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ABSTRACT2

Alcohol misuse during adolescence (AAM) has been linked with disruptive structural3
development of the brain and alcohol use disorder. Using machine learning (ML), we analyze the4
link between AAM phenotypes and adolescent brain structure (T1-weighted imaging and DTI)5
at ages 14, 19, and 22 in the IMAGEN dataset (n ∼ 1182). ML predicted AAM at age 22 from6
brain structure with a balanced accuracy of 78% on independent test data. Therefore, structural7
differences in adolescent brains could significantly predict AAM. Using brain structure at age 148
and 19, ML predicted AAM at age 22 with a balanced accuracy of 73% and 75%, respectively.9
These results showed that structural differences preceded alcohol misuse behavior in the dataset.10
The most informative features were located in the white matter tracts of the corpus callosum and11
internal capsule, brain stem, and ventricular CSF. In the cortex, they were spread across the12
occipital, frontal, and temporal lobes and in the cingulate cortex. Our study also demonstrates13
how the choice of the phenotype for AAM, the ML method, and the confound correction technique14
are all crucial decisions in an exploratory ML study analyzing psychiatric disorders with weak15
effect sizes such as AAM.16

Keywords: alcohol use disorder, adolescence alcohol misuse, magnetic resonance imaging, machine learning, confound control,17
psychiatric research, multivariate analysis18

1 INTRODUCTION
Many adolescents participate in risky and excessive alcohol consumption behaviors [1], especially in19
European and North American countries. Several studies have identified that such early and risky exposure20
to alcohol is a potential risk factor that can lead to the development of Alcohol Use Disorder (AUD) later in21
life [2, 3, 4]. During adolescence and early adulthood (age 10-24), the human brain undergoes maturation22
characterized by an increase in white matter (WM) [5] and an initial thickening and later thinning of grey23
matter (GM) regions [6]. Researchers have suggested that excessive alcohol use during this period might24
disrupt normal brain maturation, causing lifelong effects [1, 7, 8]. Therefore, understanding how alcohol25
misuse during adolescence is related to the development of Alcohol Use Disorder (AUD) later in life26
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is crucial to understanding alcohol addiction. Furthermore, uncovering how adolescent alcohol misuse27
(AAM) is associated with the adolescent brain at different stages of its development can help to implement28
a more informed public health policy surrounding alcohol use during this age.29
Previous studies: Several studies in the last two decades have attempted to uncover how adolescent30
alcohol misuse (AAM) and their structural brain are related. These are summarised in Table S1 in the31
supplementary text. Most of the earlier studies collected data from small but controlled groups of 30 to32
100 subjects and compared specific brain regions such as the hippocampus or the pre-frontal cortex (pFC)33
between adolescent alcohol misusers (AAMs) and mild users or non-users (controls). They used structural34
features such as regional volume [9, 10, 11], cortical thickness [12], or white matter tract volumes [13, 14].35
These studies found differences between the groups in regions such as the hippocampus [9, 10], cerebellum36
[11], and the frontal cortex [11]. However, these findings are not always consistent across studies [15].37
This is also evident from the highlighted texts in our literature review in Table S1. Another group of studies38
attempted to uncover if alcohol misuse disrupts the natural developmental trajectory of adolescent brains39
[16, 17, 18, 14, 19, 20]. As compared to controls, these studies reported that the brains of AAMs showed40
accelerated GM decline [17, 18, 19] and attenuated WM growth [17, 19]. However, brain regions reported41
were not consistent between these studies either and do not tell a coherent story [15] (see Table S1). These42
differences in findings could potentially be due to the following reasons:43

1. Heterogeneous disease with a weak effect size: Alcohol misuse has a heterogeneous expression in44
the brain [21]. This heterogeneity might be driven by alcohol misuse affecting diverse brain regions45
in different sub-populations depending on demographic, environmental, or genetic differences [22].46
Furthermore, the effect of alcohol misuse on adolescent brain structure can be weak and hard to detect47
(especially with the mass-univariate methods used in previous studies). The possibility of several48
disease sub-types exasperated by the small signal-to-noise ratio can generate incoherent findings49
regarding which brain regions are affected by alcohol.50

2. Higher risk of false-positives: Most previous studies have small sample size that are prone to generate51
inflated effect size [23]. Furthermore, these studies employ mass-univariate analysis techniques that52
are vulnerable to multiple comparisons problem [24] and can produce false-positives if ignored. These53
factors coupled with the possibility of publication bias to produce positive results [25] can have a high54
likelihood of generating false-positive findings [26].55

3. Several metrics to measure alcohol misuse: There is no consensus on what is the best phenotype to56
measure AAM. Many studies use binge drinking or heavy episodic drinking as a measure of AAM57
[12, 27, 14, 20], while few others use a combination of binge drinking, frequency of alcohol use,58
amount of alcohol consumed and the age of onset of alcohol misuse [28, 18, 29, 30, 19]. These59
differences in the analysis could potentially produce different findings.60

