| 1  | Antimicrobial susceptibility and risk factors for resistance among <i>Escherichia coli</i> isolated                            |
|----|--------------------------------------------------------------------------------------------------------------------------------|
| 2  | from canine specimens submitted to a diagnostic laboratory in Indiana, 2010-2019                                               |
| 3  |                                                                                                                                |
| 4  | Short title: AMR in <i>E. coli</i> isolated from specimens collected from dogs                                                 |
| 5  |                                                                                                                                |
| 6  | John E. Ekakoro <sup>1</sup> , G. Kenitra Hendrix <sup>2</sup> , Lynn F. Guptill <sup>3</sup> , and Audrey Ruple <sup>4*</sup> |
| 7  | <sup>1</sup> Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell                                |
| 8  | University, Ithaca, NY, United States of America.                                                                              |
| 9  | <sup>2</sup> Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University,                        |
| 10 | West Lafayette, IN, United States of America.                                                                                  |
| 11 | <sup>3</sup> Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue                                |
| 12 | University, West Lafayette, IN, United States of America.                                                                      |
| 13 | <sup>4</sup> Department of Population Health Sciences, Virginia-Maryland College of Veterinary Medicine,                       |
| 14 | Virginia Tech, Blacksburg, VA, United States of America.                                                                       |
| 15 | *Corresponding author: aruple@vt.edu                                                                                           |
| 16 |                                                                                                                                |
| 17 | Key words                                                                                                                      |
| 18 | Antimicrobial resistance, Escherichia coli, dogs, multivariable logistic regression.                                           |
| 19 |                                                                                                                                |
| 20 |                                                                                                                                |

# 21 Abstract

22 Escherichia coli (E. coli) is the most common Gram-negative pathogen isolated in human 23 infections. Antimicrobial resistant (AMR) E. coli originating from dogs may directly or 24 indirectly cause disease in humans. The objective of this study was to calculate the proportion of antimicrobial susceptible E. coli isolated from canine specimens submitted to the Indiana Animal 25 26 Disease Diagnostic Laboratory and to identify temporal patterns of susceptibility among these isolates. Susceptibility data of 2,738 E. coli isolates from dogs from 2010 through 2019 were 27 28 used in this study. Proportions of isolates susceptible to the various antimicrobials were 29 calculated using SAS statistical software and the Cochran-Armitage trend test was used to investigate the temporal trends in susceptibility. A multivariable binary logistic regression model 30 was built to investigate the association between host factors and AMR. Overall, 553/2,738 31 (20.2%) of the isolates were susceptible to 17 of the 27 antimicrobials examined. Of the 2,638 32 isolates examined for amikacin susceptibility, 2,706 (97.5%) were susceptible, 2,657/2,673 33 (99.4%) isolates were susceptible to imipenem, and 2,099/2,670 (78.6%) were susceptible to 34 marbofloxacin. A significant decreasing trend in susceptibility was observed for amoxicillin-35 clavulanic acid (P<0.0001), ampicillin (P<0.0001), Cefazolin (P<0.0001), ceftazidime 36 37 (P=0.0067), chloramphenicol (P<0.0001), and orbifloxacin (P=0.008). The overall percentage of AMR isolates (isolates not susceptible to at least one antimicrobial) was 61.7% (1,690/2,738) 38 39 and 29.3 % (801/2,738) of isolates were multidrug resistant. Multivariable regression analyses showed significant associations between AMR and age (P=0.0091), breed (P=0.0008), and 40 sample isolation site/source (P < 0.0001). The decreasing trend in the proportion of isolates 41 susceptible to several beta-lactam antimicrobials suggests that resistance of Escherichia coli in 42

dogs to these antimicrobials could be increasing in Indiana. The decreasing trend in susceptibilityto these drugs could be due to selection pressure from antimicrobial use.

45

# 46 Introduction

47 Escherichia coli, a member of the ESBL-producing Enterobacteriaceae, is the most 48 common Gram-negative pathogen isolated in human clinical infections, and antimicrobial 49 resistant (AMR) E. coli pose a threat to both human and animal health [1]. Previous studies have 50 reported isolation of transmissible AMR E. coli in dogs [2]. E. coli is the most common cause of urinary tract infections in humans and dogs and sharing of E. coli strains between dogs and 51 52 humans can occur [3]. The CDC reported that an estimated 197,400 cases of and 9,100 deaths 53 occured due to ESBL-Enterobacteriaceae infections among hospitalized patients in 2017 in the US [4]. AMR E. coli originating from dogs may directly or indirectly cause disease in humans 54 [5]. 55

However, we do not know the total number of cases in which AMR E. coli cause disease 56 or death in dogs in the US. Without this knowledge, we cannot fully understand the role dogs 57 may play in spreading AMR E. coli infections to humans. In addition, understanding the patterns 58 of antimicrobial susceptibility of bacterial isolates identified from dogs is a critical step in 59 antimicrobial stewardship and in the containment of AMR within the One Health framework. 60 The objectives of this study were to: 1) calculate the proportion of antimicrobial susceptible E. 61 coli isolates identified in canine specimens submitted to the Indiana Animal Disease Diagnostic 62 63 Laboratory (ADDL) from January 1, 2010, through December 1, 2019; 2) identify temporal trends in susceptibility among these isolates to individual antimicrobials tested; and 3) to identify 64

the temporal patterns and host risk factors for AMR and multidrug resistance (MDR) amongthese isolates.

67

# 68 Materials and Methods

### 69 Source of data and ethical approval

70 The study was exempted from oversight by the Purdue University Institutional Animal Care and Use Committee (IACUC). We used secondary data obtained from the Indiana ADDL 71 72 and informed consent was not required. No field studies or experiments were conducted in this 73 study, and the study did not directly involve use of animals and posed no risk to clients (animal owners). Data from E. coli isolates phenotypically assessed for AMR from January 1, 2010, 74 through December 31, 2019, were utilized. The variables extracted from the dataset included: the 75 age of the dog, breed, sex, geographic location (localized to zip code) of its home, and host 76 77 source (anatomic location) of isolation of the pathogen.

The antimicrobial susceptibility test (AST) results used in this analysis were obtained 78 79 using a dilution-based method that yielded quantitative data (minimum inhibitory concentration) 80 and the isolates were categorized as susceptible (S), intermediate (I), or resistant (R) based upon Clinical and Laboratory Standards Institute (CLSI) breakpoints. The susceptibility testing was 81 performed for 35 drugs: amikacin, amoxicillin, ampicillin, azithromycin, cefazolin, cefovecin, 82 cefoxitin, cefpodoxime, ceftazidime, ceftiofur, chloramphenicol, chlortetracycline, 83 clarithromycin, clindamycin, danofloxacin, doxycycline, enrofloxacin, erythromycin, florfenicol, 84 85 gentamicin, imipenem, marbofloxacin, neomycin, oxacillin, oxytetracycline, penicillin, rifampin, spectinomycin, sulfadimethoxine, tetracycline, tiamulin, ticarcillin, ticarcillin-clavulanate, 86

tilmicosin, trimethoprim, tulathromycin, and tylosin. Drugs with complete susceptibility data or
with more than 500 isolates tested were considered in these analyses.

89 Overall, 27 antimicrobials from 10 antimicrobial classes were included in the final 90 analyses. The antimicrobial classification conformed with the classification described by Riviere and Papich [6] and the 10 classes included aminoglycosides, the penicillins, cephalosporins and 91 92 cephamycins, carbapenems, amphenicols, fluoroquinolones, macrolides, lincosamides, tetracyclines, and antifolate. All 10 classes belonged to either critically important antimicrobial 93 94 classes for human medicine (e.g. aminoglycosides, carbapenems, penicillins) or highly important 95 antimicrobials (e.g. amphenicols, antifolate) as classified by the World Health Organization 96 (WHO) [7]. For AMR and MDR determination, drugs known to exhibit intrinsic resistance phenotypes in Enterobacteriaceae [8] (e.g. penicillin, oxacillin, clindamycin, and erythromycin) 97 were excluded. 98

99 Data and statistical analysis

Data cleaning and preparation was performed in Microsoft Excel. The data were assessed 100 for completeness, duplicates were removed, and only complete records were included in the 101 102 analyses. Geographic origins of the samples located to zip code were categorized at the county and state spatial scales. The state spatial scale categories were further grouped into within 103 Indiana, out-of-state, and unknown (for those where no geographic origin was reported). The sex 104 105 of the dog was categorized as male, female, or intersex regardless of neuter status. Age was categorized into seven age groups: less than 1 year, 1 to 3 years, over 3 to 6 years, over 6 to 8 106 107 years, over 8 to 10 years, over 10 to 12 years, and greater than 12 years of age as described 108 previously [9]. We removed one case from the age category due to an implausible age designation of 95 years. 109

Dog breeds were grouped based on the American Kennel Club (AKC) breed group 110 classification as described by Conner and colleagues [10]. However, three breeds (English 111 shepherd, Jack Russel terrier, and Pitbull) that were not listed on the AKC grouping system were 112 classified based on the United Kennel Club (UKC) grouping [11]. Dogs identified in the dataset 113 as mixed breed were treated as such in the final grouping. Two breeds (goldendoodle and 114 115 cockapoo) that were not yet recognized by any major kennel club were included in the category mixed. If an animal was identified using a non-specific breed name such as poodle, or schnauzer, 116 117 they were categorized as unknown breed. If breed, sex, or age of the dog was not reported and other data was otherwise complete, it was categorized as "unknown" for the specific category. 118 The anatomic location or specimen source was categorized as: abdominal cavity/fluid, ear 119 120 and ocular, feces, respiratory tract, skin, urine and bladder, uterus, vagina and vulva, wounds, and "all others." The "all others" contained specimen sources with very small counts or those 121 with non-specific identities such as fluid, swabs, tissue etc. All AST results reported as "NI" (no 122 interpretation) were excluded from the analysis. A more conservative approach for categorization 123 of all AST data reported as susceptible, intermediate, or resistant was adopted for this study as 124 previously suggested by Sweeney and others [12] and Magiorakos and others [13]. Briefly, the 125 AST data were grouped into two categories "susceptible" and "not susceptible." The "not 126 susceptible" category included the resistant and/or intermediately susceptible isolates. Isolates 127 128 that were not susceptible to at least one antimicrobial drug were considered to be AMR isolates [10] and isolates that were not susceptible to at least one antimicrobial drug in at least three 129 antimicrobial classes were considered to be MDR [12]. The CLSI guidelines were used in the 130 analysis of the AST results [14]. 131

# **132 Descriptive analyses**

133 Statistical analyses were performed in a SAS commercial statistical software.

Frequencies and proportions were used to summarize the data. The Cochran-Armitage trend testwas used to investigate the temporal trends in the data.

