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 31 
Abstract 32 
The emergence of SARS-CoV-2 variants of concern has prompted the need for near real-time 33 
genomic surveillance to inform public health interventions. In response to this need, the global 34 
scientific community, through unprecedented effort, has sequenced and shared over 10 million 35 
genomes through GISAID, as of May 2022. This extraordinarily high sampling rate provides a unique 36 
opportunity to track the evolution of the virus in near real-time. Here, we present outbreak.info, 37 
a platform that currently tracks over 40 million combinations of PANGO lineages and individual 38 
mutations, across over 7,000 locations, to provide insights for researchers, public health officials, 39 
and the general public. We describe the interpretable and opinionated visualizations in the variant 40 
and location focussed reports available in our web application, the pipelines that enable the scalable 41 
ingestion of heterogeneous sources of SARS-CoV-2 variant data, and the server infrastructure that 42 
enables widespread data dissemination via a high performance API that can be accessed using an 43 
R package. We present a case study that illustrates how outbreak.info can be used for genomic 44 
surveillance and as a hypothesis generation tool to understand the ongoing pandemic at varying 45 
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geographic and temporal scales. With an emphasis on scalability, interactivity, interpretability, and 46 
reusability, outbreak.info provides a template to enable genomic surveillance at a global and 47 
localized scale. 48 
 49 
Introduction 50 
In December 2019, a series of cases of pneumonia of unknown origin appeared in Wuhan, China, 51 
and on 7 January 2020, the virus responsible for the diseases was identified as a novel coronavirus, 52 
SARS-CoV-21. The first SARS-CoV-2 genome was made publicly available on 10 January 20202. Since 53 
then, the global scientific community, through an unprecedented effort, has sequenced and shared 54 
over 10 million genomes through GISAID, as of May 20223,4. To keep track of the evolving genetic 55 
diversity of SARS-CoV-2, Rambaut et al. developed a dynamic phylogeny-informed nomenclature 56 
(PANGO) to classify SARS-CoV-2 lineages5. As of May 2022, over 2,000 lineages have been 57 
designated, which has enabled public health agencies such as Public Health England (PHE), the 58 
Centers for Disease Control (CDC), and the World Health Organization (WHO) to identify Variants of 59 
Concern (VOC), Variants of Interest (VOI/VUI), and Variants Under Monitoring (VUM/VBM) based on 60 
the phenotypical characterization of these lineages6. Currently, there are five designated VOCs: 61 
B.1.1.7* (Alpha; * denotes the lineage and any of its sub lineages) lineage resulting in increased 62 
transmissibility7, B.1.351* (Beta) lineage exhibiting immune evasion8, the P.1* (Gamma) lineage 63 
exhibiting immune evasion9, the B.1.617.2* lineage exhibiting increased transmissibility due to the 64 
P681R mutation in the Spike gene10, and more recently, the B.1.1.529* (Omicron) lineage exhibiting 65 
very rapid growth and the ability to substantially avoid antibody neutralization11,12.   66 
 67 
The emergence of VOCs with fitness advantages has led to global “sweeps'' with newly emerged 68 
VOCs displacing previously circulating variants. More importantly, the growth of each VOC has led 69 
to a renewed surge in infections worldwide. This has prompted the need for near real-time genomic 70 
surveillance to inform early public health interventions to control the rise of infections. In response 71 
to this need, thousands of academic, non-academic, and public health labs have been depositing 72 
sequences predominantly on the sharing platform of the GISAID Initiative4,13. This extraordinarily 73 
high sampling rate of infecting viruses provides a unique opportunity to track the evolution of the 74 
virus in near real-time. For example, in December 2021 alone, over a million new genomes were 75 
submitted to GISAID14. Traditionally, phylodynamic approaches have been employed to 76 
retrospectively characterize lineage dynamics during outbreaks of viruses such as Zika15–17, West 77 
Nile18 and Ebola viruses19,20. Existing tools like NextStrain21 and frameworks such as Microreact22 78 
primarily rely on a phylogeny to elucidate transmission chains and monitor the evolution of the 79 
virus. However, these tools were not designed to track thousands of new genomes per day, and 80 
given that building phylogenies for large sets of genomes is computationally intensive and time 81 
consuming, obtaining timely insights from the data is often problematic23. However, the high 82 
sampling rate of the virus has opened up the possibility of tracking the pandemic using the available 83 
near real-time genomic data without the need for computationally intensive modeling.  84 
 85 
Here, we present outbreak.info, a platform that currently tracks over 40 million combinations of 86 
PANGO lineages and individual mutations, across over 7,000 locations, to provide insights for 87 
researchers, public health officials, and the general public. In the following sections, we describe the 88 
data pipelines that enable the scalable ingestion and standardization of heterogeneous data on 89 
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SARS-CoV-2 variants, the server infrastructure that enables the dissemination of the processed data, 90 
and the client-side applications that provide intuitive visualizations of the underlying data.  91 
 92 
Results 93 
The growth rate of a given viral lineage is a function of epidemiology and its intrinsic biological 94 
properties (Fig 1a). For example, the B.1.177 lineage, characterized by an A222V amino acid 95 
substitution in the spike gene, increased in prevalence in Europe during the summer of 202024. 96 
While initially thought to be more transmissible, it was eventually shown that the increase in 97 
prevalence was due to a resurgence in travel and not due to increased transmissibility. In contrast, 98 
a few months later, the B.1.1.7 lineage was shown to be 40-60% more transmissible than previously 99 