Multivariate exploratory analysis: Over the last years, data collection drives such as IMAGEN [31],61
NCANDA [32], and UK Biobank [33] made available large-sample multi-site data with n > 1000 that62
are representative of the actual population. This enabled researchers to use multivariate, data-driven, and63
exploratory analysis tools such as machine learning (ML) to detect effects of alcohol misuse on multiple64
brain regions [27, 34, 30]. Such whole-brain multivariate methods are preferable over the previous mass-65
univariate methods as they have a higher sensitivity to detect true positives [35]. Furthermore, ML can be66
easily used for clinical applications such as computer-aided diagnosis, predicting future development of67
AUD, and future relapse of patients into AUD [36].68
Due to these advantages, several exploratory studies using ML have been attempted in AUD research69
[27, 30, 34]. We further extend this line of work by analyzing the newly available longitudinal data from70
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Figure 1. An overview of the analysis performed. Morphometric features extracted from structural brain
imaging are used to predict Adolescent Alcohol Misuse (AAM) developed by the age of 22 using machine
learning. To understand the causal relationship between AAM and the brain, three separate analyses are
performed by using imaging data collected at three stages of adolescence: age 14, age 19 and age 22

IMAGEN (n ∼ 1182 at 4 time points of adolescence) [31] by designing a robust and reliable ML pipeline.71
The goal of this study is to explore the relationship between adolescent brain and AAM using ML on72
a relatively large (n ≥ 1000), multi-site adolescent data and discover the brain regions associated with73
AAM. As shown in Figure 1, we predict AAM at age 22 using brain morphometrics derived from structural74
imaging captured from three stages of adolescence – ages 14, 19, and 22. The structural features of different75
brain regions are extracted from two modalities of structural MRI, that is, T1-weighted imaging (T1w) and76
Diffusion Tensor Imaging (DTI). The most informative structural features for the ML model prediction77
are visualized using SHAP [37, 38] that reveals the most distinct structural brain differences between78
AAMs and controls. Furthermore, we use multiple phenotypes of alcohol misuse such as the frequency79
of alcohol consumption, amount of consumption, onset of misuse, binge drinking, the AUDIT score, and80
other combinations, and systematically compare them. We also compare four different ML models, and81
multiple methods of controlling for confounds in ML and derive important methodological insights which82
are beneficial for reliably applying ML to psychiatric disorders such as AUD. To promote reproducibility83
and open science, the entire codebase used in this study, including the initial data analysis performed on84
the IMAGEN dataset are made available at https://github.com/RoshanRane/imagen ml.85

2 DATA
The IMAGEN dataset [31, 39] is currently one of the best candidates for studying the effects of alcohol86
misuse on the adolescent brain. Most large-sample studies listed in Table S1 [27, 29, 30] used the IMAGEN87
dataset for their analysis. It consists of data collected from over 2000 young people and includes information88
such as brain neuroimaging, genomics, cognitive and behavioral assessments, and self-report questionnaires89
related to alcohol use and other drug use. The data was collected from 8 recruitment centers across Europe,90
at 4 successive time points of adolescence and youth. Figure 2 (a) shows the number of subjects at each91
time point and the number of participants that were scanned. Subjects were not scanned in FU1. More92
details regarding recruitment of subjects, acquisition of psychosocial measures, and ethics can be found on93
the IMAGEN project website1.94
Structural neuroimaging data: To investigate the effects of alcohol on brain structure, two MRI95
modalities have been used predominantly in the literature - (a) T1-weighted imaging (T1w), and (b)96

1 https://imagen-europe.com/standard-operating-procedures
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Figure 2. The IMAGEN dataset: (a) Data is collected longitudinally at 4 stages of adolescence - age
14 or baseline (BL), age 16 or follow-up 1 (FU1), age 19 or follow-up 2 (FU2) and, finally age 22 or
follow-up 3 (FU3). The blue bar shows the number of subjects with brain imaging data. (b) The distribution
of subjects across sex and the site of recruitment, for the 1182 subjects that were scanned at FU3 (c) The
same distribution across sex and site also showing the proportion of subjects that meet the AUDIT ’risky
drinkers’ category at FU3.

Diffusion Tensor Imaging (DTI) (see Table S1). While T1w MRI can be used to derive general features97
of the brain structure such as cortical and sub-cortical volumes, areas, and gray-matter thicknesses, DTI98
captures white matter microstructures by probing water molecule motion. An axial slice (z = 80) of both99
of these MRI modalities of a control subject from the IMAGEN data are shown in Figure 3.100
Both modalities were recorded using 3-Tesla scanners. The T1w images were collected using sequences101
based on the ADNI protocol [40]. The IMAGEN consortium used Freesurfer’s recon-all pipeline102
to process these images and extract structural features. This involves registering the T1w-images to the103
Talairach template brain, automatic extraction of gray matter, white matter and cerebrospinal fluid (CSF)104
sections, and then segmenting them into 34 cortical regions per hemisphere and 45 sub-cortical regions.The105
grey matter volume (in mm3), surface area (in mm2), thickness (in mm), and surface curvature, are106
extracted for each of the cortical regions using the Desikan-Killiany atlas, along with global features such107
as total intracranial, total grey matter, white matter and CSF volumes. For the subcortical regions, the mean108
intensity and volume are determined. This results in a total of 656 structural features per subject. DTI109
scans were acquired using the protocol described in Jones et al. [41] and Fractional Anisotropy (FA) is110
derived from the DTI using FMRIB’s Diffusion Toolbox FDT. The DTI-FA images are then non-linearly111
registered to the MNI152 space (1mm3) and the average FA intensity at 63 regions with white matter tracts112
are calculated using the TBSS toolbox [42] by the IMAGEN consortium 2. Subjects with FA intensity113
greater than 3 standard deviations from the mean are excluded as outliers.114
Alcohol misuse phenotypes: Information related to alcohol use and misuse can be found in the AUDIT115
screening test3 (Alcohol Use Disorder Identification Test), ESPAD questionnaire (European School Survey116
Project on Alcohol and other Drug), and the TLFB logs (Timeline-Followback Interview). Previous studies117
used different metrics of alcohol misuse such as the number of binge drinking episodes [12, 27, 14, 20],118
the frequency and amount of alcohol consumption [28, 18, 29, 30, 19], and even the age of onset of alcohol119
misuse [43] to characterize AAM. There has not yet been a systematic comparison of these different120
phenotypes.121