136 L

# Univariable and multivariable analysis

Isolates from intersex dogs and from dogs belonging to the foundation stock service 137 breed group were excluded from the univariable and multivariable analyses due to small counts. 138 Univariable binary logistic regression was used to investigate the association between 139 geographic origin of sample and AMR. A further analysis of the associations between host 140 factors (age, sex, and breed of the dog, specimen source/type and AMR/MDR) were conducted 141 only for samples with a known in-state address. Variables with a *p*-value  $\leq 0.15$  in the 142 143 univariable analysis were considered for inclusion in the multivariable model building. A multivariable binary logistic regression model was built to investigate the association between 144 host factors and AMR. The backward elimination procedure was used to build the multivariable 145 model and only statistically significant predictors ( $P \le 0.05$ ) were retained in the final main 146 effects multivariable model. In the final model, two-way interactions between age and breed 147 were assessed based on biological plausibility and standard multiple pairwise comparisons were 148 obtained using the SAS "LSMEANS" statement. The model fit was assessed using The Hosmer 149 and Lemeshow Goodness-of-Fit Test. Cluster analysis to discern the spatial patterns of 150 AMR/MDR was deemed untenable due to small sample sizes in the different counties in Indiana. 151

152 **Results** 

# 153 Sample characteristics

| 154 | A total of 2,738 E. coli isolates were included in the general analysis of | these data. Of |
|-----|----------------------------------------------------------------------------|----------------|
|     |                                                                            |                |

- these, 1,641 (59.9%) were isolated from samples obtained from female dogs, 881 (32.2%) from
- male dogs, three (0.1%) were from intersex dogs, and 190 (7%) samples were from dogs that did
- not have sex identified. Most of the samples (n=2,058; 75.2%) were identified using an in-state
- zip code while 275 (10%) were identified as being from out-of-state samples; 405 (14.8%)
- samples had no geographic origin reported. Out-of-state samples came from 18 states: Illinois
- 160 (n=175), Michigan (n=23), Ohio (n=23), Maryland (n=10), Tennessee (n=9), Missouri (n=5),
- 161 Georgia (n=5), West Virginia (n=5), California (n=4), Kentucky (n=4), Florida (n=3), Texas
- 162 (n=2), Pennsylvania (n=2), Virginia (n=1), Wisconsin (n=1), Nebraska (n=1), Alabama (n=1),
- and Arkansas (n=1) (Table 1).
- 164 **Table 1**: Characteristics of all *Escherichia coli* isolates tested for antimicrobial susceptibility at
- the Indiana Animal Disease Diagnostic Laboratory, from January 2010 to December 2019.

| Sample characteristics      | Number (%) of isolates |
|-----------------------------|------------------------|
| Geographic origin of sample | N=2,738                |
| Indiana                     | 2,058 (75.2)           |
| Out-of-state                | 275 (10)               |
| Location not recorded       | 405 (14.8)             |
| Sex                         | N = 2,738              |
| Female                      | 1,641 (59.9)           |
| Male                        | 881 (32.2)             |
| Intersex                    | 3 (0.1)                |
| Unknown                     | 213 (7.8)              |
| Age of dog (years)          | N = 2,737              |
| <1year                      | 208 (7.6)              |
| 1-3years                    | 265 (9.7)              |
| >3-6years                   | 440 (16.1)             |
| >6-8years                   | 413 (15.1)             |
| >8-10years                  | 496 (18.1)             |
| >10-12years                 | 447 (16.3)             |
| >12years                    | 408 (14.9)             |
| Unknown                     | 60 (2.2)               |
| Breed Group                 | N = 2,738              |
| Mixed breed                 | 583 (21.3)             |

| Sporting                   | 565 (20.6)  |
|----------------------------|-------------|
| Working                    | 312 (11.4)  |
| Hound                      | 256 (9.4)   |
| Terrier                    | 256 (9.4)   |
| Тоу                        | 252 (9.2)   |
| Herding                    | 222 (8.1)   |
| Non-Sporting               | 200 (7.3)   |
| Unknown                    | 88 (3.2)    |
| Foundation Stock Service   | 4 (0.2)     |
| Isolation source           | N = 2,738   |
| Abdominal cavity and fluid | 77 (2.8)    |
| Ear and Ocular             | 138 (5)     |
| Feces                      | 170 (6.2)   |
| Respiratory tract          | 101 (3.7)   |
| Skin                       | 45 (1.6)    |
| Urine and bladder          | 1676 (61.2) |
| Uterus, vagina, and vulva  | 59 (2.2)    |
| Wounds                     | 71 (2.6)    |
| All others                 | 401 (14.7)  |
| Year of sample collection  | N = 2,738   |
| 2010                       | 206 (7.5)   |
| 2011                       | 249 (9.1)   |
| 2012                       | 228 (8.3)   |
| 2013                       | 232 (8.5)   |
| 2014                       | 280 (10.2)  |
| 2015                       | 257 (9.4)   |
| 2016                       | 310 (11.3)  |
| 2017                       | 294 (10.7)  |
| 2018                       | 355 (13)    |
| 2019                       | 327 (12)    |

166

# 167 Proportions and trends in susceptibility to different antimicrobials

168 Overall, 553 (20.2%) of the isolates were susceptible to 17 of the 27 antimicrobials

169 examined. E. coli susceptibility to marbofloxacin was 78.6% (2,099/2,670) and ranged from

170 83.3% (170/204) susceptible isolates tested in 2010 to 75.7% (234/309) susceptible isolates

tested in 2019. Overall susceptibility to doxycycline was 74.4% (1,999/2,688) and ranged from

172 77.5% (158/204) susceptible isolates tested in 2010 to 72.5 (227/313) susceptible isolates tested

in 2019 (Table 2). Statistically significant temporal trends were observed among 10 of the 27

- antimicrobials evaluated (Table 2). A significant (P < 0.05) downward (decreasing) trend in
- susceptibility was observed for amoxicillin-clavulanic acid, ampicillin, cefalexin, cefazolin,
- 176 ceftazidime, cephalothin, chloramphenicol, and orbifloxacin (Table 2).

- **Table 2**: Trends in antimicrobial susceptibility of *Escherichia coli* isolated from dog specimens tested at the Indiana Animal Disease
- 178 Diagnostic Laboratory, 2010 2019.

| Antimicrobial     | Antimicrobial   | Percenta | ge (num | ber of spe | ecimens t | ested) of | suscepti | ble isola | tes to an | antimicr | obial | Total  | Statisti | P-values |
|-------------------|-----------------|----------|---------|------------|-----------|-----------|----------|-----------|-----------|----------|-------|--------|----------|----------|
| class             |                 |          |         |            |           |           |          |           |           |          |       |        | c (Z)-   | (CAT-T)  |
|                   |                 |          |         |            |           |           |          |           |           |          |       |        | САТ-Т    |          |
|                   |                 | 2010     | 2011    | 2012       | 2013      | 2014      | 2015     | 2016      | 2017      | 2018     | 2019  |        |          |          |
| Aminoglycosides   |                 |          |         |            |           |           |          |           |           |          |       |        |          |          |
|                   | Amikacin        | 97.6     | 98.8    | 95.6       | 96.1      | 93.9      | 98.1     | 97.1      | 100       | 99.2     | 97.3  | 97.5   | -2.1528  | 0.0157   |
|                   |                 | (204)    | (248)   | (226)      | (232)     | (277)     | (257)    | (310)     | (289)     | (354)    | (309) | (2706) |          |          |
|                   | Gentamycin      | 86.4     | 93.6    | 84.7       | 83.2      | 87.9      | 90.3     | 89.4      | 92.9      | 84.2     | 89.3  | 88.2   | -0.3426  | 0.3660   |
|                   |                 | (206)    | (249)   | (228)      | (232)     | (280)     | (257)    | (310)     | (294)     | (355)    | (327) | (2738) |          |          |
| Amphenicols       | Chloramphenicol | 89.2     | 91.1    | 83.2       | 80.6      | 86.3      | 80.2     | 83.9      | 82.7      | 75.5     | 78.8  | 82.8   | 4.8084   | <.0001   |
|                   |                 | (203)    | (248)   | (226)      | (232)     | (277)     | (257)    | (310)     | (289)     | (351)    | (217) | (2610) |          |          |
| Antifolate        | Trimethoprim    | 82 (206) | 86.8    | 75.4       | 75.9      | 76.8      | 81.3     | 81.9      | 83.6      | 74.7     | 78.5  | 79.6   | 1.2911   | 0.0983   |
|                   |                 |          | (249)   | (228)      | (232      | (280)     | (257)    | (310)     | (293)     | (348)    | (311) | (2714) |          |          |
| Carbapenem        | Imipenem        | 99 (204) | 100     | 99.1       | 99.6      | 98.9      | 100      | 99.7      | 99.3      | 99.7     | 98.7  | 99.4   | 0.4271   | 0.3346   |
|                   |                 |          | (248)   | (226)      | (230)     | (275)     | (256)    | (306)     | (283)     | (336)    | (309) | (2673) |          |          |
| Cefalosporin/Cefa |                 |          |         |            |           |           |          |           |           |          |       |        |          |          |
| mycin             |                 |          |         |            |           |           |          |           |           |          |       |        |          |          |

|             | Cefalexin   | -        | -     | -       | -     | -     | -     | 63.5  | 78.3  | 61.5  | 66    | 67.9   | 2.1955  | 0.0141 |
|-------------|-------------|----------|-------|---------|-------|-------|-------|-------|-------|-------|-------|--------|---------|--------|
|             |             |          |       |         |       |       |       | (63)  | (281) | (327) | (300) | (971)  |         |        |
|             | Cefazolin   | 74.3     | 75.8  | 73      | 68.5  | 75.1  | 73.5  | 59.1  | 69    | 54.6  | 51.4  | 66.4   | 8.1388  | <.0001 |
|             |             | (202)    | (248) | (226)   | (232) | (277) | (257) | (308) | (284) | (339) | (313) | (2686) |         |        |
|             | Cefovecin   | 75 (204) | 77    | 72.1    | 69.6  | 78.2  | 75.8  | 72.9  | 84.4  | 67.4  | 68.9  | 74     | 1.4236  | 0.0773 |
|             |             |          | (248) | (226)   | (230) | (275) | (256) | (306) | (282) | (331) | (309) | (2667) |         |        |
|             | Cefoxitin   | 76.5     | 79.8  | 74.3    | 72.6  | 80.7  | 82.8  | 77    | 0     | 0(1)  | 0     | 77.84  | -0.8763 | 0.1904 |
|             |             | (204)    | (248) | (226)   | (230) | (275) | (256) | (243) |       |       |       | (1683) |         |        |
|             | Cefpodoxime | 74 (204) | 76.2  | 71.7    | 71.3  | 77.8  | 75.4  | 71.9  | 84.1  | 66.7  | 67.6  | 73.5   | 1.6614  | 0.0483 |
|             |             |          | (248) | (226)   | (230) | (275) | (256) | (306) | (283) | (336) | (309) | (2673) |         |        |
|             | Ceftazidime | -        | -     | -       | -     | -     | -     | 85.7  | 89.7  | 82.3  | 81.3  | 84.4   | 2.4729  | 0.0067 |
|             |             |          |       |         |       |       |       | (63)  | (281) | (327) | (300) | (971)  |         |        |
|             | Ceftiofur   | 75.2     | 74.3  | 71.5    | 66.4  | 75.7  | 73.5  | 73.3  | 72.7  | 85.7  | 79    | 73.1   | -0.3796 | 0.3521 |
|             |             | (206)    | (249) | (228)   | (232) | (280) | (257) | (247) | (11)  | (21)  | (19)  | (1750) |         |        |
|             | Cephalothin | -        | 76.5  | 60.2    | 51.1  | -     | -     | -     | 0 (2) | 0 (9) | 7.7   | 58.7   | 6.7500  | <.0001 |
|             |             |          | (115) | (226)   | (141) |       |       |       |       |       | (13)  | (506)  |         |        |
| Penicillins |             |          |       |         |       |       |       |       |       |       |       |        |         |        |
|             | Amoxiclav   | 72.6     | 67.2  | 100 (2) | 71.4  | 69.5  | 76.2  | 65.6  | 48.1  | 46.4  | 44.4  | 60.3   | 9.3130  | <.0001 |
|             |             | (204)    | (137) |         | (91)  | (275) | (256) | (299) | (283) | (336) | (288) | (2171) |         |        |