circulating lineages and this intrinsic biological property led to the rapid growth in its prevalence 100 
worldwide25,26. Epidemiological factors such as mobility27,28, mask usage29, and public health 101 
interventions30 vary over time and across geographies worldwide, while biological properties are a 102 
function of the mutations found in a given lineage (Fig 1a). Hence, to maximize the utility of genomic 103 
data for surveillance, we built outbreak.info to enable the exploration of genomic data across 104 
three dimensions: geography, time, and lineages/mutations. We use the PANGO nomenclature to 105 
estimate the prevalence of SARS-CoV-2 lineages over time and at varying geographic scales. Using 106 
a phylogenetically-informed nomenclature allows us to determine genetic features such as the 107 
“characteristic mutations” of a lineage without directly building a global phylogeny. By avoiding a 108 
global phylogeny, we can update our databases daily using the continuously growing number of 109 
SARS-CoV-2 genomes. In addition, we closely track reports from health agencies such as the PHE, 110 
the CDC and the WHO that designate VOC/VOI/VUMs based on epidemiological analyses. In addition 111 
to genomic data, the server also ingests two other types of data: (1) epidemiological data curated 112 
by Johns Hopkins University31, and (2) public literature, clinical trial, protocol, and dataset metadata 113 
from sources such as bioRxiv, medRxiv, and LitCovid32. Here, we describe how each of these data 114 
sources is used in cohesion to assist in genomic surveillance.  115 
 116 
The overall workflow of genomic data is shown in Fig 1b. Genomic data is ingested from GISAID, 117 
processed via a custom-built data pipeline, Bjorn, and stored on a server which can be accessed 118 
via an application programming interface (API). We built two client-side applications, a web interface 119 
and an R package which consume this API (Fig 1b). The web interface consists of three main tools 120 
focussing on different facets of the underlying genomic data: (1) Lineage and/or Mutation Tracker, 121 
(2) Location Tracker, and (3) Lineage Comparison Tool. We designed an opinionated interface for 122 
each tool that focuses on one primary dimension of the genomic data with additional 123 
customizability of one or more secondary dimensions (Fig 1c). The Lineage and/or Mutation Tracker 124 
focus on a specific lineage, mutation or a combination of these. The Location Tracker focuses on a 125 
given location and provides a snapshot of currently circulating lineages. Finally, the Lineage 126 
Comparison Tool can be used to explore the prevalence of mutations across different lineages. In 127 
addition to the web interface, we have built an R package that authenticates against GISAID 128 
credentials and allows programmatic access to the processed data for downstream analyses.  129 
 130 
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 131 
Figure 1. outbreak.info enables the exploration of genomic data across three dimensions. a, Growth rate 132 
of a lineage is a function of epidemiology and intrinsic biological properties of a lineage. Further, epidemiology 133 
varies over time and by geography while intrinsic biological properties are determined by the mutations 134 
present in a given lineage. b, Genomic data is ingested from GISAID, processed using the custom-built data 135 
pipeline, Bjorn, and stored on a server which can be accessed via an Application Programming Interface (API). 136 
The API is consumed by two clients: A JavaScript based web client and an R package that provides 137 
programmatic access by authenticating against GISAID credentials. c, The web interface contains three tools 138 
that allow exploration of genomic data across three different dimensions: lineage/mutation, time, and 139 
geography.  140 
 141 
Lineage and/or Mutation Tracker 142 
The ongoing SARS-CoV-2 pandemic has been punctuated by the emergence of VOCs with fitness 143 
advantages over previously circulating variants, resulting in “waves” of infections. Fig 1a shows the 144 
changing prevalence of the three most dominant VOCs in the United Kingdom, but this 145 
phenomenon is observed globally with heterogeneity across geography. A fundamental part of 146 
genomic surveillance is to identify the emergence of such variants by closely tracking the growth of 147 
circulating lineages. Given the geographic variation in epidemiological, social, and economic factors, 148 
it is important to estimate variant prevalence at varying geographic scales. The Lineage/Mutation 149 
Tracker can be used to dynamically query the temporal and geographic variation in the prevalence 150 
of a (i) VOC/VOI and its sublineages (e.g., Delta and its sublineages), (ii) a lineage (e.g., B.1.1.7), (iii) a 151 
lineage and one or more mutations (e.g., B.1.1.7 with S:E484K), (iv) a mutation (e.g., S:E484K), or (iv) 152 
a group of mutations (e.g., S:E484K and S:N501Y) (Fig 1b). In addition, users can specify various 153 
location scales, such as a country, state, or county (or their local equivalents), to estimate the 154 
prevalence of a given lineage and/or mutations. To provide meaningful insights from these 155 
prevalence estimates, we designed an opinionated interface to address a specific set of questions 156 
listed in Table 1. 157 
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 158 
Figure 2. Lineage and/or Mutation Tracker. a, Prevalence of VOCs in the United Kingdom from Sep 2020 to 159 
May 2022. b, Search and filter options for Lineage/Variant of Concern tracker. c, Prevalence of S:Y145H + 160 
S:A222V mutations across different lineages globally. d, Prevalence of BA.2 in the United Kingdom. e, Mutation 161 
map showing the characteristic mutations of AY.4. f, Summary statistics of BA.2 lineage. g, Geographic 162 
distribution of the cumulative prevalence of BA.2 lineage globally. h, Cumulative prevalence of BA.2 in each 163 
country globally. i, Research articles, and datasets related to BA.2.  164 
 165 
 166 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 2, 2022. ; https://doi.org/10.1101/2022.01.27.22269965doi: medRxiv preprint 