2 https://github.com/imagen2/imagen processing/tree/master/fsl dti
3 AUDIT questionnaire (link)

This is a provisional file, not the final typeset article 4
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In this paper, we use four alcohol misuse metrics to derive ten phenotypes of AAM, (a) frequency of122
alcohol use, (b) amount of alcohol consumed per drinking occasion, (c) year of onset of alcohol misuse,123
and (d) the number of binge drinking episodes. These phenotypes are listed in Table 1 and include each124
of the individual metrics, their combinations, and their longitudinal trajectories from age 14 to 22. The125
longitudinal phenotypes, ‘Binge-growth’ and ‘AUDIT-growth’, are generated using latent growth curve126
models [44] to capture the alcohol misuse trajectory over the four time points - BL, FU1, FU2, and FU3.127
To derive the AAMs group and the controls from each alcohol misuse metric, a standard procedure is128
followed that is similar to Seo et al. [30] and Ruan et al. [43]. First, the phenotype is used to categorize the129
subjects into three stages of alcohol misuse severity - heavy AAMs, moderate misusers, and safe users.130
Moderate misusers are then excluded from the analysis (≈ 250 − 400 subjects) and ML classification131
is performed with heavy misusers as AAMs and safe users as controls. Figure S2 and Table S2 in the132
supplement shows how the subjects are divided into these three sub-groups for each of the 10 phenotype133
and also lists the final number of subjects in each sub-group in the FU3 analysis, as an example. The data134
analysis procedure can be found in the project code repository4 within the dataset-statistics notebook.135
Confounds in the dataset: Diagram (c) in Figure 2 shows how the proportion of risky alcohol users varies136
across the 8 recruitment sites and among the male and female subsets at each site within the dataset. For137
example, a greater portion of subjects from sites like Dublin, London, and Nottingham indulge in risky138
alcohol use compared to the sites from mainland Europe. Similarly, at most sites, a greater portion of males139
are risky alcohol users compared to females. These systematic differences can confound ML analyses since140
ML models can use the sex and site information present in the neuroimaging data to indirectly predict141
AAM, instead of identifying alcohol-related effects in the brain structure. This problem of confounds in142
multivariate analysis [45, 46, 47] and the methods used to control for its effects are explained in further143
detail in the next section.144

3 METHODS
Three time point analyses are performed in this study. Each time point analysis is divided into two stages145
called the ML exploration stage and the generalization test stage. The ML exploration is performed with146
80% of data (randomly sampled). The remaining 20% (n = 147) serve as an independent test data, called147
the dataholdout, which is only used once, in the end, to perform the final inference and report the results.148
This design allows us to first determine the best ML algorithm for the task and the best phenotype of AAM,149
and then test the results on an independent subset of the data. The pseudocode of this procedure is also150
provided in the supplementary section 4. It was implemented with the help of python’s scikit-learn software151
package5. The two-stage cross validation (CV) with a inner n-fold cross validation (CV) procedure is152
designed to prevent ‘double dipping’ [48, 49]. All data preprocessing and analysis is executed only on the153
training data in dataexplore, and only applied on the test data during validation. This ensures that there are154
no data leakage issues that were found in several previous ML neuroimaging studies [50].155

156
MRI features: The 656 morphometric features extracted from T1w sMRI modality and the 63 features157
extracted from the DTI-FA modality are used together as the input for the ML models at both stages. Each158
feature is standardized to have zero mean and unit variance across all subjects (mean and variance are159
estimated only on the training data, and then applied to the test data). Features with zero variance are160
dropped.161
ML models: Four ML models are tested in this study. These include logistic regression (LR), linear162

4 https://github.com/RoshanRane/ML for IMAGEN
5 https://scikit-learn.org/stable/about.html
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Figure 3. A schematic representation of the experimental procedure followed for all 3 time point
analyses. In the ML exploration stage, we experiment with four ML models and 10 phenotypes of
AAM on 80% of the data (dataexplore) using a 7-fold cross validation scheme. Once the best ML model,
the best phenotype of AAM, and the most appropriate confound-control technique are determined, the
generalization test is performed on datainfer by using the dataholdout subset as the test data. The result from
the generalization test are reported as the final results and the informative brain features are determined at
this stage using SHAP [37].
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Table 1. 10 phenotypes of Adolescent Alcohol Misuse (AAM) are derived and compared in this analysis.
A description of each phenotype is provided here along with the link to the IMAGEN questionnaires ID
used to generate the phenotype.

No. Phenotype Description Questionnaire

1 Frequency Number of occasions drinking alcohol in last 12 months ESPAD 8b.

2 Amount
Number of alcohol drinks consumed on a
typical drinking occasion

ESPAD prev31,
AUDIT q2.