|                  | Ampicillin       | 59.2     | 55.4  | 50 (2)  | 55.3  | 53.6  | 57.8  | 50.7  | 37.2  | 37.1   | 38.2  | 47.7   | 7.1012  | <.0001 |
|------------------|------------------|----------|-------|---------|-------|-------|-------|-------|-------|--------|-------|--------|---------|--------|
|                  |                  | (206)    | (139) |         | (94)  | (278) | (256) | (306) | (288) | (337)  | (275) | (2183) |         |        |
|                  | Penicillin       | 0 (206)  | 0     | 0 (228) | 0     | 0     | 0     | 0     | 0 (7) | 0 (12) | 0     | 0      | -       | -      |
|                  |                  |          | (247) |         | (229) | (276) | (256) | (243) |       |        | 913)  | (1717) |         |        |
|                  | Oxacillin        | 0.5      | 0.8   | 2.2     | 1.3   | 1.5   | 0     | 1.7   | 0 (2) | 0 (10) | 7.7   | 1.2    | -0.6857 | 0.2465 |
|                  |                  | (204)    | (248) | (226)   | (230) | (275) | (256) | (243) |       |        | (13)  | (1707) |         |        |
|                  | Piperacillin     | -        | -     | -       | -     | -     | -     | 100   | 96.4  | 97     | 97.3  | 97.1   | 0.2269  | 0.4103 |
|                  | tazobactam       |          |       |         |       |       |       | (63)  | (281) | (326)  | (300) | (970)  |         |        |
|                  | Ticarcillin      | 60.8     | 58.1  | 54.4    | 52.2  | 54.9  | 58.4  | 63.2  | 83.3  | 52.6   | 72.2  | 57.6   | -0.9315 | 0.1758 |
|                  |                  | (204)    | (248) | (226)   | (232) | (277) | (257) | (247) | (6)   | (19)   | (18)  | (1734) |         |        |
|                  | Ticarcillin Clav | 72.6     | 70.2  | 70.8    | 64.4  | 65.5  | 70.3  | 67.9  | 0     | 0(1)   | 0     | 68.6   | 1.2077  | 0.1136 |
|                  |                  | (204)    | (248) | (226)   | (230) | (275) | (256) | (243) |       |        |       | (1683) |         |        |
| Fluoroquinolones |                  |          |       |         |       |       |       |       |       |        |       |        |         |        |
|                  | Enrofloxacin     | 83 (206) | 80.3  | 74.1    | 73    | 79.5  | 78.9  | 76.8  | 91.7  | 73.3   | 73.1  | 78.2   | 1.0780  | 0.1405 |
|                  |                  |          | (249) | (228)   | (230) | (278) | (256) | (306) | (266) | (326)  | (309) | (2654) |         |        |
|                  | Marbofloxacin    | 83.3     | 81.9  | 74.3    | 74.4  | 80.4  | 78.9  | 77.5  | 88.3  | 73.1   | 75.7  | 78.6   | 1.2731  | 0.1015 |
|                  |                  | (204)    | (248) | (226)   | (230) | (275) | (256) | (306) | (282) | (334)  | (309) | (2670) |         |        |
|                  | Orbifloxacin     | -        | -     | -       | -     | -     | -     | 71.4  | 85.4  | 72.3   | 73    | 76.2   | 2.3941  | 0.0083 |
|                  |                  |          |       |         |       |       |       | (63)  | (280) | (325)  | (300) | (968)  |         |        |
|                  | 1                |          |       |         |       |       |       |       |       |        |       |        |         |        |

| Lincosamide   | Clindamycin  | 0 (206) | 0     | 0 (228) | 0     | 0     | 0     | 0     | 0 (7) | 0 (12) | 0 (14) | 0.06   | -2.7964 | 0.0026 |
|---------------|--------------|---------|-------|---------|-------|-------|-------|-------|-------|--------|--------|--------|---------|--------|
|               |              |         | (249) |         | (230) | (278) | (256) | (243) |       |        |        | (1723) |         |        |
| Macrolide     | Erythromycin | 0 (204) | 0     | 0 (226) | 0     | 0     | 0     | 0     | -     | -      | -      | 0      | -       | -      |
|               |              |         | (248) |         | (232) | (277) | (257) | (202) |       |        |        | (1646) |         |        |
| Tetracyclines |              |         |       |         |       |       |       |       |       |        |        |        |         |        |
|               | Doxycycline  | 77.5    | 76.6  | 72.1    | 68.4  | 75.8  | 73.4  | 79.2  | 75.9  | 72.1   | 72.5   | 74.4   | 0.5936  | 0.2764 |
|               |              | (204)   | (248) | (226)   | (231) | (277) | (256) | (307) | (286) | (340)  | (313)  | (2688) |         |        |
|               | Tetracycline | -       | -     | -       | -     | -     | -     | 81    | 74.4  | 70     | 72.1   | 72.6   | 1.3344  | 0.0910 |
|               |              |         |       |         |       |       |       | (63)  | (285) | (327)  | (301)  | (976)  |         |        |

# 185 Antimicrobial resistance (AMR) and multi-drug resistance (MDR)

| 186 | The overall percentage of AMR (isolates not susceptible to at least one antimicrobial) in         |
|-----|---------------------------------------------------------------------------------------------------|
| 187 | isolates was 61.7% (n=1,690) and 29.3 % (801) of isolates were MDR. Of the 1,690 AMR              |
| 188 | isolates, 47.4% (801/1,690) were MDR (Table 3). A significant (P=<0.0001) upward trend in         |
| 189 | AMR was observed while MDR significantly (P=0.0083) decreased (Fig.1). Geographic region          |
| 190 | of sample origin (e.g., out-of-state versus in-state) was significantly associated with AMR (P    |
| 191 | <.0001). The odds of an isolate being shown to have resistance to at least one antimicrobial were |
| 192 | two times higher in all (combined) out-of-state samples when compared to samples from Indiana     |
| 193 | (OR: 2.04, 95% CI: 1.54 - 2.7) and the odds of an isolate being shown to have resistance to at    |
| 194 | least one antimicrobial were 1.89 times higher among samples of unreported (unknown) origin       |
| 195 | when compared to known Indiana samples (OR: 1.89, 95% CI:1.5 - 2.39).                             |
| 196 |                                                                                                   |
| 197 |                                                                                                   |
| 198 |                                                                                                   |
| 199 |                                                                                                   |

**Table 3**: Trends in antimicrobial resistance and multidrug resistance among *Escherichia coli* isolated from dog specimens at the

202 Indiana Animal Disease Diagnostic Laboratory, 2010 – 2019.

|     |       |        |           |          |       |       |         |       |       |       | Total  | Statistic | <i>P</i> -values |
|-----|-------|--------|-----------|----------|-------|-------|---------|-------|-------|-------|--------|-----------|------------------|
|     |       | Percer | ntage (nı | umber of |       | (Z)-  | (CAT-T) |       |       |       |        |           |                  |
|     |       |        |           |          |       |       | CAT-T   |       |       |       |        |           |                  |
|     | 2010  | 2011   | 2012      | 2013     | 2014  | 2015  | 2016    | 2017  | 2018  | 2019  |        |           |                  |
| AMR | 49    | 50.2   | 59.2      | 63.8     | 57.1  | 54.5  | 60      | 72.1  | 70.7  | 71    | 61.7   | -7.4123   | <.0001           |
|     | (206) | (249)  | (228)     | (232)    | (280) | (257) | (310)   | (294) | (355) | (327) | (2738) |           |                  |
| MDR | 48.5  | 52.8   | 56.3      | 53.4     | 43.8  | 49.3  | 45.2    | 39.2  | 48.6  | 44.4  | 47.4   | 2.3959    | 0.0083           |
|     | (101) | (125)  | (135)     | (148)    | (160) | (140) | (186)   | (212) | (251) | (232) | (1690) |           |                  |

- Figure 1: A graphical representation of the temporal trends in antimicrobial resistance and multidrug resistance among *Escherichia*
- *coli* isolated from dog specimens at the Indiana Animal Disease Diagnostic Laboratory, 2010 2019.

# 208 Host factors associated with AMR/MDR in Indiana

- For all samples from known Indiana addresses, 1,191/2,050 (58.1%) were resistant to at
- least one antimicrobial and 859/2,050 (41.9%) were not resistant to any antimicrobials. Of the
- 211 1,191 AMR isolates, 532 (44.7%) were MDR (Table 4).
- **Table 4:** The distribution of isolates from Indiana based on host factors and AMR status.

| Host factors | Total number<br>(%) of<br>isolates<br>assessed for<br>AMR | Number<br>AMR iso | · /      | Total<br>number<br>(%) of<br>isolates<br>assessed<br>for<br>MDR |          | Number (%) of<br>MDR isolates |  |  |
|--------------|-----------------------------------------------------------|-------------------|----------|-----------------------------------------------------------------|----------|-------------------------------|--|--|
|              |                                                           | No                | Yes      |                                                                 | No       | Yes                           |  |  |
| Sex          | N = 2050                                                  |                   |          | N=1191                                                          |          |                               |  |  |
| Female       | 1239 (60.4)                                               | 509               | 730      | 730                                                             | 394      | 336                           |  |  |
|              |                                                           | (24.8)            | (35.6)   | (61.3)                                                          | (33.1)   | (28.2)                        |  |  |
| Male         | 617 (30.1)                                                | 265               | 352      | 352                                                             | 200      | 152                           |  |  |
|              |                                                           | (12.9)            | (17.2)   | (29.6)                                                          | (16.8)   | (12.8)                        |  |  |
| Unknown      | 194 (9.5)                                                 | 85 (4.2)          | 109      | 109                                                             | 65 (5.5) | 44 (3.7)                      |  |  |
|              |                                                           |                   | (5.3)    | (9.2)                                                           |          |                               |  |  |
| Age (years)  | N = 2050                                                  |                   |          | N=1191                                                          |          |                               |  |  |
| <1year       | 177 (8.6)                                                 | 78 (3.8)          | 99 (4.8) | 99 (8.3)                                                        | 50 (4.2) | 49 (4.1)                      |  |  |
| 1-3years     | 209 (10.2)                                                | 71 (3.5)          | 138      | 138                                                             | 71 (6)   | 67 (5.6)                      |  |  |
|              |                                                           |                   | (6.7)    | (11.6)                                                          |          |                               |  |  |
| >3-6years    | 319 (15.6)                                                | 137               | 182      | 182                                                             | 105      | 77 (6.5)                      |  |  |
|              |                                                           | (6.7)             | (8.9)    | (15.3)                                                          | (8.8)    |                               |  |  |
| >6-8years    | 330 (16.1)                                                | 161               | 169      | 169                                                             | 95 (8)   | 74 (6.2)                      |  |  |
|              |                                                           | (7.9)             | (8.2)    | (14.2)                                                          |          |                               |  |  |
| >8-10years   | 376 (18.3)                                                | 166               | 210      | 210                                                             | 132      | 78 (6.6)                      |  |  |
|              |                                                           | (8.1)             | (10.2)   | (17.6)                                                          | (11)     |                               |  |  |
| >10-12years  | 310 (15.1)                                                | 112               | 198      | 198                                                             | 108 (9)  | 90 (7.6)                      |  |  |
|              |                                                           | (5.5)             | (9.7)    | (16.6)                                                          |          |                               |  |  |
| >12years     | 279 (13.6)                                                | 114               | 165 (8)  | 165 (14)                                                        | 82 (7)   | 83 (7)                        |  |  |
| -            |                                                           | (5.6)             |          |                                                                 |          |                               |  |  |
| Unknown      | 50 (2.4)                                                  | 20 (0.9)          | 30 (1.5) | 30 (2.5)                                                        | 16 (1.3) | 14 (1.2)                      |  |  |
| Breed Group  | N = 2050                                                  |                   |          | N=1191                                                          |          |                               |  |  |
| Sporting     | 457 (22.3)                                                | 206               | 251      | 251                                                             | 145      | 106                           |  |  |
| -            |                                                           | (10.1)            | (12.2)   | (21.1)                                                          | (12.2)   | (8.9)                         |  |  |

| Mixed breed             | 411 (20.1)  | 178      | 233      | 233      | 128      | 105      |
|-------------------------|-------------|----------|----------|----------|----------|----------|
|                         |             | (8.7)    | (11.4)   | (19.6)   | (10.8)   | (8.8)    |
| Working                 | 225 (11)    | 100      | 125      | 125      | 68 (5.7) | 57 (4.8) |
|                         |             | (4.9)    | (6.1)    | (10.5)   |          |          |
| Тоу                     | 195 (9.5)   | 88 (4.3) | 107      | 107 (9)  | 67 (5.6) | 40 (3.4) |
| -                       |             |          | (5.2)    |          |          |          |
| Hound                   | 184 (9)     | 85 (4.2) | 99 (4.8) | 99 (8.3) | 58 (4.9) | 41 (3.4) |
| Terrier                 | 182 (8.9)   | 53 (2.6) | 129      | 129      | 69 (5.8) | 60 (5)   |
|                         |             |          | (6.3)    | (10.8)   |          |          |
| Herding                 | 170 (8.3)   | 56 (2.7) | 114      | 114      | 50 (4.2) | 64 (5.4) |
|                         |             |          | (5.6)    | (9.6)    |          |          |
| Non-Sporting            | 147 (7.2)   | 53 (2.6) | 94 (4.6) | 94 (7.9) | 52 (4.4) | 42 (3.5) |
| Unknown                 | 79 (3.9)    | 40 (2)   | 39 (1.9) | 39 (3.3) | 22 (1.9) | 17 (1.4) |
| <b>Isolation source</b> | N = 2050    |          |          | N=1191   |          |          |
| Abdominal cavity and    | 65 (3.2)    | 26 (1.3) | 39 (1.9) | 39 (3.3) | 26 (2.2) | 13 (1.1) |
| fluid                   |             |          |          |          |          |          |
| Ear and Ocular          | 112 (5.5)   | 42 (2.1) | 70 (3.4) | 70 (5.9) | 43 (3.6) | 27 (2.3) |
| Feces                   | 96 (4.7)    | 32 (1.6) | 64 (3.1) | 64 (5.4) | 36 (3)   | 28 (2.4) |
| Respiratory tract       | 80 (3.9)    | 17 (0.8) | 63 (3.1) | 63 (5.3) | 27 (2.3) | 36 (3)   |
| Skin                    | 30 (1.4)    | 9 (0.4)  | 21 (1)   | 21 (1.8) | 13 (1.1) | 8 (0.7)  |
| Urine and bladder       | 1257 (61.3) | 584      | 673      | 673      | 374      | 299      |
|                         |             | (28.5)   | (32.8)   | (56.5)   | (31.4)   | (25.1)   |
| Uterus, vagina, and     | 43 (2.1)    | 23 (1.1) | 20 (1)   | 20 (1.7) | 14 (1.2) | 6 (0.5)  |
| vulva                   |             |          |          |          |          |          |
| Wounds                  | 52 (2.5)    | 13 (0.6) | 39 (1.9) | 39 (3.3) | 17 (1.4) | 22 (1.9) |
| All others              | 315 (15.4)  | 113      | 202      | 202 (17) | 109      | 93 (7.8) |
|                         |             | (5.5)    | (9.9)    |          | (9.2)    |          |

