1 Liver Echinococcosis Lesion Classification Tool by

2 **Deep Learning: development, deployment, and**

3 validations

- 4 Liang Huang¹, Xiaohong Xi², Zhu Chen¹, Yilan Zeng¹
- ¹Chengdu Public Health Clinical Center, Chengdu City, Sichuan Province, China,

6 61000

- ² Department of Sonography, Chenghua Women and Children's Hospitall, Chengdu
- 8 City, Sichuan Province, China, 61000

- 10 Correspondence:
- 11 Yilan Zeng, Chengdu Public Health Clinical Center, 377 Jingming Road, Chengdu
- 12 City, Sichuan Province, China (hyuangx@qq.com).
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21

22

23 Abstract

24	The endemic of	f Echinococcosis	imposed heavy	y disease burd	len in some areas.	The

- 25 sonography for Echinococcosis lesions was essential to disease diagnosis and
- 26 managements. Especially the biological typing of lesions was key to disease
- 27 treatments. We used deep-learning tools to help sonographer to classify the lesion
- types. The model achieved 85%(302/376) accuracy, in contrast to senior sonographer
- 29 achieved 72%(61/85) accuracy. The accuracy of AI model was higher than senior
- 30 sonographer (p-value=0.01), could be a feasible method to help sonographer in
- 31 remote area.
- 32
- 33
- 34
- 35
- 36
- 00
- 37
- 38

40 Introduction

41	Echinococcosis is a result of human infection by larval stages of taeniid cestodes of
42	the genus Echinococcus. Echinococcus granulosus causes cystic echinococcosis(CE),
43	Echinococcus multilocularis causes alveolar echinococcosis (AE), two separately
44	diseases with different biological processes ^{1,2} . The co-infection of the two pathogens
45	was rare ³ . At least 58% of the population are at risk of acquiring echinococcosis,
46	distributed in Europe, North and Central America, Africa, Australia and Western
47	China ⁴ . It is a potential fatal zoonosis ⁵ , a major public health concern in
48	Qinghai-Tibet Plateau due to the highly pandemic of both CE and AE. The
49	echinococcosis DALYs in the Tibetan communities were 126,159 life years annually
50	estimated by Wang ⁶ . The Tibet population in China holds 1.66% prevalence of both
51	CE and AE, estimated 50 million people are at risk of infecting the disease in Western
52	China ⁷ . China has been investing large amount of resources to control echinococcosis,
53	launched national control program ⁸ . The strategies of the national control program
54	majorly included definitive hosts deworming, slaughtering control, and intermediate
55	hosts vacation ² . Ultrasound screening was included as an essential measure to find the
56	patients and follow-up.
57	Echinococcosis is chronic parasites disease, liver echinococcosis were most common

58 in clinical⁹. The treatments for it included surgically remove the lesion,

59 PAIR(puncture, aspiration, injection, and respiration), albendazole or they

60	combined ^{10,2} . The lesion classification for CE is the one of the key aspects in patients'
61	management, since the classification was closely corelated to the underlying
62	biological status of the larva.
63	For CE, the ultrasonic WHO classification is commonly used (CL, CE1, CE2, CE3,
64	CE4, and CE5). The CE1-2 types of CE indicating active infection should be treated
65	by Albendazole or/and surgical resection. The CE4-5 are considered degenerated
66	lesion due to failure of natural infection or effects of treatments, should be closely
67	monitered ^{11,12} . The CE3 is considered the transitional phase of lesion. The CE1-5 are
68	the continuous progress of "active-transitional-inactive" ¹³ indicating importance for
69	biological process and disease assessments.
70	The AE is a silent progressing infiltrative proliferation of the parasite, mimicking a
71	malignancy ¹⁴ . For AE cases, the lesion classification are more complex and uncertain,
72	research revealed that the clinical stage of AE was not corelated to ultrasound
73	appearance ¹⁵ . WHO had proposed a PNM classification system for AE^{16} . The PNM
74	classification system (P=parasitic mass in the liver, N=involvement of neighboring
75	organs, and M=metastasis) was designed to systematic evaluation for surgical purpose
76	majorly. Besides PNM classification system, the Ulm university proposed a
77	classification system for AE ¹⁷ , and five types of lesion proposed.
78	The PNM classification systems required extra examinations other than ultrasound,