3 Onset Had one or more binge-drinking experiences by the age of 14 ESPAD 29d

4 Binge Total drunk episodes from binge-drinking in lifetime (by age 22)
ESPAD 19a,
AUDIT q3.

5 Binge-growth Longitudinal trajectory of binge-drinking experiences had per year
Growth curve
of ESPAD 19b.

6 AUDIT AUDIT screening test performed at the year of scan AUDIT-total (q1-10).

7 AUDIT-quick Only the first 3 questions of AUDIT screening test AUDIT-freq (q1-3).

8 AUDIT-growth Longitudinal changes in the AUDIT score measured over the years
Growth curve of
AUDIT-total.

9 Combined-seo
A combined risky-drinking phenotype from Seo et al. [30]
generated using amount, frequency, and binge-drinking data

ESPAD 8b, 17b, 19b,
and TLFB alcohol2

10 Combined-ours
A combined risky-drinking phenotype developed by clustering
amount, frequency, and binge-drinking trajectory

AUDIT q1, q2,
ESPAD 19a, growth
curve of ESPAD 19b.

SVM (SVM-lin) [51], kernel SVM with a radial basis function (KSVM-rbf) [52], and a gradient boosting163
(GB) classifier [53]. LR and SVM-lin are linear ML methods, whereas SVM-rbf and GB are capable of164
learning non-linear mappings. We use the liblinear [54] implementation of SVM-lin and XGBoost [55]165
implementation of GB. GB is an ensemble learning method. The hyperparameters of the models are listed166
in the supplementary section 3 are tuned using an inner-CV. Testing 4 different ML models helps to account167
for any modeling-related bias [56] in the final results. Combining the 4 ML models and the ten different168
phenotypes of AAM, we end up with a total of 40 ML classification runs in the ML exploration stage.169
Evaluation metrics: The model performance is evaluated using the balanced accuracy metric [57]. It is170
formulated as the mean of the model’s accuracies for each class (AAM and controls) in the classification.171
Therefore, it is insensitive to class imbalances in the data. Along with this, the area under the curve of the172
receiver-operator characteristic (AUC-ROC) is also calculated. In ML exploratory stage, 7 measures are173
obtained for each metric from the outer 7-fold CV which helps to estimate mean of the model performance174
and get a sense of the variance [58]. During generalization test, the ML models are retrained 7 times175
on dataexplore with different random seeds and reevaluated on dataholdout to gain an estimate of the176
model performance on dataholdout. The statistical significance of the final generalization test accuracies177
is calculated using permutation testing [59]. The permutation test is performed by running the entire ML178
pipeline with randomly shuffled labels in the training data, while keeping the labels in the test data fixed.179
This is repeated 1000 times to generate the null-hypothesis (H0) distribution and derive the p-value. Since180
three time point analyses are performed on the same subjects, Bonferroni correction is applied on the181
p-values to control for the false-positive rate from this multiple comparison.182
Model interpretation: The associations learned by the ML models between structural brain features and183
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AAM is extracted using a post-hoc feature importance attribution technique called SHAP [37]. SHAP184
(SHapley Additive exPlanations) uses the concept of Shapley Values from cooperative game theory to fairly185
determine the marginal contribution of each input feature to model prediction [37].186
Following the generalization test, a SHAP value (Ss,f ) is generated for each input feature f of each subject187
s in dataholdout. The goal is to determine which of the 719 features were most informative for the model188
when classifying AAMs from controls. Feature importance can be determined by looking at the average189
absolute SHAP value of each feature across all subjects Sf = 1

N

∑N
s=1|Ss,f |, where N denotes the total190

subjects in dataholdout. The most significant features are chosen as those features that have Sf value at191

least two times higher than the average SHAP value across all the features S = 1
719

∑719
f=1|Sf |. Since the192

generalization test is repeated seven times with different random seeds, we have seven instances of Sf193
available. Only those features that consistently have Sf ≥ 2 ∗ S across all seven runs are listed as the194
most informative features. Next, it is determined if these informative features have higher-than-average195
or lower-than-average values when predicted as AAM. This information is further relevant for deriving196
clinical insights about how AAM brain structure differs from controls.197
Correcting for confounds In ML, a confounding variable c is defined as a variable that correlate with198
the target y and is deducible from the input X , and this relationship X → c → y is not of primary199
interest to the research question and hinders the analysis [47]. As demonstrated by the diagram on200
the right, a confounding variable c can form an alternative explanation for the relationship between201
X and y and distract the ML models from detecting the signal of interest sy between X → y.202

X

c

y

sc c ∼ y

sy

In this study, the sex of the subjects and their site of recruitment can confound203
the AAM analysis [30] since they correlate with the output AAM labels and204
are predictable from the input structural brain features. Instead of detecting205
the effects of alcohol misuse in the brain sy, the ML models could potentially206
use the information about the confounds sc to predict AAM along the alternative207
pathway (shown with the red dotted lines) and produce significant but confounding208
results [30, 47, 60]. In neuroimaging studies, two methods have been extensively209
employed for correcting the influence of confounds:210

1. Confound regression: In this method, the influence of the confounding signal sc on X is controlled211
by regressing out the signal from features in X [45]. This can remove the alternative confounding212
explanation pathway by eliminating the link sc between X → c.213

2. Post hoc counterbalancing: The correlation between the confound and the output c ∼ y can be removed214
by resampling the data after the data collection. This method potentially removes the alternative215
confounding pathway by abolishing the relationship c→ y [45]. The resampling is performed such216
that the distribution of the values of the confounding variable c is similar across all classes of y (AAM217
and controls). So for example, after counterbalancing for sex in this study, the ratio of male-to-female218
subjects should be the same in AAMs and controls. One common technique of counterbalancing219
for categorical confounds (eg. sex, site) involves randomly dropping some samples from the larger220
classes in y until they are equal. This is called counterbalancing with undersampling. However, this221
will result in a reduction in the sample size and hence the statistical power of the study. Another222
way to counterbalance without losing samples involves performing sampling-with-replacement on the223
smaller classes in y. This is called counterbalancing with oversampling. One should take care that the224
sampling-with-replacement is done only on the training data, after the train-test split is performed.225