213

# 214 Univariable logistic regression

There was no significant unadjusted association between sex and the outcome of AMR,

216 however breed, age, and isolation source had significant associations with AMR (Table 5). There

217 were no significant unadjusted associations between the four host factors and MDR (Table 6).

- **Table 5:** Results of univariable logistic regression models assessing the association of host
- 219 factors with antimicrobial resistance among *Escherichia coli* isolated from dog specimens
- 220 originating from Indiana.

| Host factors | Category                  | OR (95%CI)                                    | <i>P</i> Value |
|--------------|---------------------------|-----------------------------------------------|----------------|
| Sex          | †Overall                  | _                                             | 0.6338         |
| ~ ~ ***      | Male vs Female            | 0.93 (0.76 - 1.13)                            | 0.442          |
|              | Male vs Unknown           | $\frac{0.05(0.76 - 1.13)}{1.04(0.75 - 1.43)}$ | 0.832          |
|              | Female vs Unknown         | $\frac{1.01(0.75 - 1.15)}{1.12(0.82 - 1.52)}$ | 0.473          |
| Age          | <sup>†</sup> Overall      |                                               | 0.0149         |
| 1.20         | 1-3years vs >3-6years     | 1.46 (1.02 – 2.1)                             | 0.039          |
|              | 1-3years vs >6-8years     | 1.85 (1.29 – 2.65)                            | 0.0008         |
|              | 1-3 years vs >8-10 years  | 1.54 (1.08 – 2.18)                            | 0.017          |
|              | 1-3years vs >10-12years   | 1.1 (0.76 – 1.59)                             | 0.614          |
|              | 1-3years vs >12years      | 1.34 (0.93 – 1.95)                            | 0.121          |
|              | 1-3years vs Unknown       | 1.3 (0.69 – 2.44)                             | 0.423          |
|              | 1-3years vs <1year        | 1.53 (1.01 – 2.31)                            | 0.043          |
|              | >3-6years vs >6-8years    | 1.27 (0.93 – 1.73)                            | 0.136          |
|              | >3-6years vs >8-10years   | 1.05 (0.78 – 1.42)                            | 0.750          |
|              | >3-6years vs>10-12years   | 0.75 (0.55 – 1.04)                            | 0.081          |
|              | >3-6years vs >12years     | 0.92 (0.66 – 1.27)                            | 0.606          |
|              | >3-6years vs Unknown      | 0.89 (0.48 - 1.63)                            | 0.695          |
|              | >3-6years vs <1year       | 1.05(0.72 - 1.52)                             | 0.809          |
|              | >6-8years vs >8-10years   | 0.83 (0.62 – 1.12)                            | 0.218          |
|              | >6-8years vs >10-12years  | 0.59 (0.43 - 0.82)                            | 0.001          |
|              | >6-8years vs >12years     | 0.73(0.53-1)                                  | 0.05           |
|              | >6-8years vs Unknown      | 0.7 (0.38 - 1.28)                             | 0.248          |
|              | >6-8years vs <1year       | 0.83 (0.57 – 1.19)                            | 0.310          |
|              | >8-10years vs >10-12years | 0.72 (0.53 – 0.94)                            | 0.034          |
|              | >8-10years vs >12years    | 0.87(0.64 - 1.2)                              | 0.4            |
|              | >8-10years vs Unknown     | 0.84 (0.46 - 1.54)                            | 0.579          |
|              | >8-10years vs <1year      | 1 (0.7 – 1.43)                                | 0.986          |
|              | >10-12years vs >12years   | 1.22 (0.88 – 1.7)                             | 0.239          |
|              | >10-12years vs Unknown    | 1.18 (0.64 - 2.17)                            | 0.598          |
|              | >10-12years vs <1year     | 1.39 (0.96 - 2.03)                            | 0.085          |
|              | >12years vs Unknown       | 0.97 (0.52 - 1.78)                            | 0.909          |
|              | >12years vs <1year        | 1.14 (0.78 - 1.67)                            | 0.499          |
|              | Unknown vs <1 year        | 1.18 (0.62 - 2.24)                            | 0.608          |
| Breed group  | †Overall                  | -                                             | 0.0007         |
| • •          | Hound vs Mixed            | 0.89 (0.63 - 1.26)                            | 0.512          |
|              | Hound vs non-Sporting     | 0.66 (0.42 - 1.02)                            | 0.064          |
|              | Hound vs Sporting         | 0.96 (0.68 – 1.35)                            | 0.797          |
|              | Hound vs Terrier          | 0.48 (0.31 – 0.74)                            | 0.0008         |
|              | Hound vs Toy              | 0.96 (0.64 - 1.44)                            | 0.835          |
|              | Hound vs Unknown          | 1.2 (0.71 – 2.03)                             | 0.509          |
|              | Hound vs Working          | 0.93 (0.63 - 1.38)                            | 0.723          |
|              | Hound vs Herding          | 0.57 (0.37 – 0.88)                            | 0.011          |
|              | Mixed vs non-Sporting     | 0.74 (0.5 – 1.09)                             | 0.126          |

|                     |                                   | 1.07 (0.02 1.41)                      | 0.001  |
|---------------------|-----------------------------------|---------------------------------------|--------|
|                     | Mixed vs Sporting                 | 1.07 (0.82 - 1.41)                    | 0.601  |
|                     | Mixed vs Terrier                  | 0.54(0.37 - 0.78)                     | 0.001  |
|                     | Mixed vs Toy                      | 1.08 (0.76 – 1.52)                    | 0.673  |
|                     | Mixed vs Unknown                  | 1.34 (0.83 – 2.18)                    | 0.231  |
|                     | Mixed vs Working                  | 1.05 (0.76 - 1.45)                    | 0.783  |
|                     | Mixed vs Herding                  | 0.64 (0.44 – 0.94)                    | 0.021  |
|                     | Non-Sporting vs Sporting          | 1.46 (0.99 – 2.14)                    | 0.055  |
|                     | Non-Sporting vs Terrier           | 0.73 (0.46 – 1.16)                    | 0.182  |
|                     | Non-Sporting vs Toy               | 1.46 (0.94 – 2.26)                    | 0.092  |
|                     | Non-Sporting vs Unknown           | 1.82 (1.04 – 3.17)                    | 0.035  |
|                     | Non-Sporting vs Working           | 1.42 (0.93 - 2.18)                    | 0.109  |
|                     | Non-Sporting vs Herding           | 0.87 (0.55 – 1.39)                    | 0.561  |
|                     | Sporting vs Terrier               | 0.5(0.35 - 0.72)                      | 0.0002 |
|                     | Sporting vs Toy                   | 1 (0.72 – 1.4)                        | 0.99   |
|                     | Sporting vs Unknown               | 1.25 (0.78 - 2.02)                    | 0.361  |
|                     | Sporting vs Working               | 0.98 (0.71 - 1.34)                    | 0.876  |
|                     | Sporting vs Herding               | 0.6(0.41 - 0.87)                      | 0.006  |
|                     | Terrier vs Toy                    | 2 (1.31 – 3.07)                       | 0.001  |
|                     | Terrier vs Unknown                | 2.5 (1.45 – 4.3)                      | 0.001  |
|                     | Terrier vs Working                | 1.95 (1.29 – 2.95)                    | 0.002  |
|                     | Terrier vs Herding                | 1.2 (0.76 – 1.88)                     | 0.439  |
|                     | Toy vs Unknown                    | 1.25(0.74-2.11)                       | 0.408  |
|                     | Toy vs Working                    | 0.97 (0.66 - 1.43)                    | 0.888  |
|                     | Toy vs Herding                    | 0.6(0.39 - 0.92)                      | 0.018  |
|                     | Unknown vs Working                | 0.78(0.47 - 1.3)                      | 0.343  |
|                     | Unknown vs Herding                | 0.48(0.28-0.83)                       | 0.008  |
|                     | Working vs Herding                | 0.61 (0.41 - 0.93)                    | 0.02   |
|                     | <sup>†</sup> Overall              | <u> </u>                              | <.0001 |
| Sample              | Ear & ocular vs Feces             | 0.83 (0.47 - 1.48)                    | 0.532  |
| source/sample type  | Ear & ocular vs Respiratory tract | 0.45 (0.23 - 0.87)                    | 0.017  |
| source, sumpre type | Ear & ocular vs Skin              | 0.71(0.3-1.7)                         | 0.448  |
|                     | Ear & ocular vs Urine & bladder   | 1.45 (0.97 - 2.15)                    | 0.069  |
|                     | Ear & ocular vs Uterus, vagina,   | 1.43(0.97 - 2.13)<br>1.92(0.94 - 3.9) | 0.073  |
|                     | vulva                             | 1.92 (0.94 5.9)                       | 0.075  |
|                     | Ear & ocular vs Wounds            | 0.56 (0.27 – 1.16)                    | 0.117  |
|                     | Ear & ocular vs All others        | 0.93(0.6 - 1.46)                      | 0.758  |
|                     | Ear & ocular vs Abdominal         | 1.1(0.59 - 2.08)                      | 0.738  |
|                     | cavity/fluid                      | 1.1(0.5) - 2.00)                      | 0.742  |
|                     | Feces vs Respiratory tract        | 0.54 (0.27 – 1.07)                    | 0.077  |
|                     | Feces vs Skin                     | 0.86(0.35 - 2.09)                     | 0.734  |
|                     | Feces vs Urine & bladder          | 1.74(1.12-2.69)                       | 0.014  |
|                     | Feces vs Uterus, vagina, vulva    | 2.3(1.1-4.79)                         | 0.026  |
|                     | Feces vs Wounds                   | 0.67 (0.31 - 1.42)                    | 0.294  |
|                     | Feces vs All others               | 1.12(0.69 - 1.81)                     | 0.649  |
|                     | Feces vs Abdominal cavity/fluid   | 1.3(0.69 - 2.56)                      | 0.389  |
|                     | Trees vs Audominiai Cavity/IIdid  | 1.3(0.09 - 2.30)                      | 0.307  |

| Respiratory tract vs Skin                          | 1.59 (0.62 - 4.09) | 0.338  |
|----------------------------------------------------|--------------------|--------|
| Respiratory tract vs Urine & bladder               | 3.2 (1.86 - 5.56)  | <.0001 |
| Respiratory tract vs Uterus,<br>vagina, vulva      | 4.26 (1.91 – 9.52) | 0.0004 |
| Respiratory tract vs wounds                        | 1.24 (0.54 - 2.82) | 0.616  |
| Respiratory tract vs all others                    | 2.07 (1.16 – 3.71) | 0.014  |
| Respiratory tract vs Abdominal cavity/fluid        | 2.47 (1.19 – 5.13) | 0.015  |
| Skin vs Urine & bladder                            | 2.03 (0.92 - 4.46) | 0.08   |
| Skin vs Uterus, vagina, vulva                      | 2.68 (1 - 7.18)    | 0.049  |
| Skin vs Wounds                                     | 0.78 (0.29 - 2.12) | 0.623  |
| Skin vs All others                                 | 1.31 (0.58 - 2.95) | 0.521  |
| Skin vs Abdominal cavity/fluid                     | 1.56 (0.62 - 3.92) | 0.349  |
| Urine & bladder vs Uterus,<br>vagina, vulva        | 1.33 (0.72 – 2.44) | 0.365  |
| Urine & bladder vs Wounds                          | 0.38(0.2-0.73)     | 0.003  |
| Urine & bladder vs All others                      | 0.65(0.5-0.83)     | 0.0008 |
| Urine & bladder vs Abdominal<br>cavity/fluid       | 0.77 (0.46 - 1.28) | 0.31   |
| Uterus, vagina, vulva vs Wounds                    | 0.29 (0.12 - 0.69) | 0.005  |
| Uterus, vagina, vulva vs All<br>others             | 0.49 (0.26 - 0.92) | 0.028  |
| Uterus, vagina, vulva vs<br>Abdominal cavity/fluid | 0.58 (0.27 – 1.26) | 0.17   |
| Wounds vs All others                               | 1.68 (0.86 - 3.28) | 0.129  |
| Wounds vs Abdominal<br>cavity/fluid                | 2 (0.9 - 4.45)     | 0.09   |
| All others vs Abdominal<br>cavity/fluid            | 1.19 (0.69 – 2.06) | 0.53   |
| Overall = overall effect of host factor on AMR     |                    |        |

