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Abstract 20 

Background: While many factors are associated with stepping activity after stroke, 21 

there is significant variability across studies. One potential reason for this variability is 22 

that there are some characteristics necessary to achieve greater stepping activity that 23 

differ from others that may need to be targeted to improve stepping activity. 24 

Objective: Using two step thresholds (2500 steps/day, corresponding to home vs. 25 

community ambulation and 5500 steps/day, corresponding to achieving physical activity 26 

guidelines through walking), we applied 3 different algorithms to determine which 27 

predictors are most important to achieve these thresholds.  28 

Methods: We analyzed data from 268 participants with stroke that included 25 29 

demographic, performance-based and self-report variables. Step 1 of our analysis 30 

involved dimensionality reduction using lasso regularization. Step 2 applied drop column 31 

feature importance to compute the mean importance of each variable. We then 32 

assessed which predictors were important to all 3 mathematically unique algorithms. 33 

Results: The number of relevant predictors was reduced from 25 to 7 for home vs. 34 

community and from 25 to 16 for aerobic thresholds. Drop column feature importance 35 

revealed that 6 Minute Walk Test and speed modulation were the only variables found 36 

to be important to all 3 algorithms (primary characteristics) for each respective 37 

threshold. Other variables related to readiness to change activity behavior and physical 38 
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health, among others, were found to be important to one or two algorithms (ancillary 39 

characteristics).  40 

Conclusions: Addressing physical capacity is necessary but not sufficient to 41 

achieve important step thresholds, as ancillary characteristics, such as readiness to 42 

change activity behavior and physical health may also need to be targeted. This 43 

delineation may explain heterogeneity across studies examining predictors of stepping 44 

activity in stroke. 45 

 46 

 47 
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Introduction 58 

 Stroke is a leading cause of disability world-wide and results in numerous 59 

sequelae, including reduced walking ability and aerobic deconditioning [1, 2]. This is 60 

problematic because reduced walking ability and aerobic deconditioning are associated 61 

with deficits in physical function [3, 4], depression [5, 6], and reduced self-efficacy [7]. 62 

As a result, many individuals with stroke are inactive [8] and not meeting physical 63 

activity recommendations to maximize health benefits [9, 10]. In parallel, individuals with 64 

stroke often report improving their walking ability as a primary goal for rehabilitation [11] 65 

and clinicians spend considerable time on interventions to improve their walking [12]. 66 

Thus, two areas of particular relevance for the rehabilitation community are determining 67 

predictors of daily stepping activity that may inform whether an individual with stroke will 68 

be able to walk in the community or if they will be primarily home bound [3, 13, 14] and 69 

whether they will meet aerobic activity guidelines through walking [10, 15]. The latter is 70 

salient for clinicians as reaching physical activity recommendations may have 71 

implications for future health outcomes [16-19]. 72 

 Previous work has suggested that ~2500 daily steps distinguishes between home 73 

versus community ambulators in individuals with stroke [3] and that ~5500 daily steps is 74 

a reasonable target for individuals with disabilities to meet physical activity guidelines 75 

[10]. However, there has been significant heterogeneity in predictors of daily stepping 76 

activity after stroke. A recent meta-analysis including 26 studies and over 30 predictors 77 

of stepping activity post stroke found inconsistencies in the relevance of certain 78 

predictors [20]. This finding, in conjunction with the limited efficacy of interventions 79 
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targeting daily stepping activity post stroke [21], suggests a need to better understand 80 

which predictors are most important for improving daily stepping activity after stroke.   81 

 To this end, the large number of variables that may influence walking activity 82 

after stroke requires analytical techniques with the ability to handle large, 83 

heterogeneous datasets. Machine learning techniques have this capacity as well as 84 

other advantages, including requiring fewer assumptions about the distributions of the 85 

data, numerous options for non-parametric models and dimensionality reduction 86 

techniques, and most notably their strong predictive capabilities [22-24].  Recent work 87 

has utilized machine learning to predict recovery of upper limb functioning [23, 24] and 88 

functional outcomes after stroke with high accuracy [25]. In particular, one approach to 89 

determining which predictors may be most relevant is to utilize multiple different 90 

machine learning algorithms and compare predictors across algorithms [24]. This 91 

approach can help gain a better understanding of a target population and increase 92 

predictive power, as features that are shown to be important across mathematically 93 

unique algorithms likely represent fundamental characteristics of that population and are 94 

therefore important in predicting the outcome. Said differently, comparing relevant 95 

predictors across mathematically unique algorithms may help differentiate predictors 96 

that are most important for predicting the outcome from predictors that might be 97 

important for predicting the outcome in some individuals. 98 

 Despite these clear advantages, principled application of ML algorithms has not 99 

been used to understand the most important characteristics of stroke survivors who 100 

achieve stepping thresholds for community mobility status [3] or physical activity 101 

recommendations [10]. Thus, we had two objectives for this study. First, we aimed to 102 
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apply three mathematically unique algorithms to a large dataset to predict achievement 103 

of community ambulation status (2500 steps/day) [3] and/or meeting physical activity 104 

recommendations (5500 steps/day) [10] and compare predictors across algorithms. We 105 

were specifically interested in identifying predictors that were found to be important to all 106 

three algorithms. Based on previous studies, we hypothesized that measures of 107 

physical capacity, specifically gait endurance [3, 26] (6 Minute Walk Test) and gait 108 

speed [14, 27] (10-Meter Walk Test), would be important predictors to all three 109 

algorithms and that balance self-efficacy [28, 29] (Activities Specific Balance 110 

Confidence Scale) and environmental factors [30-33] (Area Deprivation Index), would 111 

be important predictors to one or two algorithms but not all three. Our second objective 112 

was to assess the prediction accuracy of these three different machine learning 113 

algorithms for each threshold.  114 

Methods 115 

Participants: 116 

Data was obtained from the baseline timepoint of a randomized clinical trial 117 

comparing the efficacy of specific interventions for improving daily walking activity in 118 

individuals with stroke [34]. Table 1 lists the eligibility criteria for this study. All 119 

participants signed informed consent approved by the Human Subjects Review Board at 120 

the University of Delaware prior to study participation (IRB #878153-50). This work has 121 

been conducted according to the principles expressed in the Declaration of Helsinki. 122 

 123 
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Table 1. Eligibility criteria 124 

Inclusion Criteria Exclusion Criteria 

Ages 21 – 85 Cerebellar stroke 

≥6 months post stroke Other neurologic conditions in addition to 

stroke 

Able to walk without assistance at a gait 

speed of ≥0.3 m/s 

Lower extremity Botulinum toxin injection 

< 4 months earlier 

 Current participation in physical therapy 

 Inability to walk outside the home before 

their stroke 

 Coronary artery bypass graft, stent 

placement, or myocardial infarction within 

the past 3 months 

 Musculoskeletal pain limiting activity 

 Inability to communicate with the 

investigators 

 Inability to answer at least one orientation 

question correctly (item 1b of the National 

Institutes of Health Stroke Scale) and 

inability to follow at least one, two-step 

command (item 1c of the National 

Institutes of Health Stroke Scale) 

 125 
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Measures: 126 

 The following continuous measures were included in the statistical analysis: 6-127 

Minute Walk Test (6MWT) [35, 36], self-selected walking speed (SSWS) [36], fastest 128 

walking speed (FWS) [36], speed modulation (calculated as FWS – SSWS), Montreal 129 

Cognitive Assessment (MoCA) [37], Charlson Comorbidity Index (CCI, age-adjusted) 130 

[38], Patient Health Questionnaire-9 (PHQ-9) [39], Activities Specific Balance 131 