such as CT or MRI scan. However, the PNM system was not feasible for many

80	occasions. The accessibility of medical resources in Qinghai-Tibet Plateau is
81	incomparable with urban area ¹⁸ due to the high altitude and atrocious weather, the
82	local paramedics are lack of professional training, especially for sonography.
83	This study purposed to develop deep learning-based application to automatically type
84	lesions for both AE and CE, giving diagnostic assistant for local paramedics. In this
85	study, we used 2820 ultrasound images training our model, and used external data to
86	validate the model. It is the largest echinococcosis ultrasound training set so far and
87	its application for was published on a web for open access.
88	Previous studies had developed deep learning system for hepatology by using medical
89	images, pathology, clinical and laboratory data, natural languages, etc. They are
90	majorly designed to address liver problems such as liver fibrosis(cirrhosis), liver
91	cancer, portal hypotension, etc ¹⁹ . Relatively, less study were aimed to the liver
92	echinococcosis, which is on the list of $NZDs^{20}$ by WHO. Before our study, Xin had
93	built a segmentation and classification networks for echinococcosis, shedding light on
94	potential development in this field. However, it used 160 CT scan images for training,
95	and the classification of echinococcosis were not covered all types of both AE and
96	CE ²¹ . Comparing with CT images, ultrasound was more widely used in filed
97	echinococcosis diagnosis. In this study, we used 2820 ultrasound images for training
98	covering all echinococcosis types.

99 Method and Material

100 Patient Data

- 101 Sonographies were retrospectively obtained from National Control Program for
- 102 Echinococcosis Screening in Qinghai-Tibet Plateau²². The medical decisions were not
- based on results of this study. All the patients were previously diagnosed
- 104 echinococcosis by systematic evaluations including medical images and serology tests,
- 105 fulfilled the criteria of echinococcosis diagnosis criteria.
- 106 In this study, we collected 3423 images of echinococcosis patients who were enrolled
- 107 and routinely managed in national echinococcosis control program.
- 108 Ethical approval for this retrospective study was obtained from the Ethics Committee
- 109 of the Chengdu Public Health Clinical Center. The patient consents for inclusion were
- 110 waived as the retrospective nature of this study and anonymous data use.

111

112 Classification criteria

113 In this study, we used CL-CE5 classification system for CE, which was recommended

114 by WHO recommendation¹³. We used infiltrating, calcification, and necrotic lesion

115 for AE classification, which was recommended by Chinses Guideline for AE^{23} .

116 For CE lesions, the CL lesion, which was appears "cystic lesion", which appears no

- 117 different from simple cyst in liver, could not be confirmed by ultrasound image solely.
- 118 The CE1 refers to a simple round or oval unilocular cyst with anechoic content and a
- 119 visible double cystic wall. The CE2 cyst is filled with daughter vesicles. The CE3

120	cysts includes two stages, CE3a is characterized by the "water-lily" sign, CE3b
121	represented by floating membranes. The CE4 typically reveals coarse variable
122	hyperechogenic or hypoechogenic echotexture without daughter vesicles. The "ball of
123	wool" sign, corresponding to the detached endocyst as a hypoechoic folded structure
124	embedded in a hyperechoic matrix, is the key ultrasound sign. The CE5 cysts are
125	partially (with an egg-shell calcified wall) or completely calcified with shadowing ¹³ .
126	For AE lesions, in this study, we followed the Chinese Guideline for AE, which was
127	also applied in National Controlling Program in endemic areas. It proposed three
128	ultrasound types of lesions. The infiltrative lesion (AE1) appearing hailstorm pattern,
129	heterogeneously echogenic areas, in many cases scatter calcifications can be seen.
130	The necrosis lesion (AE2), appearing a pseudocystic pattern with an irregular
131	hyperechoic rim. The calcification lesion, appearing solid hyperechoic lesion (AE3).