https://doi.org/10.1101/2022.01.27.22269965
http://creativecommons.org/licenses/by/4.0/


Table 1. Questions addressed by the Lineage and/or Mutation Tracker 167 

Question Relevant visual elements 

What is the prevalence of a 
set of mutations within 
different lineages? 

Mutations such as S:N501Y, S:DEL69/70, and S:E484K have been shown to 
have functional impact on the phenotype exhibited by a lineage such as 
increased pathogenicity or immune evasion33,34. Furthermore, these 
mutations have been acquired independently by many lineages. Convergent 
evolution can be used as a metric to assess the importance of any advantage 
conferred on a lineage by a mutation. Hence, if a query contains a set of 
mutations (e.g., S:E484K and S:N501Y), we estimate the prevalence of that set 
of mutations across all lineages globally. (Fig 2c).  

What is the trend shown by 
the prevalence of a lineage 
and/or a set of mutations 
over time? 

Tracking the growth rate of a lineage or a set of mutations over time is very 
important to inform public health interventions. We estimate the prevalence 
of a given query as a proportion of the total number of sequences collected 
on a given day at a given location. To convey the uncertainty in estimating the 
prevalence, we calculate binomial proportion confidence intervals using 
Jeffrey’s interval (Fig 2d).  

What are the “characteristic 
mutations” of a lineage? 

The mutations that are characteristic of a lineage can be used to generate 
hypotheses about the phenotype exhibited by a lineage based on prior 
studies on the functional impact of mutations. This is especially important to 
assess any potential impact a lineage might have on therapeutics such as 
monoclonal antibody drugs. We define the “characteristic mutations'' of a 
lineage as those mutations found in at least 75% of the genomes classified as 
the lineage (Fig 2e). These mutations are displayed in a “mutation map”.  

What is the total number of 
sequences that belong to a 
lineage and/or a set of 
mutations? 
 
In how many countries was a 
lineage and/or a set of 
mutations detected? 
 
When was this lineage and/or 
a set of mutations first 
detected? 

In order to assess how quickly a variant spread and the extent of the 
geographic spread, we show summary of relevant statistics such as the total 
number of sequences that match the query, the cumulative prevalence of 
these mutations, the first and last date a sequence matching the query was 
detected worldwide for a customizable set of locations (Fig 2f).  

What is the geographic 
prevalence of a lineage 
and/or a set of mutations? 