Confidence Scale (ABC) [40], body mass index (BMI), age, time since initial stroke, 132 

number of strokes, number of medications (including supplements), Area Deprivation 133 

Index state decile (ADI_S) [41, 42], and Area Deprivation Index national percentile 134 

(ADI_N) [41, 42]. 135 

 The following categorical measures were included in the analysis: usual orthotic 136 

device [0= no orthotic device, 1=orthotic device], usual assistive device [0= no assistive 137 

device, 1= assistive device], living situation [0= living alone, 1= living with a family 138 

member/significant other, 2= living alone but has outside assistance daily, 3= other], 139 

marital status [0= married, 1= not married], work status [0= employed full-time, 1= 140 

employed part-time, 2= retired, 3= unemployed (includes being on disability)], years of 141 

education [0= high school (≤15 years), college graduate (16 years), above graduate 142 

(>16 years)], gender [0= male, 1= female], side of hemiparesis [0= left, 1= right, 2= 143 

bilateral], readiness to change activity behavior [1= currently not active and do not 144 

intend on becoming active in the next 6 months, 2= currently not active but thinking 145 

about starting to become active in the next 6 months, 3= currently active sometimes but 146 

not regularly, 4= currently active regularly but have only begun doing so within the last 6 147 

months, 5= currently active regularly and have done so for longer than 6 months], and 148 
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relapse in activity behavior [1= experienced a relapse in activity levels, 2= no relapse in 149 

activity levels] [43, 44].  150 

Daily stepping activity: 151 

 To measure daily stepping activity, participants were provided with a FitBitTM at 152 

the baseline visit of the clinical trial. The FitBitTM has acceptable accuracy in detecting 153 

stepping activity in individuals with stroke [45-48]. Participants wore the device on their 154 

non-paretic ankle and were instructed to wear it for 7 days to reliably estimate daily 155 

stepping activity [49] and continue with their usual activity. Average steps per day 156 

(ASPD) was calculated by summing the total number of steps taken over all valid 157 

recording days and dividing this sum by the number of valid recording days.  158 

Statistical analysis: 159 

Data processing: 160 

Figure 1 displays a data pipeline that describes the data and analysis 161 

procedures. First, the data was exported from the electronic database, REDCap [50], 162 

and initially comprised 283 individuals and 32 clinical and demographic variables. ASPD 163 

was used to determine stepping thresholds (home vs. community threshold of 2500 164 

steps/day and the aerobic threshold of 5500 steps/day). After removing variables with 165 

more than 5% missing entries and variables that were irrelevant to the outcome (e.g., 166 

“patient ID”), 25 of the remaining 32 variables were used in our analyses. Of the 283 167 

participants, 15 were excluded for having missing data in one or more of the 25 168 
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variables selected, leaving a total of 268 participants included in our analyses. Two 169 

individuals inspected the data for accuracy prior to analysis. 170 

 171 

Fig 1. Data pipeline. Abbreviations: ASPD- Average Steps/Day, LR- Logistic 172 

Regression, SVM- Support Vector Machine, RF- Random Forest, CI- Confidence 173 

Interval 174 

 175 

All analyses were conducted using custom-written code in the Python 176 

programming language and compiled with Spyder4, using the standard machine 177 

learning library sklearn [51]. The same procedures were repeated for both the home vs. 178 

community and aerobic thresholds. Briefly, the preprocessed data set from 268 179 

participants was imported into a data frame. Our design matrix was composed of all 25 180 

variables except for ASPD, which was used to compute our binary outcome variable, 181 

step threshold category. All data in our design matrix was normalized for stability using 182 

a min-max scaler, which uses the minimum value and range of the distribution to shift 183 

and scale the distribution, respectively, translating to the interval [0,1] while preserving 184 

the shape of the original distribution.  185 

For the home versus community threshold, participants were assigned a label of 186 

1 for home ambulator (ASPD < 2500) or 0 for community ambulator (ASPD ≥ 2500). 187 

This resulted in a distribution of 58 (21.64%) home ambulators and 210 (78.36%) 188 

community ambulators.  For the aerobic threshold, those whose ASPD were below the 189 

threshold of 5500 daily steps were given a label of 1, and those who met or exceeded 190 
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the minimum aerobic threshold were labeled with a 0. The distribution in this case was 191 

185 (69.03%) below the aerobic threshold and 83 (30.97%) above the threshold.  192 

Drop-column procedure for feature importance 193 

To address the first objective of this study, a two-stage procedure was used. The 194 

first stage was dimensionality reduction using lasso regularization. The purpose of this 195 

stage was to reduce redundancy and noise in our set of variables, thus avoiding 196 

potential bias or conflation in measures of feature importance for strongly correlated 197 

variables in the second stage. The second stage involved computing a measure of 198 

feature importance for the remaining features following dimensionality reduction (Fig 1) 199 

[52]. Throughout the analysis, the performance metrics were assessed using Monte 200 

Carlo Cross-Validation (MCCV) which in each instance consisted of 100 randomly 201 

generated train-test-splits of the data where for each split, 70% of the data was used as 202 

a training set and the remaining 30% was used as the test set. 203 

For the first stage, we used logistic regression (LR) and linear support vector 204 

machine (SVM) both with lasso regularization with optimized regularization parameters. 205 

To optimize these parameters, a grid search was used with two refinements, each 206 

around the parameter value that was found to produce the best average model 207 

performance using MCCV. Once the optimized regularization parameters were found, 208 

the following procedure was executed for both regularized models: first, the model was 209 

fit over 100 random 70-30 train-test-splits of the data and the 100 sets of weights (i.e., 210 

coefficients, see Supplementary Material for more detail) for each variable were 211 

recorded. Then, for each variable, 1000 bootstrap samples of size 100 were generated 212 
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from the sample of 100 coefficients, and an empirical 95% confidence interval for the 213 

median of the coefficients was computed. Variables for which 0 was included in the 95% 214 

confidence interval for both regularized models were then dropped, and only the 215 

remaining variables would be used in the second stage.  216 

In the second stage, a measure of feature importance was computed for three 217 

different machine learning models: LR, SVM with a radial basis function (RBF) kernel, 218 

and random forest (RF). Our criteria for choosing these three models were that they had 219 

to be commonly-used machine learning algorithms, mathematically distinct, and 220 

previously shown to perform well with clinical and biological data (see Supplementary 221 

Material for additional details) [53]. While all three of these algorithms fit this criterion, it 222 

is important to note that, unlike parametric models like LR and SVM whose models can 223 

be written down in function form, nonparametric models like RF are known for having 224 

strong predictive power, while lacking interpretability. In this way, RF could be thought 225 

of as having insight that is more complex yet could be difficult to quantify. For this stage, 226 

we aimed to use a measure of feature importance that is both easily interpretable as 227 

well as uniformly applicable across the three algorithms. We therefore chose the drop 228 

column feature importance process.  229 

The drop column importance measure uses a chosen metric of model 230 

performance to quantify how much a given variable contributes to a model’s 231 

performance, i.e., whether the variable helps, hurts, or has no effect on the performance 232 

of the model [54]. Once the metric for performance is chosen, the drop column feature 233 

importance can be computed using any model. The idea of this procedure is to fit the 234 

model using all variables first (i.e., the benchmark model) and take a measure of the 235 
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model’s performance using the chosen metric (i.e., the benchmark performance). To 236 

measure the influence of an individual feature on this metric of model performance, that 237 

feature will then be dropped from the training set and the model is then refitted. A 238 

measure of this new model’s performance, the dropped column performance is then 239 

taken, and that feature’s overall importance is taken to be the difference between the 240 

model’s performance with and without that feature, i.e.: 241 

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑏𝑏𝑖𝑖𝑖𝑖𝑖𝑖ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚 𝑖𝑖𝑖𝑖𝑖𝑖𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑 𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝑖𝑖𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 242 