132 Data labelling

133	Expert who ha	ad more than	15	years of	of echinoc	coccosis	ultrasound	diagnosis	and
	1			2				0	

- 134 ultrasound based echinococcosis patients managements had labeled the included
- 135 ultrasound images by using LabelMe²⁴, an open-source image label tool. The lesions
- 136 in the images were labeled by different color, and normal liver background was
- 137 labeled as black. The labeled images were automatically cropped into fixed size of
- 138 input images (512*512 pixels) for model learning and inference.

139 Model constructions

140	The U-net architecture achieves high performance on different biomedical images
141	segmentation applications by using relatively less quantity of training images ^{25,26} . In
142	this study, we used two separated U-net models. Firstly, we constructed "Classifier"
143	U-net model which was used generalized multiclass dice loss (GMD). The GMD
144	penalizes the wrong classifications more aggressively and more effective for training
145	if the unbalanced category of training samples used. However, it produces more noise
146	(false positive predictions) produced. Secondly, the identical "Shaper" U-net using
147	conventional binary dice loss function focusing on lesion shape learning black-white
148	(lesion-background, values 0 and 1) outputs, omitting the lesion class information. It
149	produced more accurate shape inference for lesions. The inference result produced by
150	multiplication of two tensors of the models' outputs (Figue 1).
151	The whole program was based on Python programming languages with PyTorch 1.3
152	deep learning framework. The core construction of the models consist 10 of
153	convectional layers including downsampling, upsampling, and attention gates were
154	used in this model ²⁷ . The models were trained with mini-batch SGD optimizer with
155	momentum on two Nvidia 1080TI GPUs. The learning rate was chosen to minimize
156	the error in the tuning dataset. Early stop training strategies was used for preventing
157	over fitting.

158 Web-based user interface

Too Trained weights mes fouded in a web bused user interface ander Trask framework fo	159	Trained	weights	files l	oaded	in a	web-based	user	interface	under	Flask	framewo	ork f	for
---	-----	---------	---------	---------	-------	------	-----------	------	-----------	-------	-------	---------	-------	-----

- 160 internal logical process and HTML for appearances of the application of both
- 161 computer and mobile phone. The users will upload images transferred from
- 162 ultrasound equipment by computer or mobile phone. The web-based UI will
- 163 automatically calculate the hot-spot of the ultrasound images and crop them into
- 164 proper size and optimized location(Figure 2).

165 Model validations

- 166 We compared classification accuracies for human and model. The senior sonographer
- 167 has 15 years of working experiences. The performance of model was designed to
- 168 achieved equivalent accuracy with senior sonographer.

169 Statistical analysis

- 170 The statistical analysis was performed with the STATA/SE 14.1 software (StataCorp,
- 171 4905 Lakeway Drive, College Station, Texas, USA) and R 4.0.2²⁸. The ggplot2²⁹ for
- 172 R was used for diagram plotting. Confusion matrix³⁰ was used for validation of the
- 173 accuracy of the model. The confusion matrix was plotted by ggplot2 packages. The α
- 174 was set to 0.05. P< α was statistically significant.

175 Hardware and software

- 176 The sonographies were obtained from various ultrasound equipment, including
- 177 Mindray[™] M5, Seote MyLab[™] Alpha. The server used for training model installed

178 two 1080TI GPUs with Ubuntu 18.04 LTS platform. A Nvidia AGX Xavier edge

- 179 computing device providing web-based interface and model inference. These devices
- 180 install Ubuntu 18.04 LTS with PyTorch 1.3 and Flask library installed.

181 **Result**

- 182 Dataset
- 183 According to our dataset, we had 2250 training images, 190 images validation images
- and 376 testing images. In the training dataset, for CL and CE1-5 type, 140, 172, 198,
- 185 280, and 472 images were trained, respectively. For AE lesion, 420, 290, and 278
- 186 images were trained, respectively.