Many lineages including VOCs Beta and Gamma show variation in growth 
rates across different locations. Hence, it is essential to be able to access the 
geographic distribution of a given lineage. To facilitate this, we show the 
cumulative prevalence of lineages since they were first detected across the 
sub-admin levels of a given location for a lineage/mutation query (Fig 2g). 
Choropleths are useful visual elements to map geographic variation in 
prevalence but to further highlight the uncertainty in these estimates and to 
account for cognitive biases in evaluating locations with different areas, we 
use a dot chart to show the uncertainty in the point estimate of prevalence 
over the last 60 days and a bar chart to show the number of sequences used 
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to calculate it (Fig 2h). These two charts can be sorted by the prevalence of 
the query or the total number of sequences that match the query. This allows 
the user to account for the effects of sampling bias on prevalence estimates. 

What is the latest research 
available on this lineage 
and/or set of mutations? 

With the growth of new variants over the pandemic, we have seen many 
studies that focus on important aspects of a lineage such as the ability to 
evade immune response and the impact on vaccine efficacy. In order to aid 
in the discoverability of preprints, publications, datasets and other resources, 
we show the entries that match a given lineage or mutation query from our 
up-to-date Research Library 32 (Fig 2i). 

 168 
Location Tracker 169 
Some VOCs have only been regionally dominant. For example, Beta and Gamma were dominant in 170 
South Africa8 and Brazil35 respectively. Similarly, B.1.62136 was only dominant in Columbia, A.2.5 was 171 
only dominant in Panama, and B.1.177 exhibited a high growth rate only in European countries due 172 
to a resurgence of travel in the summer of 202024,37. Factors such as the attack rate, population 173 
immunity due to previous infection or vaccination, and social mobility vary from one region to the 174 
next and have a significant impact on the growth rates exhibited by a given lineage. To account for 175 
such localized factors, it is important to have the ability to track the growth of lineages at different 176 
geographic scales. We built the Location Tracker on outbreak.info to facilitate the surveillance of 177 
SARS-CoV-2 lineages at a country, state/province, or county/city level. The Location Tracker provides 178 
a snapshot of circulating lineages with a focus on the last 60 days, and allows users to compare the 179 
prevalence of a customizable set of lineages/mutations over time in that location. Furthermore, the 180 
tracker also integrates reported cases over time to provide insights on the impact of growth of 181 
various lineages on caseloads in the region. As with the Lineage/Mutation Tracker, we designed the 182 
user interface to answer a set of specific questions as shown in Table 2. 183 
 184 
Table 2. Questions addressed by the Location Tracker 185 

Question Relevant visual elements 

What are the most prevalent 
lineages over the last 60 days? 

In order to quickly provide a snapshot of the lineages currently circulating 
in a given location, we show a stream graph of the prevalence of lineages 
over the last 60 days (Fig 3a). In order to increase interpretability, we 
grouped lineages that are below 3% prevalence for at least five days over 
the last 60 days into a separate category, "Other". The prevalence over 
time can be skewed especially in recent days due to the lag between 
sample collection, sequencing, and the deposition of sequence data. To 
convey this uncertainty, the total number of samples collected are shown 
in an inverted bar graph below the stream graph. In addition, a stacked 
bar graph shows a snapshot of the cumulative prevalence of the lineages 
over the last 60 days (Fig 3b). Additionally, the user can adjust this window 
to look at different time windows, e.g. 180 days. 

What is the distribution of 
mutations across these 
lineages? 

The Location Tracker shows a snapshot of currently circulating lineages 
which will help identify a newly emerging lineage that exhibits a high 
relative growth rate. Often in such cases, the mutations found in the 
lineage might provide preliminary evidence on phenotypes exhibited by 
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the virus such as increased transmissibility or immune evasion. To 
facilitate this process, we show the prevalence of mutations that are 
present in the spike gene of at least 75% of the sequences of currently 
circulating lineages (Fig 3c). A Lineage Comparison Tool is also available 
which expands upon this functionality with customizable queries to add 
lineages based on the name, VOC/VOI classification, prevalence of 
mutations, and prevalence within a location.  

How does the prevalence of 
different lineages or mutations 
within this location change 
over time? 

In addition to showing a snapshot of the lineages circulating over the last 
60 days, we developed a component to show the temporal variation in the 
prevalence of a customizable set of lineages/mutations for a given 
location. This offers additional flexibility to dynamically select lineages or 
mutations of interest and compare their prevalence over time with a 
customizable time window (Fig 3d).  

How does the lineage 
prevalence over time 
correspond to the number of 
daily reported cases in this 
region?  

