysts, where all cysts contribute similarly to total kidney volume) or Class 2 atypical ADPKD (34). As there was variability in the type of imaging obtained in this clinical cohort, total kidney volume could not be determined for all patients; Class 1 ADPKD was classified as moderate/severe or mild by 2 radiologists. Individuals who only had imaging after nephrectomy or only had imaging after ESKD was reached were excluded from image phenotyping. If patients lacked imaging that was available for radiologist review, we considered them to have typical ADPKD if they had clinical history consistent with typical ADPKD (e.g. ESKD due to ADPKD, imaging report and family history consistent with Ravine-Pei criteria) (20, 35, 36).

Statistical Analyses

Genotype-based approach. First, we examined the prevalence of participants with rare PTV variants (MAF<0.01), or large deletions detected by CNV analysis in PKD1, PKD2, and any of the 11 other cystic disease-associated genes (ALG8, ALG9, DNAJB11, GANAB, HNF1B, IFT40, LRP6, PKHD1, PRKCSH, SEC61B, SEC63B). We also examined the proportion of participants with rare missense mutations in PKD1 or PKD2 listed in the PKDB listed as likely pathogenic, or likely hypomorphic. We then evaluated whether carriers of PTVs or large deletions in each of the 11 other cystic disease-associated genes were at increased risk of ICD-diagnosed PKD, liver cystic disease, or any
kidney/liver cystic disease. Logistic regression was used to assess the association of PTVs with ADPKD determined by ICD code. The severely imbalanced nature of the rare genotypic data may result in bias in the maximum likelihood estimations. Additionally, the strong predictive power of variables such as the truncation of PKD1 or PKD2 for diagnosis of ADPKD could result in the problem of separation. For this reason, Firth logistic regression was used which reduces the bias by penalizing the likelihood function by Jeffrey’s invariant prior. The regression was adjusted for age, sex, year of first outpatient encounter at Geisinger, and genetically-determined ancestry. First and second degree relatives were removed in this analysis to avoid false positives due to presence of related individuals.

For each gene, the logistic regression coefficient represents the expected change in log-odds of the outcome occurring if a variant is present in the gene. A larger coefficient may be interpreted as a larger increase in the relative risk of the outcome.

Phenotype-based approach. After chart review was performed to confirm PKD on individuals with at least one code for PKD in the EHR, we examined exome sequencing data for PTVs and CNV deletions in PKD1/PKD2, reported missense variants in the PKDB, rare and novel PKD1/PKD2 missense/inframe deletion variants, and rare variants in the 11 other putative cystic genes. Previously reported variants were then grouped based on the PKDB classifications. After identifying first- and second-degree relatives of each participant with ADPKD using PRIMUS(37) and EHR-documented family history, we reconstructed pedigrees of patients with ADPKD. We then reviewed charts of family members of ADPKD patients to evaluate evidence for co-segregation of the variants in question with disease.
Figure 1. Genotype first approach- carriers of PKD1 or PKD2 A) CNV/PTVs or B) Inframe deletions/missense variants classified as likely pathogenic in PKDB. 173,954 participants with whole exome sequencing were evaluated for copy number variants (CNVs) or protein truncating variants (PTVs) in PKD1 and PKD2. Electronic health records (EHR) of carriers of these variants were examined for ADPKD ICD codes (Q61.2, Q61.3, 751.12, 751.13), and chart reviewed to confirm presence of ADPKD.

A).

PKD1/PKD2: Genome-based approach
173,954 patients with exome sequencing

<table>
<thead>
<tr>
<th>Variant Type</th>
<th>PKD1</th>
<th>PKD2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copy Number Deletions (CNVs)</td>
<td></td>
<td>3/3 100%</td>
</tr>
<tr>
<td>Protein Truncating Variants (PTVs)</td>
<td>83 75.9%</td>
<td>39 76.9%</td>
</tr>
<tr>
<td>Protein Truncating Variants (PTVs)</td>
<td></td>
<td>10 70%</td>
</tr>
<tr>
<td>Missense Variants</td>
<td></td>
<td>6/6 100%</td>
</tr>
<tr>
<td>Inframe Deletions/Insertions</td>
<td></td>
<td>3/3 100%</td>
</tr>
<tr>
<td>Not enough data (n=16)</td>
<td></td>
<td>63/67 94%</td>
</tr>
</tbody>
</table>

B).