187 Training the model and publishing

- 188 Model was trained for about 10 hours to achieved convergence after 90 epochs
- 189 (multiple times of training for optimizing). The generalized dice score of Classifier
- 190 for validation set was 0.77, the Dice score of Shaper for validation set was, 0.86. The
- 191 web-based interface uses 3.1s for average for single image analysis in current
- 192 hardware configuration (each service has six times of inferences).

193 Comparison with human sonographer

- 194 Total of 376 samples were inputted into AI model, archived 85%(302/376) accuracy.
- 195 In contrast, total of 85 samples were classified by senior sonographer achieved

- 196 72%(61/85) accuracy. The accuracy of AI model was higher than senior sonographer
- 197 (p-value=0.01 by chi-square test)(Table 1).
- 198 However, the difference for each types of lesions were not statically significant
- 199 (except CE5, the human sonographer achieved extremely low accuracy). The result
- 200 were represented as confusion matrix(Figure 3 and Figure 4).

201 **Discussion**

202 Model outperforms trained sonographers

- 203 According to our testing, our deep learning model outperformed fast-trained
- sonographer in echinococcosis classification task. The U-net based model has been
- 205 proven to be efficient for smaller size of training set. It could be highly useful for
- 206 local paramedics while managing echinococcosis patients.

207 Background of the disease

- 208 Echinococcus granulosus life cycle involves dogs and other canids as definitive hosts
- 209 for the intestinal tapeworm as intermediate hosts for metacestode (larval) stage. The
- 210 metacestode (echinococcal cyst). In humans, the slowly growing hydatid cysts can
- 211 attain a volume of several liters and contain many thousands of protoscolices 31 .
- 212 The life cycle of E. *multilocularis* involves small rodent intermediate hosts, such as
- 213 arvicolids, wild or domestic canid definitive hosts, such as red or arctic foxes, jackals,
- 214 wolves, or dogs. Humans are aberrant intermediate hosts acquiring the infection

- through ingestion of eggs shed in the feces of definitive hosts. AE is of increasing
- 216 concern globally due to the geographical spread of the parasite, its increasing
- 217 prevalence in animals from endemic areas, the absence of a vaccine, and the lack of
- **218** active control measures to prevent the infection 32 .

219 Web-based application improved accessibility of AI

- 220 **tools**
- 221 Deep learning applications are provided as source code deposited on Github³³ or
- similar platform for sharing. It is not feasible for many medical related applications,
- since the privacy concern of the data. The run-time environments of the source code
- 224 were varied in wide range due to different platforms, different frameworks, and
- versions used. Here we used open-access web-based tool available for PC and mobile
- will significantly increase the accessibility for many remote areas.

227 Clinical implications

- 228 We demonstrated the AI model achieved better performance than sonographer, it
- could help doctors in remoted area for echinococcosis lesion typing. The lesion typing
- 230 for echinococcosis was important for disease managements.
- 231 According to the consensus on cystic echinococcosis diagnosis and treatment, five
- types of lesions were recommended for classification. A natural grouping of the cysts
- 233 into three relevant groups: active (CE1 and 2), transitional (CE3) and inactive (CE4

234	and 5). The lesion	n classification is	s critical to p	atients managements,	according to the
	,		1		0

- 235 consensus, CE4 and 5 indicated an inactive infection, watch and wait was
- 236 recommended, if patients with CE1-3, the consensus suggested an active larva
- infection, radical medical surgery or/and ABZ should be suggested^{11,2}. 237
- 238 Comparing CE, AE is more problematic, surgical resection, chemotherapy, early
- 239 diagnosis, and multidisciplinary discussion contributed to the successful treatment for
- AE cases¹¹. AE lesions behave "cancer-like"³⁴, radical surgery is the first choice in all 240
- 241 cases suitable for totally resection¹¹. Benzimidazoles should be used for all cases¹¹,
- 242 and liver transplantation as an alternative to palliative surgery, however, has not been
- 243 shown to be superior to long-term conservative therapy 35 .
- 244