The impact of lineage dynamics on the reported cases over time is of 
primary concern to public health. To accomplish this, we cross-linked the 
reported cases for each location using a standardized location identifier, 
and this is shown in a line graph below the prevalence of a lineage (Fig 3e). 
In addition, users can select a time range within the prevalence chart or 
the reported cases chart to compare trends over a shorter time span. 

 186 
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 187 
Figure 3. Location report. a, Relative prevalence of all lineages over time in South Africa. Total number of 188 
sequenced samples collected per day are shown in the bar chart below. b, Relative cumulative prevalence of 189 
all lineages over the last 60 days in South Africa. c, Mutation prevalence across the most prevalent lineages in 190 
South Africa over the last 60 days. d, Comparison of the prevalence of VOCs grouped by WHO classification: 191 
Alpha, Beta, Delta, and Omicron over time in South Africa. e, Daily reported cases in South Africa are shown 192 
in the line chart below.  193 
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Case Study: outbreak.info as a hypothesis generation tool to investigate geographic 194 
variation in lineage dynamics of VOCs 195 
As the pandemic has continued to progress, we have seen the emergence of VOCs with significant 196 
fitness advantages that were able to outcompete previously circulating lineages. As of May 2022, 197 
there have been five designated VOCs: Alpha (B.1.1.7 + sublineages, indicated by *), Beta (B.1.351*), 198 
Gamma (P.1*), Delta (B.1.617.2*), and Omicron (B.1.1.529*). Of these, Alpha, Beta and Gamma were 199 
estimated to have emerged between September and December 20209,38,39 and were subsequently 200 
outcompeted globally by the Delta variant that was first detected in December 202040. The Omicron 201 
lineage, first detected in November 202111, was able to outcompete Delta and grew much more 202 
rapidly relative to previous VOCs during their emergence (Fig 4a). Whereas Delta and Omicron 203 
variants exhibited high growth rates with little variation globally, Alpha continued to circulate in low 204 
prevalence in Brazil and South Africa, where Gamma and Beta variants were dominant respectively 205 
(Fig 4b, 5c). Additionally, the prevalence of sublineages within Delta and Omicron variants varies 206 
geographically. The Location Tracker on outbreak.info can be used to track the growth of VOCs 207 
within a given location, thus facilitating the comparison of lineage growth rates across locations. 208 
The Location Tracker can also be used to track the relative prevalence of sublineages within these 209 
VOCs, shedding light on any geographic variation in these dynamics. Here, we examine trends in 210 
the prevalence of the five VOCs globally and highlight the geographic variation in growth rates of 211 
Alpha, Beta, Gamma, Delta, and Omicron variants.  212 
 213 
The earliest samples of the Alpha variant were sequenced in Southern England in late September 214 
202038. There were multiple introductions of the lineage into the United States (U.S.) as early as late 215 
November41. The Alpha variant showed a transmission advantage of 40-50% in the U.S.26, in line 216 
with observations in the United Kingdom and the Netherlands. In the U.S., Alpha was able to 217 
outcompete previously circulating lineages and continued to increase in prevalence until the 218 
introduction of the Delta variant around April 2021 (Fig 4d). In contrast to the U.S., the Alpha variant 219 
circulated at very low prevalence in Brazil, while the Gamma variant remained dominant in the 220 
country9 until the introduction of the Delta variant around April 2021 (Fig 4b). Similarly, in South 221 
Africa, the Beta variant continued to spread until the emergence of the Delta variant and the Alpha 222 
variant never became dominant (Fig 4c). Whereas the Beta and Gamma variants were able to 223 
outcompete Alpha in South Africa and Brazil respectively, Gamma only reached a maximum 224 
prevalence of 8% in the U.S. in May 2020, and Beta circulated at a prevalence of <1% (Fig 4d). The 225 
growth of a lineage is determined by epidemiological factors such as number of introductions, travel 226 
between locations, and by intrinsic biological properties such as transmission advantage or immune 227 
evasion. Both Beta and Gamma variants show varying degrees of immune evasion42. Regions of 228 
Brazil had attack rates as high as 75% in October 202043, indicating that immune evasion was the 229 
primary reason for the rapid growth of the P.1 lineage in Brazil. In contrast, states in the U.S. had 230 
an estimated attack rate between 0.1% and 16% in June 202044. Given this difference in attack rates, 231 