To assess whether confound regression worked and the confounding signal sc is removed successfully, a226
confound correction method recently proposed by Snoek et al. [47] can be used. In this method, the ML227
algorithm used in the original analysis is reused to predict the confound c from the neuroimaging data228
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X . Following a successful confound regression, the confound should not be predictable anymore from X229
and X → c should produce insignificant or chance accuracy. Similarly, to determine if counterbalancing230
was successful and the correlation c ∼ y was removed, we used the Same Analysis Approach by Görgen231
et al. [46]. Here, the same ML algorithm is used to predict the confound c from the labels y [46]. An232
above-chance significant prediction accuracy between c → y would indicate that the correlation c ∼ y233
still exists and the counterbalancing was not successful. Since the confounds csex and csite are categorical,234
they are first one-hot encoded to ensure no false ordinal relationship is implied. The confound correction235
methods are only performed on the training data as recommended by Snoek et al. [47]. The balanced236
accuracy metric used ensures that we account for any class imbalances in the test data. Before starting237
the ML exploration, we first compare these different confound correction methods and choose the most238
suitable method among them.239

4 RESULTS
The results are reported in the following four subsections: In subsection 1, different confound-control240
techniques are compared and the most suitable technique for this study is determined. Subsection 2 shows241
the results of the ML exploration performed with ten AAM labels, four ML models, and using imaging242
data from three time points of adolescence. This stage helps to determine the best phenotype of AAM and243
the best ML model. Subsection 3 reports the final results on the independent dataholdout for all three time244
point analyses and subsection 4 shows the most informative features found in each of the analyses.245

Confound correction techniques246

The sex csex and recruitment site csite of subjects confound this study (see section 2) and their influence247
on the study needs to be controlled. We test three confound correction techniques on dataexplore – (a)248
confound regression (b) counterbalancing with undersampling and (c) counterbalancing with oversampling.249
To verify if these methods work as expected, the same analysis approach from Görgen et al. [46] and250
the approach by Snoek et al. [47] are employed. For the two confounds csex and csite, this requires us to251
test five input-output combinations (X → y, X → csex, X → csite, csex → y and csite → y) for a given252
X → y analysis.253

Figure 4 shows the results of comparing different confound correction techniques for the ‘Binge’254
phenotype. The following conclusions can be derived from this comparison:255

1. Sex and site can confound the AAM analysis: As shown in subplot (a), all the input-output combinations256
involving the confounds (X → csex, X → csite, csex → y and csite → y) produce significant257
prediction accuracies before any confound correction is performed. This further adds to the evidence258
that both the confounds csex, csite can strongly influence the accuracy of the main analysis X → y and259
confound the analysis.260

2. Confound regression is not a good choice when followed by a non-linear ML method: Following261
confound regression, the results of X → csex and X → csite should become non-significant as the262
signal sc has been removed from X . However, it is seen that in some cases the non-linear models263
SVM-rbf and GB are capable of detecting the confounding signal sc from the imaging data. The red264
arrow in the subplot (b) points out one such case in the example shown. This is not surprising as the265
standard confound regression removes linear components of the signal sc but does not remove any266
non-linear components that might still be present in X [46, 60]. Furthermore, confound regression267
carries an additional risk of also regressing-out the useful signal in X that does not confound the268
analysis X → y but is a co-variate of both c and y [60].269
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Figure 4. Comparing confound correction techniques. Five input-output settings are compared within
each confound correction technique: X → y, X → csex, X → csite, csex → y, and csite → y. (a) shows
the results before any correction is performed, (b) shows the results of performing confound regression, and
(c) and (d) show the results from counterbalancing by undersampling the majority class and oversampling
the minority class, respectively. Statistical significance is obtained from 1000 permutation tests and is
shown with ** if p < 0.01, * if p < 0.05, and ‘n.s’ if p ≥ 0.05.

3. Counterbalancing with oversampling is the best choice for this study: As expected, counterbalancing270
forces the csex → y and csite → y accuracies to chance-level by removing the correlation between271
c ∼ y (subplots (c) and (d)). It can be seen that after the undersampled counterbalancing the results272
of the main analysis X → y also become non-significant as indicated by the red arrow in (c). This273
drastic reduction in performance is likely due to the reduction in the sample size of the training data by274
n ∼ 100− 250 from undersampling. Therefore, counterbalancing with oversampling of the minority275
group is a better alternative compared to undersampling.276

This comparison was also repeated for two other AAM phenotypes - ‘Combined-seo’ and ‘Binge-growth’277
and the above findings were found to be consistent across all of them. Hence, counterbalancing with278
oversampling is used as the confound-control technique in the main analysis. When performing over-279
sampled counterbalancing, it is ensured that the oversampling is done only for the training data.280