245

246	1. Moro, P. & Schantz, P. M. Echinococcosis: a review. Int. J. Infect. Dis. 13,
247	125–133 (2009).
248	2. Wen, H. et al. Echinococcosis: Advances in the 21st Century. Clin. Microbiol.
249	<i>Rev.</i> 32, e00075-18, /cmr/32/2/CMR.00075-18.atom (2019).
250	3. Wang, X. Q., Han, X. M., Tian, Q. S., Zhao, S. Y. & A, J. D. [Hepatic cystic and
251	alveolar echinococcosis co-infections: a report of 3 cases]. Zhongguo Xue Xi Chong
252	Bing Fang Zhi Za Zhi Chin. J. Schistosomiasis Control 32, 213–216 (2019).
253	4. Deplazes, P. et al. Global Distribution of Alveolar and Cystic Echinococcosis. in
254	Advances in Parasitology vol. 95 315-493 (Elsevier, 2017).
255	5. Guo, B. <i>et al.</i> High endemicity of alveolar echinococcosis in Yili Prefecture,
256	Xinjiang Autonomous Region, the People's Republic of China: Infection status in
257	different ethnic communities and in small mammals. PLoS Negl. Trop. Dis. 15,
258	e0008891 (2021).
259	6. Wang, Q. et al. Disease burden of echinococcosis in Tibetan communities—A

- 260 significant public health issue in an underdeveloped region of western China. Acta
- 261 Trop. 203, 105283 (2020).

- 262 7. Shan, X. et al. Health-related quality of life (HRQoL) associated with
- 263 echinococcosis patients in Tibetan communities in Shiqu County, China: a
- 264 case-control study. *Qual. Life Res.* 29, 1559–1565 (2020).
- 265 8. Nationa echinococcosis Control programe(in Chinese).
- 266 http://www.gov.cn/zhengce/zhengceku/2020-09/03/content_5539743.htm.
- 267 9. Eckert, J. & Deplazes, P. Biological, Epidemiological, and Clinical Aspects of
- Echinococcosis, a Zoonosis of Increasing Concern. *Clin. Microbiol. Rev.* 17, 107–135
 (2004).
- 270 10. Gupta, N. *et al.* Hepatic Hydatid: PAIR, Drain or Resect? J. Gastrointest. Surg.
- **271 15**, 1829–1836 (2011).
- 272 11. Brunetti, E., Kern, P. & Vuitton, D. A. Expert consensus for the diagnosis and
- treatment of cystic and alveolar echinococcosis in humans. *Acta Trop.* 114, 1–16
 (2010).
- 275 12. Larrieu, E. et al. Epidemiology, diagnosis, treatment and follow-up of cystic
- echinococcosis in asymptomatic carriers. *Trans. R. Soc. Trop. Med. Hyg.* 113, 74–80
 (2019).
- 278 13. Brunetti, E. *et al.* Ultrasound and Cystic Echinococcosis. *Ultrasound Int. Open*279 04, E70–E78 (2018).
- 280 14. Casulli, A., Barth, T. F. E. & Tamarozzi, F. Echinococcus multilocularis. *Trends*281 *Parasitol.* 35, 738–739 (2019).
- 282 15. Sulima, M. et al. Ultrasound images in hepatic alveolar echinococcosis and
- 283 clinical stage of the disease. Adv. Med. Sci. 64, 324–330 (2019).
- 284 16. Kern, P. et al. WHO classification of alveolar echinococcosis: Principles and
- 285 application. *Parasitol. Int.* 55, S283–S287 (2006).
- 286 17. Kratzer, W. Proposal of an ultrasonographic classification for hepatic alveolar
- 287 echinococcosis: Echinococcosis multilocularis Ulm classification-ultrasound. *World J.*288 *Gastroenterol.* 21, 12392 (2015).
- 289 18. Yang, S.-J. et al. A remote management system for control and surveillance of
- echinococcosis: design and implementation based on internet of things. *Infect. Dis.*
- **291** *Poverty* **10**, 50 (2021).
- 292 19. Ahn, J. C., Connell, A., Simonetto, D. A., Hughes, C. & Shah, V. H. The
- application of artificial intelligence for the diagnosis and treatment of liver diseases.
- 294 Hepatol. Baltim. Md (2020) doi:10.1002/hep.31603.
- 20. Borhani, M. *et al.* Cystic echinococcosis in the Eastern Mediterranean region:
- 296 Neglected and prevailing! *PLoS Negl. Trop. Dis.* 14, e0008114 (2020).
- 297 21. Xin, S. et al. Automatic lesion segmentation and classification of hepatic
- 298 echinococcosis using a multiscale-feature convolutional neural network. Med. Biol.
- 299 Eng. Comput. 58, 659–668 (2020).
- 300 22. Yu, Q., Xiao, N., Han, S., Tian, T. & Zhou, X.-N. Progress on the national
- 301 echinococcosis control programme in China: analysis of humans and dogs population
- 302 intervention during 2004–2014. Infect. Dis. Poverty 9, 137 (2020).