we can hypothesize that the intrinsic transmission advantage of the Alpha variant was able to 232 
outcompete the advantage conferred by immune evasion of Gamma in the U.S., but the opposite 233 
was true in Brazil and South Africa. In all three countries, the introduction of the Delta lineage 234 
displaced previously circulating Alpha, Beta, and/or Gamma lineages in the summer of 2021.  235 
 236 
The Delta variant of SARS-CoV-2 was first detected in Maharashtra, India in December 202040, has 237 
been shown to be 40%-60% more transmissible than Alpha45,46, and causes a reduction in vaccine 238 
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efficacy relative to previously circulating lineages47. Vaccination campaigns against COVID-19 started 239 
in December 2020 and despite the progress of these campaigns48, the Delta variant continued to 240 
cause a renewed surge in infections globally. The Delta variant report, which can be accessed 241 
directly on the landing page of the lineage reports view, can be used to understand the dynamics 242 
of its sublineages. Fig 4a shows the global prevalence of the Delta variant over time. This growth 243 
reflects the transmission advantage that Delta has over previously circulating lineages including 244 
VOCs Alpha, Beta, and Gamma. As the Delta variant continued to spread, its genetic diversity 245 
increased and as of May 2022, over 200 sublineages of Delta have been designated49.  246 
 247 
The Omicron variant was first detected in November 2021 by genomic surveillance teams in South 248 
Africa and Botswana. This variant was associated with a rapid resurgence of infections in Gauteng 249 
Province, South Africa and was designated a VOC by the WHO within 3 days of uploading the first 250 
genome11. The variant grew in prevalence very rapidly and within three weeks, the variant was 251 
detected in 87 countries and as of May 2022, Omicron has a prevalence of over 95% globally (Fig 252 
4a). While increased transmissibility confers a bigger fitness advantage compared to immune 253 
evasion when population immunity is low, the opposite is true as population immunity increases 254 
either due to vaccination or previous infection50. The Omicron variant was found to have a five fold 255 
higher chance of reinfection compared to Delta51, and Omicron infections presented with a higher 256 
viral load than wild type but still lower than Delta52. As viral load is one of the determinants of 257 
transmissibility, this indicates that Omicron is intrinsically not as transmissible as Delta, but it 258 
exhibits better immune evasion. This combination gave Omicron a large fitness advantage over 259 
Delta as evidenced by its rapid growth rate worldwide (Fig 4a). The continued spread of the variant 260 
has resulted in the emergence of many sublineages and as of May 2022, over 100 sublineages of 261 
Omicron have been designated. Importantly, there is significant geographic variation in the relative 262 
prevalence of newly designated sublineages such as BA.2.12.1, BA.4, and BA.5. While BA.2 continues 263 
to be the dominant sublineage within Omicron in countries such as Denmark and the United 264 
Kingdom (Fig 4e, 4f), we see the BA.2.12.1 sublineage slowly displacing BA.2 in the United States (Fig 265 
4g). In South Africa, sublineages BA.4 and BA.5 have completely displaced the previously dominant 266 
BA.2 (Fig 4h) and have led to another surge in reported cases (Fig 3e). The three variants, BA.2.12.1, 267 
BA.4, and BA.5 have been shown to evade antibodies elicited by prior BA.1 infection in in vitro 268 
neutralization studies53,54. This observed escape was higher than what was observed for BA.255, 269 
highlighting the possibility that these variants led to a renewed surge in infections as these variants 270 
continue to spread globally. While the growth of Alpha and Delta variants globally was driven 271 
primarily by higher intrinsic transmissibility, the growth of the new variants within Omicron seems 272 
to be driven primarily by enhanced immune evasion. The increasing prevalence of immunity due to 273 
vaccination or prior infection worldwide, further supports this hypothesis.  274 
 275 
This case study illustrates how outbreak.info can be used to not only track and compare the 276 
prevalence of lineages across locations, but also to derive and support hypotheses regarding the 277 
complex interplay between epidemiology and the intrinsic phenotypic characteristics of emerging 278 
SARS-CoV-2 lineages as the virus continues to spread.  279 
 280 
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 281 
Figure 4. Prevalence of Variants of Concern: Alpha, Beta, Gamma, Delta, and Omicron lineages over time in 282 
the (a) Worldwide, (b) South Africa, (c) Brazil, and (d) United States. Lineages with a prevalence over 3% over 283 