This same procedure is then followed for each feature. Thus, if a particular feature 243 

improves the model’s performance, this importance measure will be positive because 244 

the dropped column performance would be lower than the benchmark performance (in 245 

other words, the model performed worse when we removed that particular feature) and 246 

vice versa for features whose importance is negative. The intuition underlying this 247 

procedure is that positive features hold pertinent information about the dependent 248 

variable, as they contributed the most to correctly identifying those in the target class. 249 

The drop column procedure was run with MCCV for all three algorithms using 250 

only the features that were retained after regularization. For consistency, a single list of 251 

100 train-test-splits was randomly generated and used for all three algorithms in this 252 

step. For each algorithm, every feature was given a drop column importance for every 253 

train test-split, resulting in 100 importance measures associated with each algorithm for 254 

each feature. From these samples of 100 importance scores for each feature, 1000 255 

bootstrap samples of size 100 were taken and an empirical 95% confidence interval for 256 

the mean importance score was computed for each feature. A feature was considered 257 

important to an algorithm if the 95% confidence interval for the mean importance of that 258 
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feature was positive. To address our first objective, we compared predictors whose 259 

mean importance was positive across all three algorithms with the framework that 260 

predictors that met this criterion are likely critically important for predicting the outcome.  261 

Model performance 262 

 For our second objective, we compared the performance of these models by 263 

examining their prediction accuracy for each step threshold. For the aerobic threshold, 264 

the metric of prediction accuracy used was standard accuracy. Due to the nature and 265 

severity of the class imbalance in the home versus community case, particularly that the 266 

target class was the minority [55], the metric of balanced accuracy, which takes the 267 

average of the recall (sensitivity) and specificity, was used to more accurately reflect the 268 

models’ performance on the target class (see Supplementary Material). With this class 269 

imbalance, balanced accuracy is better suited than standard accuracy to assess model 270 

performance because taking the average of recall and specificity takes the accurate 271 

classification of both classes into account. This avoids the case where a constant model 272 

(i.e., labeling all points as community ambulators) would result in a conflated standard 273 

accuracy score, while mis-identifying the entire target class. These models were fit 274 

using the algorithms’ default parameters from the sklearn documentation for the aerobic 275 

threshold. Due to the class imbalance in the home versus community threshold, a grid 276 

search was performed to optimize only the class weights parameter, class_weight, to 277 

either have the default setting of no weights or to have balanced class weights, which 278 

imposes a weight on each class during fitting that is inversely proportional to the class 279 

frequency.  280 
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 To assess model performance, as well as validate the regularization step in the 281 

feature importance procedure, we computed the appropriate measure of prediction 282 

accuracy, again using MCCV over a single, newly generated set of 100 train-test-splits. 283 

This was done first using all the features, then using the set of features retained in the 284 

regularization phase. The goal of regularization is to eliminate redundant or 285 

uninformative variables, resulting in the use of fewer variables without the loss of any 286 

critical information. Achieving this would be evidenced by either no significant decrease, 287 

or even an improvement in the model’s performance when using the variables retained 288 

after regularization versus the full set of variables. The data and code associated with 289 

this work are available on Open Science Framework at https://osf.io/tgzpb/ 290 

Results 291 

 Table 2 displays the demographic characteristics and summary step data of our 292 

full sample (n=268).  293 

Table 2. Characteristics of study sample (n = 268)a 294 

Characteristic Participant 

Age (years) 65 (IQR 17) 

Gender Male: 139 (51.9%) 

Female: 129 (48.1%) 

Side of Hemiparesis Left: 142 (53%) 

Right: 120 (44.8%) 

Bilateral: 6 (2.2%) 
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Time Since Initial Stroke (months) 24 (IQR 42) 

Assistive Device (yes/no)  Yes: 126 (47%) 

No: 142 (53%) 

Self-selected Gait Speed (m/s) 0.75 (IQR 0.32) 

Average Steps per Day 4175 (IQR 3061.5, Range 76 – 18166) 

Total Number of Valid Stepping Days 8 (IQR 6, Range 3 - 27) 

aContinuous variables presented as median (IQR- Interquartile range) 295 

Results for home versus community threshold 296 

 After the regularization process, LR and linear SVM dropped all but the same 6 297 

features (6MWT, PHQ-9, readiness to change relapse score, usual assistive device, 298 

years of education, and ADI_N) with linear SVM also keeping 1 additional feature 299 

(SSWS). This resulted in 7 of the original 25 variables proceeding to the drop column 300 

phase. 301 

 For both LR and SVM, all 7 variables resulting from the regularization step were 302 

found to be important, with each feature contributing at least 6% improvement to the 303 

balanced accuracy score on average for both algorithms. For RF, only 1 of the 7 304 

variables was found to be important (6MWT). Thus, the only feature that was important 305 

to all three algorithms for the home versus community threshold was 6MWT, suggesting 306 

that walking endurance is critically important for predicting community mobility status in 307 

stroke. Figure 2 displays the results of the drop column phase for this threshold. 308 

 309 
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Fig 2. Drop column feature importance for home vs. community threshold (2500 310 

steps/day). Red markers show mean feature importance with 95% bootstrapped 311 

confidence interval. 6MWT was the only feature found to be important across all three 312 

algorithms. Abbreviations: ADI_N- Area Deprivation Index (national percentile), PHQ-9- 313 

Patient Health Questionnaire-9, Readiness_Relapse- Readiness to change relapse 314 

score, SSWS- self-selected walking speed, 6MWT- 6-Minute Walk Test, LR- Logistic 315 

regression, SVM- Support vector machine, RF- Random forest. 316 

 317 

 Figure 3A displays the model performances for the home versus community 318 

threshold. All models demonstrated a moderate level of test-set accuracy after 319 

optimizing for class weights, where LR and SVM were fit with balanced class weights 320 

and RF was fit with none. Note that for the home versus community classification 321 

problem, we used balanced accuracy to measure model performance, meaning the 322 

scores represent how the model accurately identified individuals on average across the 323 

home and community classes. Overall, RF performed the worst, achieving an average 324 

balanced accuracy score of 68.1% (SD 6.5%, range 50.6 – 87.3%) with selected 325 

features and 67.9% (SD 5.3%, range 58.6% - 82.7%) when using all features. SVM 326 

followed, achieving an average balanced accuracy score of 77.3% (SD 5.4%, range 327 

62.7% - 90.6%) with selected features and 73.1% (SD 5.7%, range 60.8% - 84.1%) 328 

when using all features. Finally, LR achieved the best overall balanced accuracy with an 329 

average score of 78.6% (SD 4.8%, range 68.7% - 90.1%) with selected features and 330 

75.6% (SD 5.5%, range 63.3% - 87.6%) when using all features. The similarities in 331 

model performance accuracies when comparing a model with all features to the 332 
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simplified model following regularization across all algorithms demonstrate that the 333 

regularization phase was effective in reducing the number of features while maintaining 334 

model performance accuracy. 335 

 336 

Fig 3. Model performance for the home vs. community threshold (2500 steps/day; 337 