- 303 23. Sichuan Institute of Echinococcosis Clinical Reaserch. Guide line for complex
- alveolar echinococcosis. Chin. J. Bases Clin. Gen. Surg. 27, 18 (23).
- 305 24. Kentaro, W. labelme: Image Polygonal Annotation with Python. (2016).
- 306 25. U-Net: Convolutional Networks for Biomedical Image Segmentation.
- 307 https://lmb.informatik.uni-freiburg.de/people/ronneber/u-net/.
- 308 26. Ronneberger, O., Fischer, P. & Brox, T. U-Net: Convolutional Networks for
- 309 Biomedical Image Segmentation. in Medical Image Computing and
- 310 Computer-Assisted Intervention MICCAI 2015 (eds. Navab, N., Hornegger, J.,
- Wells, W. M. & Frangi, A. F.) vol. 9351 234–241 (Springer International Publishing, 2015).
- 313 27. Oktay, O. *et al.* Attention U-Net: Learning Where to Look for the Pancreas.
- **314** *ArXiv180403999 Cs* (2018).
- 315 28. *R Core Team* (2020). *R: A language and environment for statistical computing. R*
- 316 Foundation for Statistical Computing, Vienna, Austria. URL
- 317 *https://www.R-project.org/.*
- 318 29. Hadley, W. ggplot2: Elegant Graphics for Data Analysis. (Springer-Verlag New 319 York, 2016).
- 320 30. Foody, G. M. Status of land cover classification accuracy assessment. *Remote*
- 321 Sens. Environ. 80, 185–201 (2002).
- 31. Moro, P. & Schantz, P. M. Echinococcosis: a review. *Int. J. Infect. Dis.* 13, 125–133 (2009).
- 324 32. Casulli, A., Barth, T. F. E. & Tamarozzi, F. Echinococcus multilocularis. *Trends*

325 *Parasitol.* **35**, 738–739 (2019).

- 326 33. GitHub: Where the world builds software \cdot GitHub. https://github.com.
- 327 34. Reinehr, M. et al. Pathology of Echinococcosis: A Morphologic and
- 328 Immunohistochemical Study on 138 Specimens With Focus on the Differential
- 329 Diagnosis Between Cystic and Alveolar Echinococcosis. Am. J. Surg. Pathol. 44,
- **330** 43–54 (2020).
- 331 35. Salm, L. A., Lachenmayer, A., Perrodin, S. F., Candinas, D. & Beldi, G. Surgical
- 332 treatment strategies for hepatic alveolar echinococcosis. *Food Waterborne Parasitol.*
- **333 15**, e00050 (2019).