the last 60 days in (e) Denmark, (f) United Kingdom, (g) United States, and (h) South Africa. 284 
 285 
 286 
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Discussion 287 
The Omicron variant, first detected in late November 2021, has outcompeted Delta and is currently 288 
the most dominant lineage globally. However, it is important to note that regardless of how 289 
prevalent previously circulating VOCs were, all five VOCs emerged independent of each other. While 290 
the current hypothesis for the emergence of VOCs is prolonged virus evolution in a chronically 291 
infected individual56, we still lack a thorough understanding of this process. Given the underlying 292 
stochasticity of this process, predicting the emergence of a new VOC is not currently feasible. As a 293 
result, continued surveillance of all currently circulating lineages is of utmost importance to public 294 
health globally — particularly as SARS-CoV-2 continues to spread and evolve worldwide.  295 
 296 
The global community has generated over 10 million genomes of SARS-CoV-2 as of May 2022, 297 
shared on platforms such as GISAID14. The wealth of primary genomic data can enable downstream 298 
applications such as tracking the prevalence of different virus lineages in near real-time. However, 299 
the sheer volume of genomic data that continues to increase daily presents challenges to running 300 
analyses ad hoc. We developed outbreak.info to serve as a template for tracking the spread of 301 
the pandemic over varying geographic and temporal scales at scale, across the world, in near-real 302 
time. This new paradigm centralizes the computation of key statistics based on the analysis of 303 
disparate data streams. We designed the server infrastructure of outbreak.info keeping two 304 
goals in mind: scalability of the API as existing data sources increase in size and new data sources 305 
are incorporated and reusability of the computed data by providing programmatic access through 306 
an R package (Fig 5). This approach enables us to quickly adapt to and incorporate new modes of 307 
surveillance such as the CDC’s National Wastewater Surveillance System57. Furthermore, the easy 308 
dissemination of any computed data on outbreak.info via the R package enables users to further 309 
interrogate and utilize this data for more sophisticated downstream analyses. To maximize 310 
accessibility of these data, the web interface of outbreak.info has been designed to offer a high 311 
degree of customizability, allowing users to answer specific biological questions and use the 312 
platform as a hypothesis generation tool. The guiding principles for the web interface have been 313 
interactivity via responsive user interface (UI) elements powered by a high performance API, and 314 
interpretability via intuitive visualization of data based on discussions with researchers, 315 
epidemiologists, and public health officials.  316 
 317 
outbreak.info has been enabled by unprecedented global genomic sequencing efforts, and we 318 
developed every element of the application to fully leverage this capacity. However, genomic 319 
sampling varies globally with the vast majority of sequences coming from high income countries; 320 
even within well-sampled regions, there is geographic and temporal variation13. To communicate 321 
the increased uncertainty due to low sampling, we calculate confidence intervals of estimates 322 
wherever applicable, provide histograms of sampling density, and mask data when there are very 323 
few data points available. Furthermore, sampling can be selective as samples of the Alpha variant 324 
and BA.1 lineage (sublineage of Omicron) show S gene target failure on a widely used qPCR assay. 325 
Such sampling biases impact the insights that can be derived from quantities such as the prevalence 326 
of a lineage/mutation. We communicate these limitations through a dedicated “caveats” page with 327 
warnings regarding the interpretation of data interspersed throughout the interface.  328 
outbreak.info continues to provide a mechanism for researchers, epidemiologists, and public 329 
health officials to easily track the growth of variants, across any number of locations. The platform, 330 
backed by robust infrastructure, allows users to quickly access key statistics for known VOCs, 331 
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emerging variants, and any combination of mutations without having to run any time-consuming 332 
analyses. This allows researchers to focus on data exploration, hypothesis generation and more 333 
complex downstream analyses. Beyond the SARS-CoV-2 pandemic, outbreak.info serves as a 334 
model for providing scalable and reusable metrics to track the spread of any pathogen during an 335 
outbreak via interactive and interpretable visualizations. 336 
 337 
 338 