PKD1/PKD2: Genome-based approach
173,954 patients with exome sequencing

<table>
<thead>
<tr>
<th>Variant Type</th>
<th>PKD1</th>
<th>PKD2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copy Number Deletions (CNVs)</td>
<td></td>
<td>6/6 100%</td>
</tr>
<tr>
<td>Protein Truncating Variants (PTVs)</td>
<td>22 30.8%</td>
<td>1 0%</td>
</tr>
<tr>
<td>Missense Variants</td>
<td></td>
<td>1/1 100%</td>
</tr>
<tr>
<td>Not enough data (n=21)</td>
<td></td>
<td>24/77 31.2%</td>
</tr>
</tbody>
</table>
Table 1. Risk of ADPKD or kidney/liver cyst ICD codes among those with PTV or CNVs in atypical APDPKD genes ALG8, ALG9, GANAB, HNF1B, IFT40, and SEC63 are increased.

Firth’s logistic regression was used to assess the association of PTV and CNVs with ADPKD and kidney/liver cyst determined by ICD code. The regression was adjusted for age, sex, year of first outpatient encounter at clinic, and genetically-determined ancestry. For these analysis, first- or second-degree relatives in the cohort were removed. For each gene, the logistic regression coefficient represents the expected change in log-odds of the outcome occurring if a PTV is present in the gene. A larger coefficient may be interpreted as a larger increase in the relative risk of the outcome (see statistical methods for regression details).

<table>
<thead>
<tr>
<th>Gene</th>
<th>PKD Diagnosis code</th>
<th>Any Kidney or Liver cyst</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>Co-eff (95%CI)</td>
</tr>
<tr>
<td>No PTV in Cystic Genes (N=42,485)</td>
<td>34</td>
<td>Ref</td>
</tr>
<tr>
<td>ALG8 (n=159)</td>
<td>0</td>
<td>1.21 (-3.66, 3.25)</td>
</tr>
<tr>
<td>ALG9 (n=25)</td>
<td>0</td>
<td>3.19 (-1.67, 5.23)</td>
</tr>
<tr>
<td>DNABJ11 (n=7)</td>
<td>0</td>
<td>4.5 (-0.39, 6.69)</td>
</tr>
<tr>
<td>GANAB (n=14)</td>
<td>1</td>
<td>4.83 (2.59, 6.32)</td>
</tr>
<tr>
<td>HNF1B (n=16)</td>
<td>1</td>
<td>4.79 (2.52, 6.63)</td>
</tr>
<tr>
<td>IFT140 (n=205)</td>
<td>5</td>
<td>3.49 (2.47, 4.33)</td>
</tr>
<tr>
<td>LRP5 (n=1414)</td>
<td>0</td>
<td>-0.82 (-1.65, 1.13)</td>
</tr>
<tr>
<td>PKD1 (n=54)</td>
<td>42</td>
<td>8.39 (7.64, 9.23)</td>
</tr>
<tr>
<td>PKD2 (n=24)</td>
<td>17</td>
<td>8.42 (7.41, 9.55)</td>
</tr>
<tr>
<td>PKHD1 (n=522)</td>
<td>2</td>
<td>1.8 (0.21, 2.89)</td>
</tr>
<tr>
<td>PRKCSH (n=74)</td>
<td>0</td>
<td>2.23 (-2.62, 4.2)</td>
</tr>
<tr>
<td>SEC63 (n=81)</td>
<td>0</td>
<td>2.1 (-2.74, 4.07)</td>
</tr>
</tbody>
</table>
A total of 173,954 participants with whole exome sequencing were evaluated for ADPKD ICD codes (Q61.2, Q61.3, 751.12, 751.13), followed by chart review of 303 participants. 196 participants had typical ADPKD, 16 had mild ADPD, 23 had atypical-ADPKD, 26 had other kidney diseases and 42 did not have enough data to diagnose any kidney disease. Of the 26 people who had other kidney diseases, 6 had ARPKD, 2 had TSC, 2 had CAKUT, 2 had 17q12 syndrome, and 4 had a family history of ADPKD.
Figure 3. Copy Number Variants (CNVs) or Protein Truncating Variants (PTVs) in PKD1/PKD2. A) 99 out of 196 individuals with ADPKD were carriers of PTVs or CNVs of PKD1 or PKD2. Number of each type of CNV/PTV in PKD1/PKD2 are shown in the bar graph. C) Example pedigree of family with PTV PKD1_Glu1061Ter carriers. D) Example kidney CT scan imaging for participant ADPKD130, ADPKD144, ADPKD155833 and ADPKD5.
Figure 4. PKD1/PKD2 reported as Likely Pathogenic (LP) in PKDB. A) 26 out of 196 individuals with ADPKD were found to be carriers of LP variants of PKD1 or PKD2 with number of inframe insertion/deletions and missense variants classified as likely pathogenic by PKDB. B) Example pedigree of family with LP variant PKD1_Arg3719Gln carriers. C) Example kidney CT imaging for participant ADPKD339 and ADPKD100.
Figure 5. Carriers of variants in *PKD1/PKD2* that are novel or indeterminate or likely benign in the PKDB. A) 26 out of 196 individuals with ADPKD were found to be carriers of variants in *PKD1* or *PKD2* that are classified in PKDB as indeterminate or likely benign or not present in PKDB and therefore “novel”. B) Example pedigree of carriers of variant *PKD1 Ala2511Pro*, which had been listed in the PKDB as “likely benign”. The proband has a two first degree relatives with ADPKD who underwent cascade testing and were found to have the Ala2511Pro as well, suggesting this variant should be reclassified. C) Kidney CT imaging of ADPKD331. D, E) Pedigrees and imaging of carriers of variant *PKD1 Gly2034Val* missense variant. Three out of four carriers have ADPKD, while the one without current evidence of ADPKD is <25 years old (*). Non-carrier relatives in either family do not have an ADPKD phenotype. F, G) Pedigree and available CT imaging for carriers of *PKD1 Asp3304Asn*. In total, 6/10 have imaging evidence of ADPKD, 3 are shown. Of the 4 carriers with no evidence, 3 do not have abdominal imaging and one is under age 40. H, I) Pedigree and imaging for carriers of *PKD1Ser3591Phe*, of whom 3 of 3 have ADPKD. While non-carrier family members do not have ADPKD.
Figure 5, Continued:

F) PKD1_Asp3304Asn.

G) ADPKD3, Age 60-65 ADPKD207, Age 60-65 ADPKD336, Age 70-75

H) PKD1_Ser3591Phe

I) ADPKD118, Age 40-45 ADPKD198, Age 40-45
Figure 6. Carriers of variants in genes other than PKD1/PKD2. A) From the initial 247 participants, 82 did not have any rare variants detected in PKD1 or PKD2. WES was evaluated for any variant in ALG8, ALG9, DNAJB11, GANAB, HNF1b, IFT40 LRP5, PKHD1, PRKCSH, SEC63, SEC61b. B) Four patients have a previously unreported GANAB_Asp647Val variant, 2 participants have a PTV and 6 more have a missense variant in one of these genes. Whether these variants are the genetic cause of ADPKD is undetermined. Additionally, 69 people (27.8%) have no identified candidate variant to explain their ADPKD. C) Pedigrees of carriers of GANAB_Asp647Val. Within two families with at least one carrier of GANAB_Asp647Val, only those carriers have ADPKD. In total 5/7 carriers of GANAB_Asp647Val have evidence of ADPKD (though may not have an ICD code in their EHR), 1 without imaging and 1 multiple hypodensities in kidneys and liver, that don’t quite qualify as ADPKD. D) CT Imaging from participants with GANAB_Asp647Val. E) CT Imaging from participants with IFT140 variants.
Figure 6. continued

E) ADPKD136869
 Age 50-55
 IFT140 Trp653Ter
 1959 G/A

ADPKD283
 Age 80-85
 IFT140 Trp459Ter
 1377 G/A

ADPKD83
 Age 55-60
 IFT140 Arg1404Gln
 4211G/A

ADPKD15
 Age 55-60
 IFT140 Met444Val
 1330 A/G
Figure 7. Individuals with atypical or mild forms of ADPKD are much less likely to have a potential variant identified as a contributor to their ADPKD.