334

336	
337	Table 1. Comparison of human and AI

338

	CL	CE1	CE2	CE3	CE4	CE5	AE1	AE2	AE3	total	acc.*	p-values#	
CL-Human	2	2	0	0	0	0	0	0	0	4	0.50	0.27	
CL-AI	38	4	4	0	4	0	0	0	0	50	0.76	0.27	
CE1-Human	1	11	0	0	0	0	0	0	0	12	0.92	0 69	
CE1-Al	4	40	4	0	2	0	0	0	0	50	0.80	0.00	
CE2-Human	0	0	2	1	0	0	0	0	0	3	0.67	1.00	
CE2-AI	0	0	38	9	3	0	0	0	0	50	0.76	1.00	
CE3-Human	0	0	2	8	1	0	0	0	0	11	0.73	1.00	
CE3-AI	0	0	6	38	6	0	0	0	0	50	0.76	1.00	
CE4-Human	0	0	0	1	14	7	0	0	0	22	0.64	0.45	
CE4-AI	0	0	8	2	40	0	0	0	0	50	0.80	0.15	
CE5-Human	1	0	0	0	2	0	1	0	0	4	0.00	0.00	
CE5-Al	0	1	0	0	1	40	8	0	0	50	0.80	0.00	
AE1-Human	0	0	0	0	2	0	19	0	0	21	0.90	0.04	
AE1-AI	0	0	0	0	0	0	49	0	1	50	0.98	0.21	
AE2-Human	0	0	0	0	0	0	1	3	0	4	0.75	4.00	
AE2-AI	0	2	0	0	0	0	2	10	0	14	0.71	1.00	
AE3-Human	0	0	0	0	0	1	1	0	2	4	0.50	0 55	
AE3-AI	0	0	0	0	0	2	1	0	9	12	0.75	0.55	

339 * acc. accuracy=right classification/total samples

340 [#] by using Fisher' exact tests.

341

362	
363	
364	
365	
366	
367	
368	

369 Figure 3.

	AE1-	98.00%	14.29%	0.00%	0.00%	0.00%	0.00%	0.00%	16.00%	0.00%
	AE2 -	0.00%	71.43%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
	AE3 -	2.00%	0.00%	75.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
	CE1 -	0.00%	14.29%	8.33%	80.00%	0.00%	0.00%	0.00%	2.00%	8.00%
A	CE2 -	0.00%	0.00%	0.00%	8.00%	76.00%	12.00%	16.00%	0.00%	8.00%
	CE3 -	0.00%	0.00%	0.00%	0.00%	18.00%	76.00%	4.00%	0.00%	0.00%
	CE4 -	0.00%	0.00%	0.00%	4.00%	6.00%	12.00%	80.00%	2.00%	8.00%
	CE5 -	0.00%	0.00%	16.67%	0.00%	0.00%	0.00%	0.00%	80.00%	0.00%
	CL -	0.00%	0.00%	0.00%	8.00%	0.00%	0.00%	0.00%	0.00%	76.00%
		AE1	AE2	AE3	CE1	CE2	CE3	CE4	CE5	ĊL

True

3	8	7

- 395 Figure 4.

	AE1 -	90.48%	25.00%	25.00%	0.00%	0.00%	0.00%	0.00%	25.00%	0.00%
	AE2 -	0.00%	75.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
	AE3 -	0.00%	0.00%	50.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
U	CE1 -	0.00%	0.00%	0.00%	91.67%	0.00%	0.00%	0.00%	0.00%	50.00%
ung	CE2 -	0.00%	0.00%	0.00%	0.00%	66.67%	18.18%	0.00%	0.00%	0.00%
Í	CE3 -	0.00%	0.00%	0.00%	0.00%	33.33%	72.73%	4.55%	0.00%	0.00%
	CE4 -	9.52%	0.00%	0.00%	0.00%	0.00%	9.09%	63.64%	50.00%	0.00%
	CE5 -	0.00%	0.00%	25.00%	0.00%	0.00%	0.00%	31.82%	0.00%	0.00%
	CL -	0.00%	0.00%	0.00%	8.33%	0.00%	0.00%	0.00%	25.00%	50.00%
		AE1	AE2	AE3	CE1	CE2	CE3	CE4	CE5	CL

True

