Abstract
Genomic variants which disrupt splicing are a major cause of rare genetic disease. However, variants which lie outside of the canonical splice sites are difficult to interpret clinically. Here, we examine the landscape of splicing variants in whole-genome sequencing data from 38,688 individuals in the 100,000 Genomes Project, and assess the contribution of non-canonical splicing variants to rare genetic diseases. We show that splicing branchpoints are highly constrained by purifying selection, and harbour damaging non-coding variants which are amenable to systematic analysis in sequencing data. From 258 de novo splicing variants in known rare disease genes, we identify 35 new likely diagnoses in probands with an unsolved rare disease. We use phenotype matching and RNA studies to confirm a new diagnosis for six individuals to date. In summary, we demonstrate the clinical value of examining non-canonical splicing variants in participants with unsolved rare diseases.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
The Baralle lab is supported by NIHR Research Professorship awarded to D.B. (RP-2016-07-011). Functional work was additionally supported by a Wessex Medical Research Innovation Grant awarded to J.L. NW is currently supported by a Sir Henry Dale Fellowship jointly funded by the Wellcome Trust and the Royal Society (Grant Number 220134/Z/20/Z) and funding from the Rosetrees Trust. AB was supported by funding from Health Education England.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
The 100,000 Genomes Project Protocol has ethical approval from the HRA Committee East of England Cambridge South (REC Ref 14/EE/1112). This study was registered with Genomics England under Research Registry Projects 143, 165, and 166. The Splicing and Disease study has ethical approval from the Health Research Authority (IRAS Project ID 49685, REC 11/SC/0269) and The University of Southampton (ERGO ID 23056), with informed consent given for splicing studies in a research context.
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Footnotes
↵* Joint senior author
Data Availability
All code is available online at https://github.com/alexblakes/100KGP_splicing. The data used in this study are available to registered users within a protected research environment at https://www.genomicsengland.co.uk/about-gecip/for-gecip-members/data-and-data-access/.
https://www.genomicsengland.co.uk/about-gecip/for-gecip-members/data-and-data-access/