A- upper figure) and aerobic threshold (5500 steps/day; B- bottom figure). Model 338 

performance for each algorithm is displayed with all features included (AF) and with 339 

feature selection (FS) that occurred as a result of the regularization step. Circles 340 

represent individual accuracy results for model performance during the 100 different 341 

train-tests splits of the data. Diamonds represent outliers. A higher accuracy score 342 

reflects better model performance. 343 

 344 

Results for aerobic threshold 345 

 After the regularization process, both linear SVM and LR produced the exact 346 

same results, with 16 features retained and carried forwards into the second stage of 347 

the analysis (see Y axis of Fig. 4).  348 

 The drop column procedure was then run using these 16 variables over 100 349 

random train-test splits of the data for all three algorithms. From these results, the only 350 

feature found to be important to all three algorithms was speed modulation, suggesting 351 

that the ability to change walking speed is critically important for predicting the aerobic 352 
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step threshold in stroke. The full results of the drop column procedure for the aerobic 353 

threshold are displayed in Figure 4.  354 

 355 

Fig 4. Drop column feature importance for aerobic threshold (5500 steps/day). 356 

Red markers show mean feature importance with 95% bootstrapped confidence 357 

interval. Speed modulation was the only feature found to be important across all three 358 

algorithms. Abbreviations: ABC- Activities Specific Balance Confidence Scale, ADI_N- 359 

Area Deprivation Index (national percentile), BMI- body mass index, CCI- Charlson 360 

Comorbidity Index (age-adjusted), PHQ-9 (Patient Health Questionnaire-9), 361 

Readiness_Stage- Readiness to change stage score, 6MWT- 6-Minute Walk Test, 362 

TSIS- time since initial stroke, LR- Logistic regression, SVM- Support vector machine, 363 

RF- Random forest. 364 

 365 

 Figure 3B displays the model performances for the aerobic threshold. All models 366 

demonstrated a moderate level of test-set accuracy. Overall, SVM performed the worst, 367 

achieving an average standard accuracy score of 71.1% (SD 4.6%, range 58.0% - 368 

81.5%) with selected features and 71.1% (SD 4.4%, range 60.5% - 82.7%) when using 369 

all features. LR and RF performed marginally better than SVM, with LR achieving 370 

standard accuracy scores of 73.9% (SD 4.5%, range 59.3% - 82.7%) with feature 371 

selection and 73.1% (SD 4.2%, range 59.3% - 81.5%) when using all features. RF 372 

achieved standard accuracy scores of 73.3% (SD 4.6%, range 6.8% - 81.5%) with 373 

feature selection and 73.5% (SD 4.1%, range 61.7% - 81.5%) when using all features. 374 
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Again, the regularization phase was effective in reducing the number of features while 375 

maintaining model performance accuracy.   376 

Discussion 377 

 We determined that 6MWT was the only variable found to be an important 378 

predictor across all three algorithms in distinguishing home versus community 379 

ambulators. We also found that speed modulation was the only variable deemed 380 

important across all algorithms in distinguishing between stroke survivors who meet 381 

physical activity guidelines versus those who do not. Considering that 6MWT and speed 382 

modulation are measures of a stroke survivor’s physical capacity and were the only 383 

variables found to be important across all three mathematically unique algorithms led us 384 

to conclude that measures of physical capacity are primary characteristics that 385 

distinguish between groups of stroke survivors using these binary step thresholds. 386 

 Our finding that 6MWT was a primary characteristic for distinguishing between 387 

home versus community ambulators is in agreement with previous studies 388 

demonstrating that the 6MWT discriminates between functional walking categories in 389 

individuals with stroke [3, 26]. This finding is also aligned with several studies reporting 390 

that measures of physical capacity are, in general, important predictors of functional 391 

walking categories [3, 14, 26, 27] and physical activity [20] in individuals with stroke. As 392 

past work has generally utilized a single analytical approach, our results extend this 393 

work by demonstrating that the 6MWT prevails as an important predictor across multiple 394 

settings and further suggests that walking endurance is important for predicting whether 395 

a stroke survivor will achieve community mobility status using a 2500-step threshold. 396 
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These results are clinically important and suggest that clinicians should target the 397 

individual’s walking endurance to achieve the goal of community ambulation. However, 398 

as can be observed in Figure 2, additional features were deemed important across 399 

some algorithms, but not all. The Area Deprivation Index, Patient Health Questionnaire-400 

9, readiness to change relapse score, self-selected walking speed, assistive device use, 401 

and years of education were found to be important for both SVM and LR, but not RF. 402 

Taken together, these findings suggest that addressing walking endurance is likely 403 

necessary but not sufficient for achieving a 2500-step threshold and that ancillary 404 

features (defined as predictors that were important to one or two algorithms, but not all 405 

three), including depressive symptoms and readiness to change activity behavior, may 406 

need to be addressed to fully achieve this step threshold.   407 

 For the aerobic threshold, speed modulation most consistently improved the 408 

prediction when using standard accuracy. Previous work has demonstrated that speed 409 

modulation is related to fall status [56] and daily walking activity [57] in older adults. 410 

Here we showed that speed modulation is also an important predictor of whether a 411 

stroke survivor will achieve a daily step threshold reflecting physical activity guidelines.  412 

Since there is no uniform consensus on what magnitude of class imbalance 413 

warrants the use of standard versus balanced accuracy, we also assessed whether 414 

using balanced accuracy for the aerobic threshold would change our result. In this 415 

analysis, we found that both 6MWT and speed modulation were primary characteristics 416 

for achieving the aerobic step threshold (see S1 Fig). This similarity in result regardless 417 

of the use of standard accuracy (in which the 6MWT was close to being considered a 418 

primary characteristic) or balanced accuracy increases our confidence in our 419 
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methodology and suggests that measures of physical capacity are critically important for 420 

achieving the aerobic step threshold.  421 

However, our results demonstrate that targeting physical capacity is likely 422 

necessary but not sufficient for achieving a 5500-step threshold. This is supported by 423 

the fact that some algorithms, but not all, found that ancillary features were important in 424 

predicting the outcome. For example, both LR and SVM found that readiness to change 425 

activity behavior and the number of medications taken, were also important for 426 

predicting the aerobic step threshold, suggesting that readiness to change activity 427 

behavior and physical health status, may also need to be addressed to fully achieve this 428 

threshold. 429 

 We examined predictors of both 2500 and 5500-step thresholds as past work 430 

suggests that these thresholds likely provide different information. The 2500-step 431 

threshold is intended to distinguish between stroke survivors who walk primarily within 432 

their home setting from those who walk within their community [3]. As community 433 

ambulation typically involves greater walking distances [58], sufficient walking 434 

endurance is likely necessary to traverse community distances, lending credence to our 435 

finding that 6MWT is a primary characteristic of the home versus community threshold. 436 

In contrast, the 5500-step threshold is intended to distinguish between those who meet 437 

physical activity guidelines through walking and those who do not [10]. Physical activity 438 

guidelines are expressed in terms of exercise intensity and increasing one’s walking 439 

speed is one approach to increasing exercise intensity [9]. Therefore, it logically follows 440 

that the ability to modulate walking speed is a primary characteristic of those who meet 441 

intensity-based physical activity guidelines through walking. However, when using 442 
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balanced accuracy for the aerobic threshold, we found the 6MWT was also a primary 443 

characteristic and increasing one’s exercise duration is another approach to meeting 444 

physical activity guidelines. We therefore conclude that measures of physical capacity 445 

are primary characteristics necessary to achieve these step thresholds and that 446 

associated ancillary characteristics may need to be addressed to fully achieve these 447 

step thresholds. 448 

 Importantly, these results should not be interpreted as the 6MWT and speed 449 

modulation represent the best single predictors of home versus community or aerobic 450 

step thresholds (see S2 Fig for predictive accuracy of 6MWT and speed modulation 451 

alone in predicting thresholds). This kind of inference would require determining that 452 

they hold the greatest predictive power over the other variables, which was not the 453 

purpose of this study. What our results do indicate, however, is that 6MWT and speed 454 

modulation are primary characteristics that distinguish stroke survivors who do and do 455 

not meet these step thresholds. Similarly, it is worth noting that neither 6MWT nor 456 

speed modulation had the greatest importance across all three algorithms in either 457 

classification setting (see Figs 2 and 4). Thus, our results extend upon literature 458 

examining predictors of stepping activity in stroke by demonstrating that there are 459 

features that are primary characteristics that should be addressed as well as ancillary 460 

features that may need to be addressed based on the unique circumstances of the 461 

individual.  462 

 With respect to model performance, RF was outperformed by SVM and LR in the 463 

home versus community threshold, with LR marginally achieving the best results over 464 