- **Table 6:** Results of univariable logistic regression models assessing the association of host
- factors with multi-drug resistance among *Escherichia coli* isolated from dog specimens
- 224 originating from Indiana.

| Host factors | Category             | OR (95%CI)         | P Value |
|--------------|----------------------|--------------------|---------|
|              |                      |                    |         |
| Sex          | <sup>†</sup> Overall | —                  | 0.4330  |
|              | Male vs Female       | 0.89 (0.69 – 1.15) | 0.378   |
|              | Male vs Unknown      | 1.12 (0.73 – 1.74) | 0.604   |

|             | Female vs Unknown                    | 1.26 (0.84 – 1.9)  | 0.269  |
|-------------|--------------------------------------|--------------------|--------|
| Age         | <sup>†</sup> Overall                 |                    | 0.2377 |
|             | 1-3years vs >3-6years                | 1.29 (0.83 – 2.01) | 0.267  |
|             | 1-3years vs >6-8years                | 1.21 (0.77 – 1.9)  | 0.405  |
|             | 1-3years vs >8-10years               | 1.6 (1.03 – 2.47)  | 0.035  |
|             | 1-3years vs >10-12years              | 1.13 (0.73 – 1.75) | 0.576  |
|             | 1-3years vs >12years                 | 0.93 (0.59 - 1.47) | 0.761  |
|             | 1-3years vs Unknown                  | 1.08 (0.49 - 2.38) | 0.852  |
|             | 1-3years vs <1year                   | 0.96 (0.58 - 1.6)  | 0.886  |
|             | >3-6years vs >6-8years               | 0.94 (0.62 - 1.44) | 0.78   |
|             | >3-6years vs >8-10years              | 1.24 (0.83 - 1.86) | 0.297  |
|             | >3-6years vs >10-12years             | 0.88 (0.59 - 1.32) | 0.537  |
|             | >3-6years vs >12years                | 0.72 (0.47 - 1.11) | 0.136  |
|             | >3-6years vs Unknown                 | 0.84 (0.39 - 1.82) | 0.655  |
|             | >3-6years vs <1year                  | 0.75 (0.46 - 1.22) | 0.248  |
|             | >6-8years vs >8-10years              | 1.32 (0.87 – 1.99) | 0.19   |
|             | >6-8years vs >10-12years             | 0.94 (0.62 - 1.41) | 0.749  |
|             | >6-8years vs >12years                | 0.77 (0.5 – 1.18)  | 0.233  |
|             | >6-8years vs Unknown                 | 0.89 (0.41 – 1.94) | 0.77   |
|             | >6-8years vs <1year                  | 0.8 (0.48 - 1.31)  | 0.366  |
|             | >8-10years vs >10-12years            | 0.71 (0.48 - 1.05) | 0.089  |
|             | >8-10years vs >12years               | 0.58 (0.39 - 0.88) | 0.011  |
|             | >8-10years vs Unknown                | 0.68 (0.31 – 1.46) | 0.318  |
|             | >8-10years vs <1year                 | 0.6 (0.37 – 0.98)  | 0.04   |
|             | >10-12years vs >12years              | 0.82 (0.54 – 1.25) | 0.357  |
|             | >10-12years vs Unknown               | 0.95 (0.44 - 2.06) | 0.901  |
|             | >10-12years vs <1year                | 0.85 (0.52 – 1.38) | 0.511  |
|             | >12years vs Unknown                  | 1.16 (0.53 – 2.52) | 0.714  |
|             | >12years vs <1year                   | 1.03 (0.63 - 1.7)  | 0.899  |
|             | Unknown vs <1year                    | 0.89(0.39 - 2.02)  | 0.786  |
| Breed group | †Overall                             |                    | 0.3    |
| BF          | Hound vs Mixed                       | 0.86 (0.54 - 1.39) | 0.54   |
|             | Hound vs non-Sporting                | 0.88 (0.5 – 1.55)  | 0.647  |
|             | Hound vs Sporting                    | 0.97 (0.6 – 1.55)  | 0.889  |
|             | Hound vs Terrier                     | 0.81 (0.48 - 1.38) | 0.443  |
|             | Hound vs Toy                         | 1.18 (0.68 – 2.07) | 0.554  |
|             | Hound vs Unknown                     | 0.92 (0.43 – 1.93) | 0.816  |
|             | Hound vs Working                     | 0.84 (0.5 - 1.44)  | 0.531  |
|             | Hound vs Herding                     | 0.55 (0.32 - 0.95) | 0.033  |
|             | Mixed vs non-Sporting                | 1.02 (0.63 - 1.64) | 0.95   |
|             | Mixed vs hon Sporting                | 1.12 (0.78 – 1.61) | 0.53   |
|             | Mixed vs Sporting                    | 0.94 (0.61 – 1.45) | 0.791  |
|             | Mixed vs Toy                         | 1.37 (0.86 - 2.2)  | 0.184  |
|             | Mixed vs Toy<br>Mixed vs Unknown     | 1.06(0.54-2.1)     | 0.864  |
|             | Mixed vs Unknown<br>Mixed vs Working | 0.98 (0.63 - 1.51) | 0.804  |

|                    | Mixed va Herdine                            | 0.64(0.41 - 1.01)  | 0.052  |
|--------------------|---------------------------------------------|--------------------|--------|
|                    | Mixed vs Herding                            | 0.64 (0.41 - 1.01) | 0.053  |
|                    | Non-Sporting vs Sporting                    | 1.11(0.69 - 1.78)  | 0.682  |
|                    | Non-Sporting vs Terrier                     | 0.93 (0.55 - 1.58) | 0.786  |
|                    | Non-Sporting vs Toy                         | 1.35 (0.77 – 2.38) | 0.294  |
|                    | Non-Sporting vs Unknown                     | 1.05 (0.49 – 2.22) | 0.908  |
|                    | Non-Sporting vs Working                     | 0.96 (0.56 – 1.65) | 0.892  |
|                    | Non-Sporting vs Herding                     | 0.63 (0.36 - 1.09) | 0.101  |
|                    | Sporting vs Terrier                         | 0.84 (0.55 – 1.29) | 0.426  |
|                    | Sporting vs Toy                             | 1.22 (0.77 – 1.95) | 0.393  |
|                    | Sporting vs Unknown                         | 0.95 (0.48 - 1.87) | 0.873  |
|                    | Sporting vs Working                         | 0.87 (0.57 – 1.34) | 0.535  |
|                    | Sporting vs Herding                         | 0.57 (0.37 – 0.89) | 0.014  |
|                    | Terrier vs Toy                              | 1.46 (0.86 - 2.46) | 0.158  |
|                    | Terrier vs Unknown                          | 1.13(0.55 - 2.32)  | 0.748  |
|                    | Terrier vs Working                          | 1.04 (0.63 – 1.7)  | 0.884  |
|                    | Terrier vs Herding                          | 0.68 (0.41 – 1.13) | 0.135  |
|                    | Toy vs Unknown                              | 0.77(0.37 - 1.63)  | 0.497  |
|                    | Toy vs Working                              | 0.71 (0.42 – 1.21) | 0.207  |
|                    | Toy vs Herding                              | 0.47 (0.27 – 0.8)  | 0.006  |
|                    | Unknown vs Working                          | 0.92(0.45 - 1.9)   | 0.826  |
|                    | Unknown vs Herding                          | 0.6 (0.29 – 1.26)  | 0.177  |
|                    | Working vs Herding                          | 0.66 (0.39 - 1.09) | 0.104  |
|                    | <sup>†</sup> Overall                        | -                  | 0.1856 |
| Sample             | Ear & ocular vs Feces                       | 0.81 (0.41 - 1.61) | 0.543  |
| source/sample type | Ear & ocular vs Respiratory tract           | 0.47 (0.24 - 0.94) | 0.033  |
|                    | Ear & ocular vs Skin                        | 1.02(0.37 - 2.78)  | 0.969  |
|                    | Ear & ocular vs Urine & bladder             | 0.79(0.47 - 1.3)   | 0.348  |
|                    | Ear & ocular vs Uterus, vagina,             | 1.47 (0.5 - 4.27)  | 0.485  |
|                    | vulva                                       |                    | 0.405  |
|                    | Ear & ocular vs Wounds                      | 0.49 (0.22 - 1.08) | 0.075  |
|                    | Ear & ocular vs All others                  | 0.74 (0.42 - 1.28) | 0.073  |
|                    | Ear & ocular vs Abdominal                   | 1.26 (0.55 - 2.86) | 0.279  |
|                    | cavity/fluid                                | 1.20(0.55 - 2.00)  | 0.307  |
|                    | <b>V</b>                                    | 0.58 (0.29 - 1.18) | 0.132  |
|                    | Feces vs Respiratory tract<br>Feces vs Skin | 1.26 (0.46 - 3.47) | 0.132  |
|                    |                                             |                    |        |
|                    | Feces vs Urine & bladder                    | 0.97 (0.58 - 1.63) | 0.917  |
|                    | Feces vs Uterus, vagina, vulva              | 1.81 (0.62 - 5.32) | 0.278  |
|                    | Feces vs Wounds                             | 0.6(0.27 - 1.34)   | 0.214  |
|                    | Feces vs All others                         | 0.91 (0.52 - 1.61) | 0.749  |
|                    | Feces vs Abdominal cavity/fluid             | 1.56 (0.68 - 3.56) | 0.296  |
|                    | Respiratory tract vs Skin                   | 2.18(0.79-5.96)    | 0.134  |
|                    | Respiratory tract vs Urine & bladder        | 1.67 (0.99 – 2.81) | 0.055  |
|                    | Respiratory tract vs Uterus, vagina, vulva  | 3.1 (1.06 – 9.15)  | 0.039  |

|   | Respiratory tract vs wounds     | 1.03 (0.46 – 2.31) | 0.942 |
|---|---------------------------------|--------------------|-------|
|   | Respiratory tract vs all others | 1.56 (0.88 – 2.77) | 0.125 |
|   | Respiratory tract vs Abdominal  | 2.67 (1.16 – 6.13) | 0.021 |
|   | cavity/fluid                    |                    |       |
|   | Skin vs Urine & bladder         | 0.77 (0.32 – 1.88) | 0.566 |
|   | Skin vs Uterus, vagina, vulva   | 1.44 (0.39 – 5.27) | 0.586 |
|   | Skin vs Wounds                  | 0.48 (0.16 - 1.42) | 0.179 |
|   | Skin vs All others              | 0.72 (0.29 - 1.82) | 0.488 |
|   | Skin vs Abdominal cavity/fluid  | 1.23 (0.41 – 3.71) | 0.713 |
|   | Urine & bladder vs Uterus,      | 1.87 (0.71 – 4.91) | 0.207 |
|   | vagina, vulva                   |                    |       |
|   | Urine & bladder vs Wounds       | 0.62 (0.32 - 1.18) | 0.147 |
|   | Urine & bladder vs All others   | 0.94 (0.68 - 1.29) | 0.686 |
|   | Urine& bladder vs Abdominal     | 1.6 (0.81 – 3.17)  | 0.178 |
|   | cavity/fluid                    |                    |       |
|   | Uterus, vagina, vulva vs Wounds | 0.33 (0.11 – 1.04) | 0.059 |
|   | Uterus, vagina, vulva vs All    | 0.5 (0.19 – 1.36)  | 0.175 |
|   | others                          |                    |       |
|   | Uterus, vagina, vulva vs        | 0.86(0.27 - 2.75)  | 0.796 |
|   | Abdominal cavity/fluid          |                    |       |
|   | Wounds vs All others            | 1.52 (0.76 - 3.01) | 0.237 |
|   | Wounds vs Abdominal             | 2.59 (1.03 - 6.49) | 0.043 |
|   | cavity/fluid                    |                    |       |
|   | All others vs Abdominal         | 1.71 (0.83 – 3.51) | 0.146 |
| 1 |                                 |                    |       |