ML exploration281

The results from the ML exploration experiments are summarised in Figure 5. For the different AAM282
phenotypes, the balanced accuracies range between 45 − 73%. It must be noted that the results across283
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(c) X = MRI features at age 14 (BL)
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Figure 5. Results of the ML exploration experiments: The ten phenotypes of AAM tested are listed
on the y-axis and the four ML models are represented with different color coding as shown in the legend
of figure (a). For a given AAM label and ML model, the point represents the mean balanced accuracy
across the 7-fold CV and the bars represent its standard deviation. Figure (a) shows the results when the
imaging data from age 22 (FU3) is used, figure (b) shows results for age 19 (FU2) and figure (c) for age 14.
Figure (d) shows the results from all three time point analyses in a single plot along with the interval of the
balanced accuracy that were non-significant (p ≤ 0.05) when tested with permutation tests.
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Figure 6 & Table 2. Final results for the three time point analyses on the ‘Binge’ drinking AAM
phenotype obtained with the two non-linear ML models, kernel-based support vector machine (SVM-rbf)
and gradient boosting (GB). The figure shows the mean balanced accuracy achieved by each ML model
within each analysis while the table lists the combined average scores for each analysis. The ML models
are retrained 7 times on dataexplore with different random seeds and evaluated on dataholdout to obtain
an estimate of the accuracy with a standard deviation. Statistical significance is obtained from 1000
permutation tests and is shown with ** if p < 0.01, * if p < 0.05, and ‘n.s’ if p ≥ 0.05.

different phenotypes are not directly comparable as each AAM phenotype classification task has a different284
sample size varying between ≈ 620 − 780. These differences in the number of samples (see Table S2285
in the supplement) in the two classes AAM and controls could add additional variance in the accuracy.286
Nevertheless, some useful observations can be made from the consistenties across the three time point287
analyses in subplots (a), (b) and (c):288

1. The most predictable phenotype from structural brain features for all three time point analyses is289
‘Binge’ which measures the total lifetime experiences of being drunk from binge drinking.290

2. Other individual phenotypes such as the amount of alcohol consumption (Amount), frequency of291
alcohol use (Frequency) and the age of AAM onset (Onset) are harder to predict from brain features292
compared to the binge drinking phenotype. The results on ‘Combined-seo’ and ‘Combined-ours’ shows293
that using these phenotypes in combination with binge drinking seems to also be detrimental to model294
performance.295

3. All models perform poorly at predicting AAM phenotypes derived from AUDIT. This is surprising as296
AUDIT is considered a de-facto screening test for measuring alcohol misuse [61].297

4. Among the four ML models, the SVM with non-linear kernel SVM-rbf, and the ensemble learning298
method GB perform better than the linear models LR and SVM-lin. This is further evident in the299
summary plot (d) in the figure.300

In summary, the non-linear ML models SVM-rbf and GB coupled with the ‘Binge’ phenotype consistently301
perform the best in all three time point analyses. This is more clearly visible in the summary figure (d)302
where the results from all three analyses are combined in a single plot. Similar general observations can be303
made when the AUC-ROC metric is used to measure model performance as shown in the supplementary304
Figure S3.305

Generalization306

The generalization test is performed with ‘Binge’ phenotype as the label and the two non-linear ML307
models, SVM-rbf and GB. The final results are shown in Figure 6. For the three analyses using imaging308
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Figure 7. Most informative structural features for SVM-rbf model’s predictions on dataholdout. All
important features are listed and their locations are shown on a template brain for a better intuition for
each of the three time point analyses. The features are color coded to also display whether these features
have lower-than-average or higher-than-average values when the model predicts alcohol misusers. (Acronyms::
AAM: adolescence alcohol misuse, area: surface area, volume: gray matter volume, thickness: average thickness, thicknessstd: standard deviation of thickness,
intensity: mean intensity, meancurv: integrated rectified mean curvature, gauscurv: integrated rectified gaussian curvature, curvind: intrinsic curvature index)

data from age 22, age 19, and age 14, as input, an average balanced accuracy of 78%, 75.5%, and 73.1%309
are achieved, respectively. Their average ROC-AUC scores are 83.9%, 83.1%, and 81.5% for the respective310
analyses. The accuracies for all three time point analyses are significant with p < 0.01. To get a better311
intuition, refer to the supplementary Figure S1 that shows model accuracies versus the accuracies obtained312
from permutation tests.313

Important brain regions314

Following the generalization test, the most informative structural brain features are determined for the315
SVM-rbf model, as it performs relatively better among the two non-linear models tested on dataholdout (see316
Figure 6). Figure 7 lists the most important features for all three time point analyses and shows whether317
these features have lower-than-average or higher-than-average values whenever the ML model predicts318
alcohol misuse.319
Several clusters of regions and feature values can be identified. Most of the important subcortical features320
are located around the lateral ventricles and the third ventricle and include CSF-related features such as the321
CSF mean-intensity, volume of left choroid plexus, and left corticospinal tract in the brain stem. Several322
white matter tracts are found to be informative such as parts of the corpus callosum, internal capsule, and323
posterior corona radiata. Furthermore, all of these white matter tracts, along with the brain stem have324
lower-than-average intensities in AAM predictions. The prominent cortical features are spread across the325
occipital, temporal, and frontal lobes. In the MRIage22 → AAMage22 analysis important cortical features326
appear in the occipital lobe. In contrast, for the future prediction analyses MRIage19 → AAMage22 and327
MRIage14 → AAMage22, clusters appear in the limbic system (parts of the cingulate cortex and right328
parahippocampal gyrus), frontal lobe (left-pars orbitalis, left-frontal pole, right-precentral gyrus, and329
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left-rostral middle frontal gyrus) as well as in the temporal lobe (left-inferior temporal gyrus, left-temporal330
pole, and right-bank of the superior temporal sulcus). In the occipital lobe, AAMs predictions have lower331
grey matter thickness in the right-cuneus, lateral occipital, and pericalcarine cortices, and higher curvature332
index in left-cuneus and left-pericalcarine cortex.333