SVM. In the case of the aerobic threshold, RF and LR outperformed SVM with average 465 
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accuracy scores within less than 1% of each other both with and without selected 466 

features. It is important to note that we did minimal hyperparameter tuning in this 467 

assessment, only optimizing the parameter for class weights in the case of the home 468 

versus community threshold due to the class imbalance. After tuning just this single 469 

hyperparameter, LR and SVM saw improvements in average performance of 7.3-13.5% 470 

after tuning, where RF’s performance did not improve with balanced class weights. It is 471 

possible that with more exhaustive hyperparameter tuning, model performance in the 472 

case of both thresholds could be improved.  473 

 Importantly, model performance accuracies were similar or better for a model 474 

with only features retained after regularization compared to a model with all features for 475 

all three algorithms and both thresholds. This validated the regularization phase, as we 476 

were able to reduce the number of variables to a relevant subset without compromising 477 

model performance. More directly, we were able to predict the home versus community 478 

and aerobic threshold classifications as well with 7 and 16 features, respectively, as we 479 

were when using all 25 features.  480 

Limitations 481 

 First, the class imbalance in the case of the home versus community threshold 482 

may have limited the performance of our algorithms. Consequently, model performance 483 

metrics across samples could suffer from high variability. In addition, with only 58 home 484 

ambulators, those in our sample may not be representative of the stroke population, as 485 

individuals were excluded if they walked at a self-selected gait speed of <0.3 m/s. 486 

However, we aimed to address this limitation by using balanced accuracy as our metric 487 
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of model performance for the home versus community threshold to avoid potential 488 

scenarios resulting in inflated measures of accuracy caused by the class imbalance 489 

(e.g., a constant model classifying all points as community ambulators). Second, 490 

although we used step thresholds endorsed by previous studies, we recognize that 491 

there are likely individuals who may not fit these exact criteria. For example, stroke 492 

survivors who achieve the step threshold to be considered community ambulators may 493 

take these steps primarily within their home environment.  494 

Conclusions/Implications 495 

 A stroke survivor’s physical capacity to walk is a primary characteristic that can 496 

be used to determine whether they will achieve step thresholds corresponding to home 497 

versus community ambulation and physical activity guidelines. However, measures of 498 

physical capacity were not necessarily the single best predictors of achieving these 499 

thresholds. Thus, addressing physical capacity is necessary but not sufficient for 500 

achieving these thresholds and ancillary factors, such as readiness to change activity 501 

behavior and physical health status, among others, may need to be addressed based 502 

on the individual’s unique clinical presentation. Future work on larger sample sizes that 503 

contain greater representation of home ambulators and other potentially relevant 504 

variables, such as fatigue and quality of life, is necessary. 505 
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S1 Fig. Drop column feature importance for aerobic threshold (5500 steps/day) 758 

using balanced accuracy. Red markers show mean feature importance with 95% 759 

bootstrapped confidence interval. 6MWT and speed modulation were the only features 760 

found to be important across all three algorithms. Abbreviations: ABC- Activities Specific 761 

Balance Confidence Scale, ADI_N- Area Deprivation Index (national percentile), BMI- 762 

body mass index, CCI- Charlson Comorbidity Index (age-adjusted), PHQ-9- Patient 763 
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Support vector machine, RF- Random forest. 766 
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S2 Fig. Precision-recall curve for predicting home versus community ambulation 768 

using the 6-minute walk test (A) and aerobic threshold using speed modulation 769 

(B). Precision is defined as: Precision = True Positives/(True Positives + False 770 

Positives). Recall is defined as: Recall = True Positives/(True Positives + False 771 

Negatives). The solid line plots the precision-recall curve, and the dash line reflects a 772 

no-skill classifier (a model that cannot discriminate between classes). Abbreviations: 773 

AUC- Area Under Curve. 774 
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A machine learning approach to identifying important features for achieving step 1 

thresholds in individuals with chronic stroke: Supplementary material 2 

Machine learning algorithms 3 

This section of the supplement is intended to provide a brief overview of the 4 

machine learning algorithms used in this study for readers unfamiliar with them. The 5 

three machine learning (ML) algorithms used in this analysis were Logistic Regression 6 

(LR), Support Vector Machine (SVM) with a radial basis function (RBF) kernel, and 7 

Random Forest (RF) classifier. These were chosen for this analysis because they are 8 

all commonly used supervised ML algorithms that are mathematically distinct from one 9 

another. A supervised classification algorithm is one that is trained by being provided 10 

with both data (X) and labels (Y), similar to a flash card. The way that supervised 11 

classification algorithms generally work is that they use the training data and labels to 12 

construct a function, f(x), to make predictions about which class other points in the 13 

same population belong to. Here, each point 𝑥𝑥 = (𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑚𝑚) where 𝑥𝑥𝑘𝑘 is the value of 14 

x that corresponds with the kth feature. This is done by solving an optimization problem 15 

to find the best parameters for f(x) based on what quantity is being optimized. The form 16 

of the predictor f(x) and the optimization process varies across ML algorithms. 17 

In the case of LR with binomial class labels, as we have in our analysis, the 18 

general idea is that, based on our sample data, X, and labels, Y, we want to model the 19 

probability that Y=1, given X takes some value x, i.e. 20 

𝑝𝑝(𝑥𝑥) = 𝑃𝑃[𝑌𝑌 = 1|𝑋𝑋 = 𝑥𝑥] 21 
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Then we also have that the probability that Y = 0 given X = x is 1- p(x). Now, to model 22 

this probability, p(x), LR uses the logistic function which takes values in (-∞, ∞) and 23 

maps them to the interval [0,1] (the values of the probabilities). During this process, we 24 

want to find some set of parameters, β (the vector of beta weights), that fit the data in 25 

some optimal way where the logistic function to model this probability is: 26 

𝑝𝑝(𝑥𝑥,𝛽𝛽) =  
𝑒𝑒𝑥𝑥𝑇𝑇𝛽𝛽

1 + 𝑒𝑒𝑥𝑥𝑇𝑇𝛽𝛽
 27 

Given our training data has n observations, the goal of LR is find the values of β that 28 

maximize the log-likelihood function: 29 

𝐿𝐿𝐿𝐿(𝛽𝛽) = 𝑙𝑙𝑙𝑙 ��𝑝𝑝(𝑥𝑥𝑖𝑖,𝛽𝛽)𝑦𝑦𝑖𝑖
𝑛𝑛

𝑖𝑖 = 1

�1 − 𝑝𝑝(𝑥𝑥𝑖𝑖,𝛽𝛽)�
1−𝑦𝑦𝑖𝑖� 30 

 =  �𝑦𝑦𝑖𝑖𝑥𝑥𝑖𝑖𝑇𝑇𝛽𝛽 −  𝑙𝑙𝑙𝑙 �1 +  𝑒𝑒𝑥𝑥𝑖𝑖
𝑇𝑇𝛽𝛽�

𝑛𝑛

𝑖𝑖=1

 31 

One important thing to note is that of the three models used in our analysis, LR is the 32 

most closely related to a linear model in the sense that the term 𝑥𝑥𝑇𝑇𝛽𝛽 is a linear 33 

combination of the values of the vector x with the beta weights. This means that LR is 34 

only able to detect linear relationships between the features, where non-linear ones 35 

might exist. 36 

 For SVM, rather than computing the probability that a given observation belongs 37 

to some class, the goal is to establish boundaries with an allotted margin of error in the 38 

space the data comes from. These boundaries, which are defined by linear 39 

hyperplanes, separate the space the data comes from into regions. Then, a point would 40 
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be classified depending on which of these regions the point lies in. In general, if our 41 

data set consists of m variables, then our data points live in an m-dimensional space. A 42 

hyperplane in an m-dimensional space would be defined by: 43 

𝛽𝛽0 +  𝛽𝛽1𝑥𝑥1 + ⋯+   𝛽𝛽𝑚𝑚𝑥𝑥𝑚𝑚 = 0 44 

Which, in vector form, would be: 45 

 𝛽𝛽0 + 𝛽𝛽𝑇𝑇𝑥𝑥 = 0 46 

Where x is a single data point,  𝛽𝛽0 is the bias term, and β is the vector of beta weights. 47 