225

# 226 Adjusted associations

All host factors found to be widely significantly associated ( $P \le 0.15$ ) with AMR in the univariable logistic regression models were included in the multivariable logistic regression analyses. Thus, for AMR, age (P=0.0149), breed (P=0.0007) and sample source/sample type (P<.0001) were included in the multivariable model. All three host factors were retained in the final multivariable model (Table 7) which showed significant associations between AMR and age (P=0.009), breed (P=0.0007), and sample isolation site/source (P<0.0001). The Hosmer and Lemeshow Goodness-of-Fit Test showed that this model best fit these data ( $\chi^2= 8.05$ , DF=8,

| 234 | P=0.429). The multivariable model showed that controlling for breed and specimen source, the             |
|-----|----------------------------------------------------------------------------------------------------------|
| 235 | odds of AMR in isolates from dogs aged 1 to 3 years were 1.63 times as high as the AMR odds              |
| 236 | in isolates from dogs aged between 6 and 8 years and isolates from dogs aged greater than 10             |
| 237 | years were more likely to be antimicrobial resistant than those isolated from other age groups.          |
| 238 | Based on the non-significant unadjusted associations (using a liberal $\alpha = 0.15$ ), a multivariable |
| 239 | model for the association between the host factors and MDR was not built.                                |

- 240 **Table 7**: Multivariable binary logistic regression model of the associations between host factors

| 241 | and antimicrobial resistance amo | ng Escherichia coli isolated | d from samples from Indiana. |
|-----|----------------------------------|------------------------------|------------------------------|
|-----|----------------------------------|------------------------------|------------------------------|

| Host factors | Category                  | OR (95% CI)        | <i>P</i> Value |
|--------------|---------------------------|--------------------|----------------|
| Age          | <sup>†</sup> Overall      | —                  | 0.009          |
|              | 1-3years vs >3-6years     | 1.31 (0.9 – 1.9)   | 0.159          |
|              | 1-3years vs >6-8years     | 1.63 (1.13 – 2.36) | 0.009          |
|              | 1-3years vs >8-10years    | 1.35 (0.94 – 1.94) | 0.103          |
|              | 1-3years vs >10-12years   | 0.89 (0.61 – 1.3)  | 0.543          |
|              | 1-3years vs >12years      | 1.08 (0.73 – 1.59) | 0.718          |
|              | 1-3years vs Unknown       | 1.14 (0.59 – 2.2)  | 0.697          |
|              | 1-3years vs <1year        | 1.5 (0.98 - 2.29)  | 0.064          |
|              | >3-6years vs >6-8years    | 1.25 (0.91 – 1.72) | 0.167          |
|              | >3-6years vs >8-10years   | 1.04 (0.76 - 1.41) | 0.83           |
|              | >10-12years vs >3-6years  | 1.47 (1.06 - 2.05) | 0.023          |
|              | >3-6years vs >12years     | 0.82 (0.58 - 1.16) | 0.264          |
|              | >3-6years vs Unknown      | 0.87 (0.46 - 1.64) | 0.671          |
|              | >3-6years vs <1year       | 1.15 (0.78 - 1.69) | 0.493          |
|              | >6-8years vs >8-10years   | 0.83 (0.61 - 1.12) | 0.221          |
|              | >10-12years vs >6-8years  | 1.84 (1.33 - 2.55) | 0.0003         |
|              | >12years vs >6-8years     | 1.52 (1.09 – 2.12) | 0.014          |
|              | >6-8years vs Unknown      | 0.7 (0.37 – 1.31)  | 0.26           |
|              | >6-8years vs <1year       | 0.92 (0.62 - 1.35) | 0.654          |
|              | >10-12years vs >8-10years | 1.52 (1.11 – 2.1)  | 0.009          |
|              | >8-10years vs >12years    | 0.8 (0.58 - 1.1)   | 0.165          |
|              | >8-10years vs Unknown     | 0.84 (0.45 - 1.57) | 0.591          |
|              | >8-10years vs <1year      | 1.11 (0.76 – 1.62) | 0.598          |
|              | >10-12years vs >12years   | 1.21 (0.86 - 1.7)  | 0.271          |
|              | >10-12years vs Unknown    | 1.28 (0.68 - 2.42) | 0.442          |
|              | >10-12years vs <1year     | 1.69 (1.13 – 2.51) | 0.01           |
|              | >12years vs Unknown       | 1.06 (0.56 - 2.01) | 0.858          |

|                    | >12years vs <1year                                      | 1.39 (0.93 – 2.09)                                                         | 0.11   |
|--------------------|---------------------------------------------------------|----------------------------------------------------------------------------|--------|
|                    | Unknown vs <1 year                                      | 1.31 (0.68 – 2.55)                                                         | 0.422  |
| Breed group        | <sup>†</sup> Overall                                    | —                                                                          | 0.0007 |
|                    | Hound vs Mixed                                          | 0.92 (0.64 - 1.31)                                                         | 0.632  |
|                    | Hound vs non-Sporting                                   | 0.67 (0.42 - 1.05)                                                         | 0.081  |
|                    | Hound vs Sporting                                       | 0.94 (0.66 - 1.35)                                                         | 0.749  |
|                    | Hound vs Terrier                                        | 0.47(0.3-0.73)                                                             | 0.0008 |
|                    | Hound vs Toy                                            | 0.97 (0.64 – 1.46)                                                         | 0.865  |
|                    | Hound vs Unknown                                        | 1.3 (0.75 – 2.25)                                                          | 0.343  |
|                    | Hound vs Working                                        | 0.93(0.62 - 1.41)                                                          | 0.742  |
|                    | Herding vs Hound                                        | 1.68 (1.08 - 2.63)                                                         | 0.022  |
|                    | Mixed vs non-Sporting                                   | 0.73 (0.49 - 1.08)                                                         | 0.114  |
|                    | Mixed vs Sporting                                       | 1.03 (0.78 – 1.36)                                                         | 0.832  |
|                    | Terrier vs Mixed                                        | 1.95 (1.33 – 2.86)                                                         | 0.0006 |
|                    | Mixed vs Toy                                            | 1.05 (0.74 – 1.49)                                                         | 0.772  |
|                    | Mixed vs Unknown                                        | 1.42 (0.87 – 2.34)                                                         | 0.165  |
|                    | Mixed vs Working                                        | 1.02 (0.73 – 1.43)                                                         | 0.913  |
|                    | Mixed vs Herding                                        | 0.65(0.44 - 0.95)                                                          | 0.027  |
|                    | Non-Sporting vs Sporting                                | 1.42(0.96-2.1)                                                             | 0.079  |
|                    | Non-Sporting vs Terrier                                 | 0.71(0.44 - 1.13)                                                          | 0.15   |
|                    | Non-Sporting vs Toy                                     | 1.45(0.93-2.28)                                                            | 0.104  |
|                    | Non-Sporting vs Unknown                                 | 1.96(1.11 - 3.47)                                                          | 0.021  |
|                    | Non-Sporting vs Working                                 | 1.4(0.91-2.17)                                                             | 0.127  |
|                    | Non-Sporting vs Herding                                 | 0.89(0.56 - 1.43)                                                          | 0.642  |
|                    | Terrier vs Sporting                                     | 2.01 (1.38 - 2.93)                                                         | 0.0003 |
|                    | Sporting vs Toy                                         | 1.02(0.72 - 1.44)                                                          | 0.9    |
|                    | Sporting vs Unknown                                     | 1.38(0.84 - 2.26)                                                          | 0.2    |
|                    | Sporting vs Working                                     | 0.99(0.71 - 1.38)                                                          | 0.949  |
|                    | Sporting vs Herding                                     | 0.63 (0.43 - 0.92)                                                         | 0.016  |
|                    | Terrier vs Toy                                          | 2.06(1.33 - 3.2)                                                           | 0.010  |
|                    | Terrier vs Unknown                                      | 2.78(1.59 - 4.86)                                                          | 0.0003 |
|                    | Terrier vs Working                                      | 1.99(1.3 - 3.06)                                                           | 0.000  |
|                    | Terrier vs Herding                                      | 1.99(1.9-9.00)<br>1.27(0.8-2.01)                                           | 0.317  |
|                    | Toy vs Unknown                                          | 1.27(0.0-2.01)<br>1.35(0.79-2.32)                                          | 0.275  |
|                    | Toy vs Working                                          | 0.97 (0.65 - 1.44)                                                         | 0.273  |
|                    | Herding vs Toy                                          | 1.62(1.05 - 2.51)                                                          | 0.072  |
|                    | Unknown vs Working                                      | 0.72 (0.42 - 1.22)                                                         | 0.03   |
|                    | Unknown vs Herding                                      | 0.72(0.42 - 1.22)<br>0.46(0.26 - 0.8)                                      | 0.22   |
|                    | Herding vs Working                                      | 1.57 (1.03 - 2.4)                                                          | 0.000  |
|                    | †Overall                                                | -1.57(1.05-2.4)                                                            | <.0001 |
| Sample             | Ear & ocular vs Feces                                   | -<br>0.8 (0.45 - 1.43)                                                     | 0.446  |
| source/sample type |                                                         | · · · · · · · · · · · · · · · · · · ·                                      |        |
| source/sample type | Respiratory tract vs Ear & ocular                       | 2.2(1.12 - 4.34)                                                           | 0.023  |
|                    | Ear & ocular vs Skin<br>Ear & ocular vs Urine & bladder | $\begin{array}{c} 0.9 \ (0.37 - 2.18) \\ 1.59 \ (1.06 - 2.39) \end{array}$ | 0.814  |