5 DISCUSSION
For over two decades, researchers have tried to uncover the relationship that exist between adolescent334
alcohol misuse (AAM) and brain development. Many previous studies found that such a relationship335
exists (see Table S1) but with low-to-medium effect size [10, 27, 34, 30, 11, 13, 17]. The brain regions336
linked with AAM varied greatly across studies (see highlighted text in Table S1). This inconsistency in337
findings and effect sizes could be due to methodological limitations, small sample studies, unavailability of338
long-term longitudinal data like IMAGEN [31], or simply due to the heterogeneous expression of AAM in339
the brain. In our study, ML models predicted AAM with significantly above-chance accuracies in the range340
73.1%− 78% (ROC-AUC in 81.5%− 83.9%) from adolescent brain structure captured at ages 14, 19 and341
22. Thus, our results demonstrate that adolescent brain structure is indeed associated with alcohol misuse342
during this period.343
The causality of the relationship between adolescent brain structure and AAM is not clear [27, 20]. The344
relationship could arise from alcohol misuse inducing neurotoxicity [21] causing the observed changes345
in their brains. It could also be that these structural differences precede AAM and such adolescents are346
just more vulnerable towards alcohol misuse [8, 62]. Such neuropsychological predisposition could stem347
from genetic predispositions or from influencing environmental factors such as early stress or childhood348
trauma [63, 64], misuse of other drugs such as cannabis [65] and tobacco, and parental drug misuse [14].349
There might also be an interaction effect between alcohol-induced neurotoxity and environmental and350
genetic predispositions [20]. While the direction of causality is still under active investigation [20, 66],351
the significantly high accuracies obtained in our study for MRIage19 → AAMage22 and especially352
MRIage14 → AAMage22 suggest that these structural differences might be preceding alcohol misuse353
behavior. Out of the 265 subjects that took the ESPAD survey at age 14 and belonged to the AAM category354
in MRIage14 → AAMage22 analysis, 83.3% of subjects reported having no or just one binge drinking355
experience until age 14. This supports the results from Robert et al. [20] that a cerebral predisposition - be356
it due to genetic or environmental effects - might be preceding alcohol abuse in adolescents.357
We identified the most informative brain features for the ML predictions using SHAP that has been358
successfully applied to medical data [37, 38]. The important features were found to be distributed across359
several subcortical and cortical regions of the brain, implying that the association between AAM and brain360
structure is widespread and heterogeneous. In accordance with previous studies, AAM was associated with361
lower DTI-FA intensities in several white matter tracts and the brain stem [13, 16, 15] and reduced GM362
thickness [34, 18], especially in the occipital lobe. Features of anterior cingulate cortex [34, 30, 15], middle363
frontal and precentral gyrus [17], hippocampus [9, 10], and right parahippocampal gyrus [27] were also364
found to be informative, although the type of feature and the average feature value in AAMs differed from365
previous studies. Features from the frontal lobe and cerebellum were informative only for future AAM [14]366
but not for current AAM prediction, in contrast to findings of [11, 27, 30]. This difference could be due367
to the meticulous confound control performed in this study for sex and site of the subjects. Additionally,368
our ML models also found CSF-related features in the third and lateral ventricles, and some regions of the369
temporal cortex as informative features for AAM prediction.370
In the ML exploration stage, we found that the binge drinking phenotype, which is commonly used in371
previous studies [10, 27, 20], was the most predictable phenotype of AAM as compared to frequency,372
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amount, or onset of alcohol misuse. Curiously, phenotypes derived from AUDIT, which is a gold standard373
of screening for alcohol misuse [61], did not score significantly above-chance in any of the three time point374
analyses. Other similar compound metrics that use measures of alcohol use frequency and amount along375
with binge drinking, such as ‘Combined-seo’ and ‘Combined-ours’, also perform worse than using just the376
binge drinking information. This suggests that using other phenotypes of alcohol misuse in combination377
with binge drinking was detrimental to the prediction task, as compared to using only binge drinking.378
Different phenotypes of AAM capture slightly different psychosocial characteristics of adolescents [67].379
For instance, ‘Amount’ correlates significantly with agreeableness and a life history of relocation valence380
(r = −0.14, p < 0.001), accident valence (r = −0.16, p < 0.001) and sexuality frequency (r = −0.17,381
p < 0.001), whereas the other phenotypes do not (p > 0.01). ‘AUDIT’ and it’s derivatives significantly382
correlate with impulsivity trait (r = 0.23, p < 0.001) on SURPS, where as ‘Binge’ does not (r = 0.09,383
p > 0.01) but they both correlate with sensation seeking trait (r > 0.29, p < 0.001) as also found in384
previous studies [68]. Castellanos-Ryan et al. [68] have found that these two traits manifest differently in385
the brain. Therefore, one can hypothesize that the psychosocial differences (and their associated neural386
correlates [68]) between ‘Binge’ and the other AAM phenotypes might explain the 2−10% higher accuracy387
obtained with ‘Binge’.388
Methodological insights: To the best of our knowledge, this is the first study to analyze and reports results389
on the complete longitudinal data from IMAGEN, including the follow-up 3 data. Two previous studies,390
Whelan et al. [27] and Seo et al. [30] performed similar ML analysis on the IMAGEN data and unlike us,391
found only a weak association between structural imaging and AAM. The logistic regression model in392
Whelan et al. [27] scored 58± 8% ROC-AUC when predicting AAM at age 14 from structural imaging393
features collected at age 14 (BL) and 63± 7% ROC-AUC at predicting AAM at age 16 (FU1). This lower394
accuracy with high variance obtained in their experiments can be attributed to - (a) the relatively smaller395
sample size used in their study (n ∼ 265− 271), (b) unavailability of long-term AAM information from396
IMAGEN’s FU2 and FU3 data, (c) using only a linear ML model, and (d) only using GM volume and397
thickness as structural features. On the other hand, Seo et al. [30]’s models achieved accuracies in the398
range 56− 58% when predicting AAM at age 19 (FU2) using imaging features from age 19, and did not399
get a significant accuracy when they used imaging features from age 14. This lower performance can be400
attributed to the following experimental design decisions - (a) Seo et al. [30] used GM volume and thickness401
features from just 24 regions of the brain associated to cue-reactivity, (b) their AAM phenotype is not the402
best phenotype of AAM as evident from the results of our ML exploration (see results for ‘Combined-seo’403
in Figure 5), and (c) the confound-control technique used in their study, confound regression, can result in404
under-performance as demonstrated in Figure 4.405
In contrast to these previous works, our study has the following advantages: First, we use 719 structural406
features extracted from 2 MRI modalities, T1w and DTI, that include not only GM volume and thickness407
but also surface area, curvature, and WM and GM intensities from all cortical and sub-cortical regions408
in the brains. Second, we empirically derive the best AAM label for the task by comparing different409
phenotypes previously used in the literature. For the different AAM phenotypes, the balanced accuracies410
range between chance to significant performance (45%− 73%), emphasizing the importance of the choice411
of the label in such ML studies with low effect sizes. And finally, we test different confound correction412
techniques and use the one that effectively controls for the influence of confounds without also destroying413
the signal of interest. In summary, the higher accuracy in the current study can be attributed to not just the414
availability of long-term data on AAM but also to the rigorous comparison of different labels of AAM,415
different ML models and confound control techniques.416
Among the four different ML models tested, the two non-linear models , SVM-rbf and GB, consistently417
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performed better than the two linear models. We also explicitly ensured that the confounding influence of sex418
and site were eliminated by combining suggestions from Görgen et al. [46] and Snoek et al. [47]. We found419
evidence that the linear confound regression technique used often in previous ML-based neuroimaging420
studies [30, 20, 47], might not be the best choice as it cannot be used with non-linear models such as421
SVM-rbf or Naive Bayes used in Seo et al. [30] and distorts the signal of interest from the neuroimaging422
data [60] as seen in Figure 4. In contrast, counterbalancing using oversampling is recommended as it423
successfully removed the influence of the confounds without reducing the sample size in the study.424
In contrast to the main results, the models failed to achieve significant prediction in the leave-one-site-out425
experiment and the scores displayed high variance (refer supplement Figure S4). This variance could be426
caused by the widely distributed sample sizes across each site resulting in uneven folds in the n-fold CV427
(Figure 2). The chance performance might also be due to any site-specific variations in the dataholdout that428
prevailed despite the rigorous data acquisition standards enforced across the sites by the IMAGEN group429
[39].430
Future work: An important future work would be to understand how AAM correlates with several psycho-431
socio-economic variables and uncover any environmental risk factors such as childhood abuse, parental432
drug use, and life event stressors that could be mediating the relationship we discovered between AAM433
and brain structure. It would also be interesting to investigate if the functional connectivity (fMRI) in434
adolescent brains can also predict AAM [43]. Another important future work would be to reproduce the435
results on another data set comprising adolescents from a different geographic area such as NCANDA [32].436