Notice that, similar to LR, the linear hyperplane in the m-dimensional space is only able 48 

to use linear relationships between the variables, but it is very possible that the data is 49 

not linearly separable. This is where one of the benefits of SVM, the use of a kernel, 50 

comes into play. A kernel, such as RBF, allows for additional “new” variables to be 51 

constructed using non-linear combinations of the existing variables. This allows the data 52 

to be projected into higher, m+d dimensional space, where d is the number of “new” 53 

variables, in which the data may now be separable by a linear hyperplane in this new, 54 

higher dimensional space. The way this would change the formulation of the boundary 55 

would be: 56 

 𝛽𝛽0 +  𝛽𝛽𝑇𝑇𝜙𝜙(𝑥𝑥) = 0 57 

where 𝜙𝜙 is an unknown function of 𝑥𝑥  that is related to the transformation into higher 58 

dimensional space. The term 𝜙𝜙(𝑥𝑥) is what would be the non-linear part of the definition 59 

of the hyperplane in 𝑚𝑚-dimentional space.  60 

 The RBF kernel, which is defined by: 61 
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𝐾𝐾�𝑥𝑥𝑖𝑖  , 𝑥𝑥𝑗𝑗� =  𝑒𝑒−𝛾𝛾(𝑥𝑥𝑖𝑖−𝑥𝑥𝑗𝑗)2 62 

allows the data to be projected into an infinite dimensional space, but rather than ever 63 

actually making the physical transformation, the kernel functions allow for these higher 64 

dimensional relationships between the points to be computed because the kernel 65 

function acts as a dot product in that space. In this way, the RBF kernel can be thought 66 

of as a measure of how “close” two observations 𝑥𝑥𝑖𝑖  and 𝑥𝑥𝑗𝑗 are in infinite dimensional 67 

space. What makes SVM so robust is not only that it can use a kernel but also that, 68 

when establishing this boundary, there are allowances for misclassification of training 69 

data to handle noise. The optimization problem then becomes maximizing the distance 70 

between the points and the hyperplane while trying to minimize misclassification error: 71 

max
𝛽𝛽0,𝛽𝛽,𝑀𝑀,𝜀𝜀1,… ,𝜀𝜀𝑛𝑛 

𝑀𝑀 72 

Subject to the constraints: 73 

‖𝛽𝛽‖ = 1  74 

(2𝑦𝑦𝑖𝑖 − 1)� 𝛽𝛽0 +  𝛽𝛽𝑇𝑇𝜙𝜙(𝑥𝑥𝑖𝑖)� ≥ 𝑀𝑀(1 − 𝜀𝜀𝑖𝑖) 75 

�𝜀𝜀𝑖𝑖  ≤ 𝐶𝐶
𝑛𝑛

𝑖𝑖=1

 76 

Where 𝑀𝑀 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑖𝑖𝑖𝑖𝑠𝑠𝑒𝑒 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖𝑙𝑙, (2𝑦𝑦𝑖𝑖 − 1)� 𝛽𝛽0 +  𝛽𝛽𝑇𝑇𝜙𝜙(𝑥𝑥𝑖𝑖)� is the distance from the 77 

observation 𝑥𝑥𝑖𝑖 to the hyperplane in the higher dimensional space, and C and 𝜀𝜀𝑖𝑖  ≥ 0 are 78 

the total error tolerance and the “slack” allowed for each observation, 𝑥𝑥𝑖𝑖 , respectively. 79 

This optimization problem can be solved using a Lagrange multiplier, which eliminates 80 

the dependency on the unknown function 𝜙𝜙(𝑥𝑥). The end result is a potentially non-linear 81 
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boundary that is as far away as possible from most points in each class, thus creating a 82 

robust classifier in the physical feature space. 83 

Finally, RF is what is referred to as an “ensemble” because it is much more a 84 

collection of individual models, rather than a single model on its own. Simply put, a 85 

random forest is exactly what it sounds like: it is a collection (or “forest”) of decision 86 

trees which are each constructed using random subsets of the training data. Once a 87 

new point is passed into the RF model, each tree in the forest will classify that point and 88 

then RF will choose the class with the most “votes” in the forest. Each decision tree is 89 

made up of a collection of nodes that act like a path where each node is defined by a 90 

single feature with some threshold. The first node is the root node and connected to that 91 

are branches and then leaves. If we think of each of these nodes as possible stops on 92 

the tree’s path to a decision about a point , 𝑥𝑥 = (𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑚𝑚), at each stop, the value of 93 

one of x’s entries will determine the next node it will stop at until it reaches a leaf node 94 

where the path ends and a decision is made based off of where it ended up. When 95 

growing each tree, a bootstrap sample of the training data is used and at each new 96 

node, a random subset of the variables is chosen, from which the best single predictor 97 

will be used to define the threshold that splits that node. This optimization of the 98 

individual decision tree is more of a greedy algorithm than an actual “optimization” 99 

problem in the classical sense. Consider an example where we are deciding how to 100 

best split a node with a random subset of 𝑘𝑘 ≤ 𝑚𝑚 features. For each feature 𝑗𝑗 in {1, … ,𝑘𝑘} 101 

choosing a threshold, 𝑡𝑡, will create two regions, one for the points where the value of the 102 

feature 𝑗𝑗 is less than or equal to 𝑡𝑡 and one where the value is greater than 𝑡𝑡 : 103 

𝑅𝑅1 = �𝑝𝑝𝑜𝑜𝑖𝑖𝑙𝑙𝑡𝑡𝑖𝑖  𝑥𝑥  𝑤𝑤𝑖𝑖𝑡𝑡ℎ  𝑥𝑥𝑗𝑗 ≤ 𝑡𝑡� 𝑚𝑚𝑙𝑙𝑎𝑎 𝑅𝑅2 = �𝑝𝑝𝑜𝑜𝑖𝑖𝑙𝑙𝑡𝑡𝑖𝑖  𝑥𝑥  𝑤𝑤𝑖𝑖𝑡𝑡ℎ  𝑥𝑥𝑗𝑗 > 𝑡𝑡�  104 
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Then the feature 𝑗𝑗 and the threshold 𝑡𝑡 are chosen to be those that best classify the 105 

training data, i.e., those that minimize the classification error across the regions by 106 