| Ear & ocular vs Uterus, vagina, | 1.91 (0.92 – 3.94) | 0.081  |
|---------------------------------|--------------------|--------|
| vulva                           |                    |        |
| Ear & ocular vs Wounds          | 0.64 (0.3 – 1.35)  | 0.24   |
| Ear & ocular vs All others      | 0.97 (0.61 – 1.53) | 0.889  |
| Ear & ocular vs Abdominal       | 1.24 (0.66 – 2.35) | 0.504  |
| cavity/fluid                    |                    |        |
| Feces vs Respiratory tract      | 0.57 (0.28 - 1.15) | 0.115  |
| Feces vs Skin                   | 1.13 (0.46 – 2.79) | 0.795  |
| Feces vs Urine & bladder        | 1.99 (1.27 – 3.13) | 0.003  |
| Feces vs Uterus, vagina, vulva  | 2.39 (1.13 – 5.04) | 0.022  |
| Feces vs Wounds                 | 0.8 (0.37 – 1.73)  | 0.573  |
| Feces vs All others             | 1.22 (0.74 – 1.99) | 0.44   |
| Feces vs Abdominal cavity/fluid | 1.56 (0.8 - 3.04)  | 0.191  |
| Respiratory tract vs Skin       | 1.98 (0.75 - 5.2)  | 0.166  |
| Respiratory tract vs Urine &    | 3.5 (1.99 - 6.13)  | <.0001 |
| bladder                         |                    |        |
| Respiratory tract vs Uterus,    | 4.2 (1.84 - 9.56)  | 0.0006 |
| vagina, vulva                   |                    |        |
| Respiratory tract vs wounds     | 1.41 (0.61 – 3.26) | 0.425  |
| Respiratory tract vs all others | 2.13 (1.18 – 3.86) | 0.013  |
| Respiratory tract vs Abdominal  | 2.74(1.3-5.77)     | 0.008  |
| cavity/fluid                    |                    |        |
| Skin vs Urine & bladder         | 1.77 (0.79 – 3.94) | 0.165  |
| Skin vs Uterus, vagina, vulva   | 2.12 (0.78 – 5.77) | 0.141  |
| Skin vs Wounds                  | 0.71 (0.26 – 1.96) | 0.511  |
| Skin vs All others              | 1.08 (0.47 - 2.46) | 0.861  |
| Skin vs Abdominal cavity/fluid  | 1.38(0.54 - 3.54)  | 0.499  |
| Urine & bladder vs Uterus,      | 1.2(0.64 - 2.24)   | 0.566  |
| vagina, vulva                   |                    | 0.000  |
| Wounds vs Urine & bladder       | 2.49 (1.3 – 4.74)  | 0.006  |
| Urine & bladder vs All others   | 0.61 (0.47 - 0.8)  | 0.0003 |
| Urine& bladder vs Abdominal     | 0.78(0.47 - 1.32)  | 0.356  |
| cavity/fluid                    | 0.70 (0.17 1.52)   | 0.550  |
| Wounds vs Uterus, vagina, vulva | 2.98 (1.24 - 7.2)  | 0.015  |
| Uterus, vagina, vulva vs All    | 0.51 (0.26 - 0.98) | 0.042  |
| others                          | 0.51 (0.20 0.90)   | 0.042  |
| Uterus, vagina, vulva vs        | 0.65 (0.3 – 1.44)  | 0.29   |
| Abdominal cavity/fluid          | 0.05 (0.5 1.44)    | 0.27   |
| Wounds vs All others            | 1.52 (0.77 – 2.98) | 0.23   |
| Wounds vs Ahl outers            | 1.95(0.87 - 4.37)  | 0.23   |
| cavity/fluid                    | 1.95(0.07 - 4.57)  | 0.107  |
| All others vs Abdominal         | 1.28 (0.74 – 2.24) | 0.378  |
| cavity/fluid                    | 1.20(0.74 - 2.24)  | 0.578  |
|                                 |                    |        |

<sup>†</sup>Overall = overall effect of host factor on AMR

# 243 Discussion

In the present study, we found significant trends in susceptibility, total AMR and MDR in 244 245 canine E. coli isolates, and we identified significant associations between AMR and dog age, 246 breed, and the source of the specimens. We found significant declines in the susceptibility to cefalexin, cefazolin, and cephalothin which are 1<sup>st</sup> generation cephalosporins and to cefpodoxime 247 248 and ceftazidime which are 3<sup>rd</sup> generation cephalosporins. Similar to our study, a previous study found high level resistance to commonly used beta lactams (penicillins, cephalosporins) in dogs 249 250 in the United States [15]. Particularly, 39.7% of all the isolates in the present study were not 251 susceptible to amoxicillin-clavulanic acid and 52.3% were not susceptible to ampicillin, and susceptibility to these drugs significantly declined over time. Similar to our findings, a previous 252 253 study by Thungrat and others reported high-level resistance (45%) to amoxicillin-clavulanic acid and 52.7% to ampicillin among E. coli isolated from dogs in the United States [15]. It is 254 important to note that amoxicillin-clavulanic acid is the most commonly prescribed antimicrobial 255 in many veterinary practices [16–18] and ampicillin is also commonly used to treat bacterial 256 infections in dogs [15]. Therefore, the decreasing trend in the proportion of isolates susceptible 257 to antimicrobials in the beta lactam group in this study could be due to selection pressure from 258 antimicrobial use. For the fluoroquinolone drugs, 21.8% of all the isolates tested were not 259 susceptible to enrofloxacin. A previous study conducted in the northeastern US reported that 260 261 nearly 20% of the *E. coli* isolated from dogs during the period 2004 - 2011 were resistant to enrofloxacin [19]. Also, among the fluoroquinolone antimicrobials, the decline in susceptibility 262 to orbifloxacin observed could be associated with selection pressure from antimicrobial use. 263

The level of AMR in *E. coli* is a good indicator of AMR in bacterial pathogens of dogs and other species [20,21] because of its ubiquitous nature and its ability to act as a reservoir of

| 266 | AMR genes that can transferred to other pathogens through horizontal gene transfer [22].             |
|-----|------------------------------------------------------------------------------------------------------|
| 267 | Additionally, AMR in E. coli is suggested to be a good sentinel of the effects of selective          |
| 268 | pressure from AMU [23]. Therefore, the significant increase in AMR E. Coli observed in this          |
| 269 | study could be an indicator of an increasing AMR trend among other pathogenic bacteria in the        |
| 270 | dog populations served by this diagnostic laboratory. This suggests for a need for more concerted    |
| 271 | efforts in controlling AMR in small animal practice through judicious AMU. The decreasing            |
| 272 | trend observed for MDR could have resulted from the varying susceptibility trends observed for       |
| 273 | individual antimicrobials where some individual drugs had decreasing susceptibility trends while     |
| 274 | others had increasing susceptibility. Corner and others attributed similar decreases in MDR in       |
| 275 | Staphylococcus spp. to variability in individual drug susceptibility [10].                           |
| 276 | The total lack of susceptibility to clindamycin and erythromycin observed is due to                  |
| 277 | intrinsic resistance [8]. Enterobacteriaceae such as E. coli are known to be intrinsically resistant |
|     |                                                                                                      |

information is provided here to guide veterinary clinicians who might find it useful whendeciding which antimicrobial to select.

278

to lincosamides and macrolides such as clindamycin and erythromycin respectively. This

We found high susceptibility of the isolates to amikacin (97.6% susceptibility in 2010 281 and 97.3% in 2019) and observed a significant increase in susceptibility to this drug. Similar to 282 our findings, a previous study that investigated the antimicrobial susceptibility patterns of E. coli 283 in dogs and cats in the United States found only 0.7% of 2,390 canine E. coli isolates were 284 resistant to amikacin [15]. Another study in Canada found 93.8% of 3,364 canine E. coli isolates 285 were susceptible to Amikacin [17]. The high susceptibility and increasing trend in susceptibility 286 287 to amikacin observed in the present study could be indicative of limited use of this antimicrobial in small animal practice in Indiana. The limited use of this drug could be associated with 288

concerns about aminoglycoside toxicity. Similar to the results in amikacin, we found a near 289 perfect susceptibility to imipenem suggesting that imipenem is rarely used in the treatment of 290 bacterial diseases of dogs in Indiana. Imipenem belongs to the carbapenem antimicrobial class 291 and is used in the treatment of multidrug resistant Enterobacteriaceae e.g. E. coli [24]. Perhaps 292 this finding could reflect adherence by small animal clinicians to the guidelines for carbapenem 293 294 use provided by the International Society for Companion Animal Infectious Diseases (ISCAID). The ISCAID recommends that carbapenems should be used only if the pathogen is proven to be 295 resistant to all other reasonable antimicrobial options and susceptibility to the carbapenem 296 297 chosen is documented [24].

In the present study, 61% of the E. coli isolates were found in specimens submitted from 298 the urinary tract. This finding is similar to the findings in previous studies in the U.S. where most 299 of the *E. coli* were isolated from the urinary tract [15,19]. This suggests that urinary tract 300 infections could have been the major reason for canine sample submission to this laboratory. 301 302 However, 3.7% of the *E. coli* isolates were from the respiratory tract and these respiratory tract isolates were more likely to be antimicrobial resistant than those isolated from the urogenital 303 tract (urine, bladder, uterus, vagina, and vulva), and the abdominal cavity. This is in contrast to a 304 305 previous study in the north eastern United States which reported that multidrug resistance was more likely among urinary E. coli than in E. coli isolated from other canine body sites [19]. E 306 307 .coli is known to be involved in respiratory tract infections in dogs and has been isolated from respiratory tract samples [25,26]. Possibly, the higher AMR observed in the respiratory tract 308 isolates in our study could be due to selection pressure resulting from AMU targeting respiratory 309 tract infections in these dogs. There is a need for an in-depth study of AMR among E. coli 310 causing respiratory disease. 311

In the present study, we found that E. coli isolated from dogs older than 10 years were 312 more likely to be resistant to antimicrobials when compared to E. coli isolated from younger 313 dogs after controlling for breed and specimen source. This finding could be due to selection 314 pressure from prior/routine antimicrobial use in dogs in this category since dogs older than 10 315 years are more likely to have been treated with antimicrobials multiple times when compared to 316 317 younger dogs. Previous studies found prior use of antimicrobials was a risk factor for AMR in dogs [27,28] and AMR E. coli was common among vet-visiting dogs [29]. Specifically, prior 318 exposure to some antimicrobials such as fluoroquinolones may select for antimicrobial resistant 319 320 E. coli in dogs that could persist long after antimicrobial therapy [30,31]. Recurrent E. coli infections are possible because *E. coli* possess multiple adaptations for survival and persistence 321 in the host [32]. Dogs older than 10 years are generally considered geriatric and are likely to 322 323 have weakened immune systems due to old age, and as a result, could be susceptible to frequent infections necessitating antimicrobial use. Also, selection pressure from prior AMU could be the 324 325 reason why isolates from dogs aged 1 to 3 years were 1.63 times more likely to be antimicrobial resistant when compared to those from dogs between 6 and 8 years of age. From a public health 326 standpoint, the role of dogs aged older than 10 years and those aged 1 to 3 years in the 327 328 dissemination of AMR E. coli needs to be further investigated. The implications are that humans in close contact with dogs in these age groups would be at a higher risk of exposure to AMR E. 329 330 *coli*. Veterinarians should be made aware of the potential role of dogs aged older than 10 years 331 and those aged 1 to 3 years in the spread of AMR E. coli. Generally, owners of older dogs need to be aware of the AMR E. coli risk in older dogs and should be encouraged to observe infection 332 333 prevention measures such as hand washing with soap and clean water after handling their 334 animals.

| 335 | The association between AMR and breed reported in this study is surprising. We found         |
|-----|----------------------------------------------------------------------------------------------|
| 336 | that terriers and herding dogs were more likely to harbor AMR E. coli when compared to other |
| 337 | breed categories. This is an interesting finding that needs to be further investigated as no |
| 338 | previous study has elucidated this.                                                          |

One limitation of this study was the lack of data related the clinical history of the dogs from which samples were collected. This prevented us from discerning the severity of the disease the dog presented with. Further, the lack of specific information regarding prior antimicrobial use in the dogs included in the study limits the inferences that can be made regarding AMU and its relationship with subsequent development of AMR.

### 344 Conclusions

Our findings suggest that AMR in *E. coli* in dogs could be increasing in the state of Indiana. Dogs aged more than 10 years and those aged 1 to 3 years could play a role in the spread of AMR. *E. coli* in dogs in Indiana are likely to be highly susceptible to aminoglycosides (e.g., amikacin) and to carbapenems (e.g., imipenem). The findings of this study should inform efforts aimed at addressing the AMR challenge and may prove useful in guiding small animal clinicians in the state of Indiana in choosing appropriate antimicrobials for empiric therapy.

# 351 Acknowledgments

We thank the Integrative Data Science Initiative at Purdue University for funding this work and the Indiana Animal Disease Diagnostic Laboratory for providing the data used in these analyses.