6 CONCLUSION
This study analyzed alcohol misuse in adolescents and their brain structure in the large, longitudinal437
IMAGEN dataset consisting of n ∼ 1182 healthy adolescents [39, 31]. We found that alcohol misuse in438
adolescents can be predicted from their brain structure with a significant and high accuracy of 73%− 78%.439
More importantly, alcohol misuse at age 22 could be predicted from the brains at age 14 and age 19 with440
significant accuracies of 73.1% and 75.5%, respectively. This suggests that the structural differences in the441
brain might at least partly be preceding alcohol misuse behavior [20]. In contrast to previous large-sample442
studies that use ML [27, 30], we extensively compared different phenotypes of alcohol misuse such as443
frequency of alcohol use, amount of use, the onset of alcohol misuse, and binge drinking occasions and444
found that binge drinking is the most predictable phenotype of alcohol misuse. Similarly, we also compared445
different ML models and confound-control techniques and found that the two non-linear models - SVM-rbf446
and GB - perform better than the two linear models, SVM-lin and LR. Among the confound-control447
techniques, we found that counter-balancing with oversampling is most beneficial for the task. To the448
best of our knowledge, this was the first study to analyze and report results on the follow-up 3 data from449
IMAGEN. The results of our exploratory study advocate that collecting long-term, large cohorts of data,450
representative of the population, followed by a systematic ML analysis can greatly benefit research on451
complex psychiatric disorders such as AUD.452
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Gareth J Barker, Arun LW Bokde, Christian Büchel, Fabiana M Carvalho, et al. Neuropsychosocial537
profiles of current and future adolescent alcohol misusers. Nature, 512(7513):185–189, 2014.538

28 .Lindsay M Squeglia, Susan F Tapert, Edith V Sullivan, Joanna Jacobus, MJ Meloy, Torsten Rohlfing,539
and Adolf Pfefferbaum. Brain development in heavy-drinking adolescents. American journal of540
psychiatry, 172(6):531–542, 2015.541

29 .Simone Kühn, Anna Mascharek, Tobias Banaschewski, Arun Bodke, Uli Bromberg, Christian Büchel,542
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