satisfying: 107 

min
𝑗𝑗,𝑡𝑡

�min � 𝑒𝑒𝑚𝑚𝑚𝑚𝑜𝑜𝑚𝑚(𝑗𝑗,𝑠𝑠)
𝑥𝑥𝑖𝑖𝑖𝑖𝑛𝑛 𝑅𝑅1

(𝑥𝑥𝑖𝑖) + � 𝑒𝑒𝑚𝑚𝑚𝑚𝑜𝑜𝑚𝑚(𝑗𝑗,𝑠𝑠)
𝑥𝑥𝑖𝑖𝑖𝑖𝑛𝑛 𝑅𝑅2

(𝑥𝑥𝑖𝑖)� 108 

Where 𝑒𝑒𝑚𝑚𝑚𝑚𝑜𝑜𝑚𝑚𝑅𝑅(𝑗𝑗,𝑠𝑠)(𝑥𝑥) is the quantification of the error of classifying point 𝑥𝑥𝑖𝑖 in region R 109 

using the variable j with threshold s. For classification, a popular metric to use here is 110 

the Gini Index. The end result is a robust model that is known to perform well in a wider 111 

variety of situations, but that is not very interpretable. 112 

Lasso regularization 113 

 In this analysis, Lasso (Least Absolute Shrinkage and Selection Operator) 114 

regularization was used to perform dimensionality reduction in the first phase of the 115 

feature importance process. This was done to reduce noise and redundancy among the 116 

full set of variables; thus, the goal was to reduce the number of variables while still 117 

retaining the same amount of information. As seen in the results section of this paper, 118 

this goal was achieved.  119 

 When fitting a linear model to data, as mentioned above, there is an optimization 120 

problem being solved. In general, for a linear model of the form: 121 

𝑜𝑜(𝑥𝑥,𝛽𝛽) =  𝛽𝛽0 +  𝛽𝛽1𝑥𝑥1 + ⋯+   𝛽𝛽𝑚𝑚𝑥𝑥𝑚𝑚 122 

You want to find the values of the coefficients,  𝛽𝛽𝑗𝑗, such that you are minimizing the loss 123 

function, 𝐿𝐿(𝛽𝛽). What Lasso regularization does is place a penalty on the size of the β 124 
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coefficients where the optimization problem changes to finding the coefficients 125 

 𝛽𝛽1, … ,  𝛽𝛽𝑚𝑚 such that we want to solve: 126 

min
𝛽𝛽

𝐿𝐿(𝛽𝛽) +  𝜆𝜆��𝛽𝛽𝑗𝑗�
𝑚𝑚

𝑗𝑗=1

 127 

Where λ > 0 [1]. Note that in our analysis, the values of the regularization parameters 128 

can be interpreted as  1
𝜆𝜆
 . 129 

 The reason Lasso regularization was chosen for this analysis is that the penalty it 130 

places on the size of the β coefficients shrinks them in a way that forces some of the 131 

coefficients to 0 [1]. In doing this, the remaining features with non-zero coefficients can 132 

be interpreted as the subset of variables that were “chosen” by lasso regularization. 133 

Balanced accuracy for imbalanced data 134 

 We used two metrics of model performance throughout the analysis: standard 135 

accuracy in the case of the aerobic threshold (5500 steps/day), which is the total 136 

proportion of correctly classified points in the test set: 137 

𝑡𝑡𝑚𝑚𝑡𝑡𝑒𝑒 𝑝𝑝𝑜𝑜𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑝𝑝𝑒𝑒𝑖𝑖 + 𝑡𝑡𝑚𝑚𝑡𝑡𝑒𝑒 𝑙𝑙𝑒𝑒𝑚𝑚𝑚𝑚𝑡𝑡𝑖𝑖𝑝𝑝𝑒𝑒𝑖𝑖
𝑡𝑡𝑚𝑚𝑡𝑡𝑒𝑒 𝑝𝑝𝑜𝑜𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑝𝑝𝑒𝑒𝑖𝑖 + 𝑡𝑡𝑚𝑚𝑡𝑡𝑒𝑒 𝑙𝑙𝑒𝑒𝑚𝑚𝑚𝑚𝑡𝑡𝑖𝑖𝑝𝑝𝑒𝑒𝑖𝑖 + 𝑜𝑜𝑚𝑚𝑙𝑙𝑖𝑖𝑒𝑒 𝑝𝑝𝑜𝑜𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑝𝑝𝑒𝑒𝑖𝑖 + 𝑜𝑜𝑚𝑚𝑙𝑙𝑖𝑖𝑒𝑒 𝑙𝑙𝑒𝑒𝑚𝑚𝑚𝑚𝑡𝑡𝑖𝑖𝑝𝑝𝑒𝑒𝑖𝑖

 138 

 and balanced accuracy in the case of the home vs. community threshold (2500 139 

steps/day), which is the arithmetic mean of the recall (or sensitivity) and specificity: 140 

𝑡𝑡𝑚𝑚𝑡𝑡𝑒𝑒 𝑝𝑝𝑜𝑜𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑝𝑝𝑒𝑒𝑖𝑖
𝑡𝑡𝑚𝑚𝑡𝑡𝑒𝑒 𝑝𝑝𝑜𝑜𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑝𝑝𝑒𝑒 + 𝑜𝑜𝑚𝑚𝑙𝑙𝑖𝑖𝑒𝑒 𝑙𝑙𝑒𝑒𝑚𝑚𝑚𝑚𝑡𝑡𝑖𝑖𝑝𝑝𝑒𝑒𝑖𝑖

+ 
𝑡𝑡𝑚𝑚𝑡𝑡𝑒𝑒 𝑙𝑙𝑒𝑒𝑚𝑚𝑚𝑚𝑡𝑡𝑖𝑖𝑝𝑝𝑒𝑒𝑖𝑖

𝑡𝑡𝑚𝑚𝑡𝑡𝑒𝑒 𝑙𝑙𝑒𝑒𝑚𝑚𝑚𝑚𝑡𝑡𝑖𝑖𝑝𝑝𝑒𝑒𝑖𝑖 + 𝑜𝑜𝑚𝑚𝑙𝑙𝑖𝑖𝑒𝑒 𝑝𝑝𝑜𝑜𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑝𝑝𝑒𝑒𝑖𝑖
 141 
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These metrics were chosen to ensure that the model performance metric used was 142 

representative of how well the model was performing on the target class.  143 

 The class distribution of each threshold was 58 (21.64%) home ambulators and 144 

210 (78.36%) community ambulators in the case of the home vs. community threshold 145 

and 185 (69.03%) below the minimum aerobic activity threshold and 83 (30.97%) above 146 

for the aerobic threshold. While class distributions are not perfectly balanced in each 147 

case, the class imbalance in the case of the home vs. community threshold is starker at 148 

1:4 and, more importantly, in favor of the negative class, unlike the aerobic threshold 149 

[2]. In the case of any significant class imbalance where the target class (the positive 150 

class) is the minority, the metric of standard accuracy could misrepresent how well the 151 

model is performing on the target class because standard accuracy may still be high, 152 

even if the model is not performing well on the target class [2]. In cases like this, we can 153 

use a metric like balanced accuracy, which allows the performance on the minority class 154 

to hold equal weight to that of the majority class and is also robust to misclassification 155 

noise [3].  156 

Results for the aerobic threshold (5500 steps/day) 157 

using balanced accuracy 158 

 When using the metric of balanced accuracy for the aerobic threshold, the 159 

optimized regularization parameters were 2.9 for LR and 0.99 for linear SVM. Given that 160 

when we use standard accuracy, the optimal regularization parameters were very 161 

similar at 2.9 and 0.9, it follows that the results of the lasso regularization stage when 162 

using balanced accuracy were identical to the 16 features reported in the primary 163 
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analysis: 6MWT, speed modulation, CCI age-adjusted score, PHQ-9, readiness to 164 

change stage score, ABC, usual orthotic and assistive device, marital status, years of 165 

education, gender, BMI, side of hemiparesis, time since initial stroke, number of 166 

medications, and ADI_N. 167 

In the second stage, the drop column procedure was run using these 16 features. 168 