### 355 **References**

| 356 | 1. | Paitan Y. Current Trends in Antimicrobial Resistance of Escherichia coli. Curr Top          |
|-----|----|---------------------------------------------------------------------------------------------|
| 357 |    | Microbiol Immunol. 2018;416: 181–211. doi:10.1007/82_2018_110                               |
| 358 | 2. | Courtice R, Sniatynski M, Rubin JE. Characterization of antimicrobial-resistant Escherichia |
| 359 |    | coli causing urinary tract infections in dogs: Passive surveillance in Saskatchewan, Canada |
| 360 |    | 2014 to 2018. Journal of Veterinary Internal Medicine. 2021;35: 1389–1396.                  |
| 361 |    | doi:10.1111/jvim.16103                                                                      |
| 362 | 3. | LeCuyer TE, Byrne BA, Daniels JB, Diaz-Campos DV, Hammac GK, Miller CB, et al.              |
| 363 |    | Population Structure and Antimicrobial Resistance of Canine Uropathogenic Escherichia       |
| 364 |    | coli. J Clin Microbiol. 2018;56: e00788-18. doi:10.1128/JCM.00788-18                        |
| 365 | 4. | Centers for Disease Control and Prevention (U.S.). Antibiotic resistance threats in the     |
| 366 |    | United States, 2019. Centers for Disease Control and Prevention (U.S.); 2019 Nov.           |
| 367 |    | doi:10.15620/cdc:82532                                                                      |
| 368 | 5. | Pomba C, Rantala M, Greko C, Baptiste KE, Catry B, van Duijkeren E, et al. Public health    |
| 369 |    | risk of antimicrobial resistance transfer from companion animals. J Antimicrob Chemother.   |
| 370 |    | 2017;72: 957–968. doi:10.1093/jac/dkw481                                                    |
| 371 | 6. | Jim ER, Mark GP. Veterinary Pharmacology and Therapeutics. 9th ed. Ames, Iowa: Wiley-       |
| 372 |    | Blackwell, 2009.                                                                            |
| 373 | 7. | WHO Advisory Group on Integrated Surveillance of Antimicrobial Resistance and World         |
| 374 |    | Health Organization - 2017 - Critically important antimicrobials for human medi.pdf.        |
| 375 |    | Available from: https://apps.who.int/iris/bitstream/handle/10665/255027/9789241512220-      |
| 376 |    | eng.pdf?sequence=1&isAllowed=y                                                              |
| 376 |    | eng.pdf?sequence=1&isAllowed=y                                                              |

|  | niology. 1st ed. In: Giguère | pidemiology | Resistance and Its E | Antimicrobial | White DG. | Boerlin P. | 8. | 377 |
|--|------------------------------|-------------|----------------------|---------------|-----------|------------|----|-----|
|--|------------------------------|-------------|----------------------|---------------|-----------|------------|----|-----|

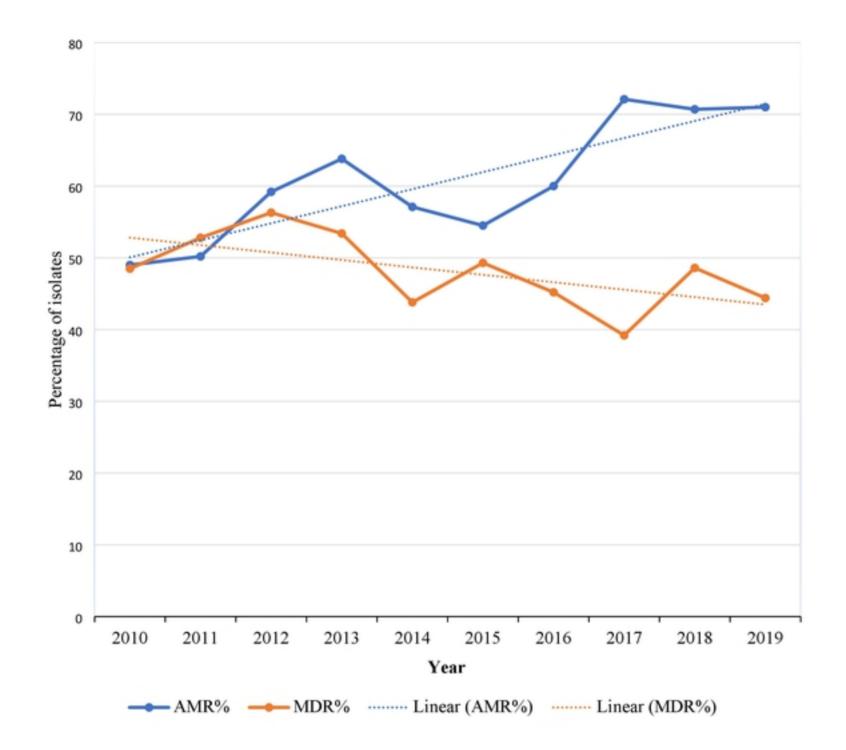
- 378 S, Prescott JF, Dowling PM, editors. Antimicrobial Therapy in Veterinary Medicine. 1st ed.
- 379 Wiley; 2013. pp. 21–40. doi:10.1002/9781118675014.ch3
- 380 9. Wallis LJ, Szabó D, Erdélyi-Belle B, Kubinyi E. Demographic Change Across the Lifespan
- of Pet Dogs and Their Impact on Health Status. Front Vet Sci. 2018;5.
- 382 doi:10.3389/fvets.2018.00200
- 10. Conner JG, Smith J, Erol E, Locke S, Phillips E, Carter CN, et al. Temporal trends and
- predictors of antimicrobial resistance among *Staphylococcus spp.* isolated from canine
- specimens submitted to a diagnostic laboratory. PLoS One. 2018;13: e0200719.
- 386 doi:10.1371/journal.pone.0200719
- 11. Breed Standards | United Kennel Club (UKC). [cited 28 Jan 2021]. Available:
- 388 https://www.ukcdogs.com/breed-standards
- 389 12. Sweeney MT, Lubbers BV, Schwarz S, Watts JL. Applying definitions for multidrug
- resistance, extensive drug resistance and pandrug resistance to clinically significant
- livestock and companion animal bacterial pathogens. J Antimicrob Chemother. 2018;73:
- 392 1460–1463. doi:10.1093/jac/dky043
- 13. Magiorakos A-P, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al.
- 394 Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an
- international expert proposal for interim standard definitions for acquired resistance. Clin
- 396 Microbiol Infect. 2012;18: 268–281. doi:10.1111/j.1469-0691.2011.03570.x

- M39-A4: Analysis and Presentation of Cumulative Antimicrobial Susceptibility Test Data;
  Approved Guideline—Fourth Edition. : 102.
- 15. Thungrat K, Price SB, Carpenter DM, Boothe DM. Antimicrobial susceptibility patterns of
- 400 clinical *Escherichia coli* isolates from dogs and cats in the United States: January 2008
- 401 through January 2013. Veterinary Microbiology. 2015;179: 287–295.
- 402 doi:10.1016/j.vetmic.2015.06.012
- 403 16. Shea A, McCarthy R, Lindenmayer J. Therapeutic Antibiotic Use Patterns in Dogs:
- 404 Observations from a Veterinary Teaching Hospital. J Small Anim Pract. 2011;52: 310–318.
- 405 doi:10.1111/j.1748-5827.2011.01072.x
- 406 17. Awosile BB, McClure JT, Saab ME, Heider LC. Antimicrobial resistance in bacteria
  407 isolated from cats and dogs from the Atlantic Provinces, Canada from 1994-2013. Can Vet
  408 J. 2018;59: 885–893.
- 18. Belmar-Liberato R, Gonzalez-Canga A, Tamame-Martin P, Escribano-Salazar M.
- 410 Amoxicillin and amoxicillin-clavulanic acid resistance in veterinary medicine–the situation
- 411 in Europe: a review. Veterinarni Medicina. 2011;56: 473.
- 412 19. Cummings KJ, Aprea VA, Altier C. Antimicrobial resistance trends among canine
- 413 *Escherichia coli* isolates obtained from clinical samples in the northeastern USA, 2004-
- 414 2011. Can Vet J. 2015;56: 393–398.
- 20. Boothe D, Smaha T, Carpenter DM, Shaheen B, Hatchcock T. Antimicrobial Resistance
  and Pharmacodynamics of Canine and Feline Pathogenic *E. coli* in the United States.

| 417 | Journal of t | he American | Animal Ho | ospital As | sociation. | 2012:48:37 | 9-389. |
|-----|--------------|-------------|-----------|------------|------------|------------|--------|
|     |              |             |           |            |            |            |        |

- 418 doi:10.5326/JAAHA-MS-5805
- 419 21. De Graef EM, Decostere A, Devriese LA, Haesebrouck F. Antibiotic resistance among
- 420 fecal indicator bacteria from healthy individually owned and kennel dogs. Microb Drug
- 421 Resist. 2004;10: 65–69. doi:10.1089/107662904323047826
- 422 22. Nyirabahizi E, Tyson GH, Dessai U, Zhao S, Kabera C, Crarey E, et al. Evaluation of
- 423 *Escherichia coli* as an indicator for antimicrobial resistance in *Salmonella* recovered from
- the same food or animal ceca samples. Food Control. 2020;115: 107280.
- 425 doi:10.1016/j.foodcont.2020.107280
- 426 23. Joosten P, Ceccarelli D, Odent E, Sarrazin S, Graveland H, Van Gompel L, et al.
- 427 Antimicrobial Usage and Resistance in Companion Animals: A Cross-Sectional Study in
- 428 Three European Countries. Antibiotics. 2020;9: 87. doi:10.3390/antibiotics9020087
- 429 24. Smith A, Wayne AS, Fellman CL, Rosenbaum MH. Usage patterns of carbapenem
- antimicrobials in dogs and cats at a veterinary tertiary care hospital. J Vet Intern Med.

431 2019/05/22 ed. 2019;33: 1677–1685. doi:10.1111/jvim.15522


432 25. Angus JC, Jang SS, Hirsh DC. Microbiological study of transtracheal aspirates from dogs
433 with suspected lower respiratory tract disease: 264 cases (1989-1995). J Am Vet Med
434 Assoc. 1997;210: 55–58.

435 26. Oluoch AO, Kim CH, Weisiger RM, Koo HY, Siegel AM, Campbell KL, et al. Nonenteric

436 *Escherichia coli* isolates from dogs: 674 cases (1990-1998). J Am Vet Med Assoc.

437 2001;218: 381–384. doi:10.2460/javma.2001.218.381

| 438 | 27. | Saputra S, Jordan D, Mitchell T, Wong HS, Abraham RJ, Kidsley A, et al. Antimicrobial      |
|-----|-----|--------------------------------------------------------------------------------------------|
| 439 |     | resistance in clinical Escherichia coli isolated from companion animals in Australia.      |
| 440 |     | Veterinary Microbiology. 2017;211: 43-50. doi:10.1016/j.vetmic.2017.09.014                 |
| 441 | 28. | Schmidt VM, Pinchbeck G, McIntyre KM, Nuttall T, McEwan N, Dawson S, et al. Routine        |
| 442 |     | antibiotic therapy in dogs increases the detection of antimicrobial-resistant faecal       |
| 443 |     | Escherichia coli. Journal of Antimicrobial Chemotherapy. 2018;73: 3305-3316.               |
| 444 |     | doi:10.1093/jac/dky352                                                                     |
| 445 | 29. | Wedley AL, Dawson S, Maddox TW, Coyne KP, Pinchbeck GL, Clegg P, et al. Carriage of        |
| 446 |     | antimicrobial resistant Escherichia coli in dogs: Prevalence, associated risk factors and  |
| 447 |     | molecular characteristics. Veterinary Microbiology. 2017;199: 23-30.                       |
| 448 |     | doi:10.1016/j.vetmic.2016.11.017                                                           |
| 449 | 30. | Papich MG. Antibiotic Treatment of Resistant Infections in Small Animals. Veterinary       |
| 450 |     | Clinics of North America: Small Animal Practice. 2013;43: 1091–1107.                       |
| 451 |     | doi:10.1016/j.cvsm.2013.04.006                                                             |
| 452 | 31. | Boothe DM, Debavalya N. Impact of Routine Antimicrobial Therapy on Canine fecal            |
| 453 |     | Escherichia coli Antimicrobial Resistance: A Pilot Study. International Journal of Applied |
| 454 |     | Research inVeterinary Medicine. 2011;9: 11.                                                |
| 455 | 32. | Ball KR, Rubin JE, Chirino-Trejo M, Dowling PM. Antimicrobial resistance and               |
| 456 |     | prevalence of canine uropathogens at the Western College of Veterinary Medicine            |
| 457 |     | Veterinary Teaching Hospital, 2002-2007. Can Vet J. 2008;49: 985–990.                      |
| 458 |     |                                                                                            |



# Figure 1