For LR, 10 features were found to be important, 6 of which were the important features 169 

found when using standard accuracy. In order of importance, these features were: 170 

readiness to change stage score, speed modulation, 6MWT, usual assistive device, 171 

number of medications, usual orthotic device, years of education, BMI, CCI age-172 

adjusted score, and time since initial stroke. For SVM, the same four features were 173 

found to be important as when using standard accuracy. In order of importance, these 174 

features were: readiness to change stage score, number of medications, speed 175 

modulation, and 6MWT. Like SVM, RF also had four features found to be important, 176 

which, in order of importance were: speed modulation, usual assistive device, 6MWT, 177 

and PHQ-9. From these results, speed modulation was still found to be a primary 178 

characteristic for the aerobic threshold, in addition to 6MWT. BMI, CCI, PHQ-9, 179 

readiness to change stage score, time since initial stroke, number of medications taken, 180 

assistive and orthotic device use, and years of education were found to be ancillary 181 

characteristics. Supplemental Figure 1 displays the results for the drop column 182 

procedure for the aerobic threshold using balanced accuracy. 183 

 184 

S1 Fig. Drop column feature importance for aerobic threshold (5500 steps/day) 185 

using balanced accuracy. Red markers show mean feature importance with 95% 186 
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bootstrapped confidence interval. 6MWT and speed modulation were the only features 187 

found to be important across all three algorithms. Abbreviations: ABC- Activities Specific 188 

Balance Confidence Scale, ADI_N- Area Deprivation Index (national percentile), BMI- 189 

body mass index, CCI- Charlson Comorbidity Index (age-adjusted), PHQ-9- Patient 190 

Health Questionnaire-9, Readiness_Stage- Readiness to change stage score, 6MWT- 191 

6-Minute Walk Test, TSIS- time since initial stroke, LR- Logistic regression, SVM- 192 

Support vector machine, RF- Random forest. 193 

 194 

Importantly, these results are very similar to the results found when using 195 

standard accuracy. Note that when standard accuracy was used, 6MWT was found to 196 

be important for both SVM and LR but the 95% confidence interval for RF was only 197 

barely negative, resulting in 6MWT not being found to be a primary characteristic. It is 198 

encouraging that these results were found in this analysis because it is reflective of the 199 

fact that, even with mild class imbalance, standard accuracy was an appropriate choice 200 

of metric for this threshold.   201 

6-minute walk test as a single predictor of home vs. 202 

community thresholds (2500 steps/day) 203 

 A precision-recall curve was used to assess the predictive ability of the 6MWT 204 

alone in predicting the home vs. community threshold (2500 steps/day; Supplemental 205 

Figure 2A). Similar to an ROC analysis, a precision-recall curve can be used to assess 206 

the skill of a prediction model, where: 207 
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𝑃𝑃𝑚𝑚𝑒𝑒𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖𝑜𝑜𝑙𝑙 =  
𝑇𝑇𝑚𝑚𝑡𝑡𝑒𝑒 𝑃𝑃𝑜𝑜𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑝𝑝𝑒𝑒𝑖𝑖

(𝑇𝑇𝑚𝑚𝑡𝑡𝑒𝑒 𝑃𝑃𝑜𝑜𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑝𝑝𝑒𝑒𝑖𝑖 +  𝐹𝐹𝑚𝑚𝑙𝑙𝑖𝑖𝑒𝑒 𝑃𝑃𝑜𝑜𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑝𝑝𝑒𝑒𝑖𝑖)
 208 

and 209 

𝑅𝑅𝑒𝑒𝑃𝑃𝑚𝑚𝑙𝑙𝑙𝑙 =  
𝑇𝑇𝑚𝑚𝑡𝑡𝑒𝑒 𝑃𝑃𝑜𝑜𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑝𝑝𝑒𝑒𝑖𝑖

(𝑇𝑇𝑚𝑚𝑡𝑡𝑒𝑒 𝑃𝑃𝑜𝑜𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑝𝑝𝑒𝑒𝑖𝑖 +  𝐹𝐹𝑚𝑚𝑙𝑙𝑖𝑖𝑒𝑒 𝑁𝑁𝑒𝑒𝑚𝑚𝑚𝑚𝑡𝑡𝑖𝑖𝑝𝑝𝑒𝑒𝑖𝑖)
 211 

 210 

S2 Fig. Precision-recall curve for predicting home vs. community ambulation 212 

using the 6-minute walk test (A) and aerobic threshold using the speed 213 

modulation (B). The solid line plots the precision-recall curve, and the dashed line 214 

reflects a no-skill classifier (i.e., a model that cannot discriminate between classes). 215 

Abbreviations: AUC- Area Under Curve. 216 

 217 

 Recall is also referred to as sensitivity. As depicted in Supplemental Figure 2, a 218 

precision-recall curves plots the precision on the Y axis and recall on the X axis, where 219 

a point at (1,1) in the upper right corner of the figure would reflect a model with perfect 220 

precision and perfect recall. These curves can often be used instead of ROC curves in 221 

cases of class imbalance, as they are more sensitive to measures of recall. Similar to 222 

an ROC analysis, the area under the curve (AUC) can be computed to provide a 223 

measure of how well a model is performing where the AUC can have a maximum value 224 

of 1. A no-skill classifier (i.e., a model that randomly “guesses” the class) is depicted as 225 

a dashed line and changes based on the distribution of positive and negative cases: 226 

Precision (of a no-skill classifier) = 𝑃𝑃𝑃𝑃𝑠𝑠𝑖𝑖𝑡𝑡𝑖𝑖𝑃𝑃𝑃𝑃 𝐶𝐶𝐶𝐶𝑠𝑠𝑃𝑃𝑠𝑠
(𝑃𝑃𝑃𝑃𝑠𝑠𝑖𝑖𝑡𝑡𝑖𝑖𝑃𝑃𝑃𝑃 𝐶𝐶𝐶𝐶𝑠𝑠𝑃𝑃𝑠𝑠 + 𝑁𝑁𝑃𝑃𝑁𝑁𝐶𝐶𝑡𝑡𝑖𝑖𝑃𝑃𝑃𝑃 𝐶𝐶𝐶𝐶𝑠𝑠𝑃𝑃𝑠𝑠)

 227 
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Previous work suggests that a precision-recall plot is more informative than an ROC plot 228 

when evaluating a binary classifier in the presence of imbalanced data [4, 5], as was the 229 

case with the home vs. community threshold. For comparison purposes, we present the 230 

precision-recall curves for the 6-Minute Walk Test and speed modulation for predicting 231 

home vs. community and aerobic thresholds, respectively (S2 Fig). 232 

 As shown in Supplemental Figure 2A, the AUC for the 6MWT in predicting home 233 

vs. community ambulation is 0.642 which exceeds that of a no-skill classifier (precision 234 

of no-skill classifier = 58/(210 + 58) = 0.2164). 235 

Speed modulation as a single predictor of aerobic 236 

threshold (5500 steps/day) 237 

 Supplemental Figure 2B displays the precision-recall curve for speed modulation 238 

in predicting the aerobic threshold of 5500 steps/day. The dashed line reflects a no-skill 239 

classifier and is calculated as: precision = 185/(83 + 185) = 0.6903. The AUC of 0.849 240 

exceeds that of the no-skill classifier. When comparing the two precision-recall curves 241 

(and specifically the AUC values), it can be observed that speed modulation is a 242 

stronger predictor of the aerobic threshold than the 6MWT is in predicting the home vs. 243 

community threshold. 244 

 We refer the reader to the reference list below for further reading on these topics. 245 

References 246 
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