 339 
Figure 5. Software infrastructure of outbreak.info. The infrastructure can be broadly divided into (1) Data 340 
ingestion pipelines, (2) Server-side hosting the database and API server, and (3) Client-side applications that 341 
use the API from the server.  342 
 343 
Methods 344 
 345 
Ingestion of genomic data 346 
We built a data pipeline, Bjorn, to count mutations from a given set of genomes in a scalable 347 
manner daily (Fig 6). The pipeline consists of the following steps: (1) Download SARS-CoV-2 genomes 348 
from the GISAID provision; (2) Divide sequences into chunks of 10,000; (3) Align these sequences 349 
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using minimap258; (4) Convert the alignment into a FASTA file using gofasta 350 
(https://github.com/virus-evolution/gofasta); (5) count mutations and deletions from this alignment; 351 
(6) standardize and filter the metadata: country, division, location, pangolin lineage, date of 352 
collection, and date of submission and (7) combine results from all chunks and convert to a JSON 353 
object. We standardized geographic identifiers using shapefiles from GADM59. The final JSON object 354 
is loaded into an Elasticsearch index within the BioThings framework60. The code for Bjorn is 355 
available at https://github.com/andersen-lab/bjorn.  356 

 357 
Figure 6. Flowchart describing the steps in Bjorn. 358 
 359 
Ingestion of epidemiological data 360 
We built the EpiData pipeline to ingest reported global cases, and deaths from Johns Hopkins 361 
University31. We used shapefiles from Natural Earth61 to standardize geographic identifiers, and 362 
obtain populations for countries and states outside the U.S. For the U.S., we used the county level 363 
shapefiles and population estimates from the 2019 population estimates by the Census Bureau  to 364 
standardize geographic identifiers and get population estimates. We standardized reported date 365 
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formats, and geographic identifiers across the two resources. The code for the EpiData pipeline is 366 
available at https://github.com/outbreak-info/biothings_covid19. 367 
 368 
Calculation of confidence intervals on prevalence 369 
Most estimates of prevalence on outbreak.info are binomial proportions. We calculate 95% 370 
confidence intervals for these estimates using a Jeffrey's Interval, the 2.5 and 97.5 quantiles of the 371 
beta distribution 𝛽(𝑥 + 0.5, 𝑛 − 𝑥 + 0.5) where x is the number of successes and n is the number of 372 
trials. 373 
 374 
Creation of outbreak.info API 375 
In order to scale with the increasing size of existing data sources and the heterogeneity of newly 376 
emerging data sources, we used the BioThings framework60. The JSON outputs of our data pipelines 377 
are ingested by the BioThings framework and the processed data is stored in individual 378 
Elasticsearch indices. A Tornado server is used to create API endpoints that leverage the search 379 
capabilities of Elasticsearch to perform complex aggregations of the underlying data. These API 380 
endpoints allow the client-side applications to query the underlying data within reasonable query 381 
times while accounting for the scale of the ingested data. The BioThings Hub maintains historical 382 
data by default, allowing us to roll back to previous data backups if issues are discovered with new 383 
data after they are deployed. The code for the server-side application is available at 384 
https://github.com/outbreak-info/outbreak.api.  385 
 386 
outbreak.info web application 387 
The web application was built using Vue.js62, a model–view–viewmodel JavaScript framework which 388 
enables the two-way binding of user interface elements and the underlying data allowing the user 389 
interface to reflect any changes in underlying data and vice versa. The client-side application uses 390 
the high performance API to interactively perform operations on the database. Customized data 391 
visualizations on the client were built using D3.js63, giving us the ability to develop novel, and 392 
intuitive visual elements as part of the user interface. We designed these visualizations to answer 393 
specific questions of interest to epidemiologists, researchers, and public health officials. We further 394 
added functionality to enable the 1-click copy or download of every chart in the interface as a png 395 
or svg. The code for the client-side application is available at: https://github.com/outbreak-396 
info/outbreak.info   397 
 398 
R package 399 
We developed an R package for outbreak.info to allow researchers and other individuals to easily 400 
access the data via the API for downstream analyses and visualizations. The R package is composed 401 
of three parts: functions that allow the user to access genomic data, functions to access the 402 
epidemiological data, and functions to access the Research Library metadata. They all consist of a 403 
base function that contains arguments for all possible parameters that can be used to query the 404 
API. While users can utilize this base function directly to access data, several wrapper functions are 405 
available that inherit the arguments from the base function in addition to pre-specified parameters 406 
to simplify the process of querying the API. For example, while getGenomicData() can be used 407 
directly to access data regarding the daily global prevalence of a specified lineage, doing so would 408 
require a user to be familiar with the name of the endpoint as specified in the API URL (in this case, 409 
global-prevalence). Instead, the user can access this data with the more intuitively named 410 
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getPrevalence().Therefore, these wrapper functions allow users to easily and quickly obtain the 411 
data they need. The R package also contains an authenticateUser() function that allows users to 412 
authenticate against their GISAID credentials and access computed statistics from the primary 413 
genomic data provided by GISAID. 414 
 415 
In addition, as the API queries location by ISO3 code, rather than by location name, two functions 416 
have been created that allow users to forgo the step of searching for the ISO3 code themselves: 417 
getISO3Code() and getLocationIdGenomic(). The latter function uses the genomics API 418 
endpoint to obtain the ISO3 code for a given location. The ISO3 code can be obtained with either a 419 
full or incomplete location name; in the latter case, the user will be provided a list of matching 420 
locations and must specify the location they are interested in. This function is embedded in the 421 
parent getGenomicData() function, and is therefore inherited in all wrapper functions. Therefore, 422 
searching for data by location in the R package replicates the experience on the client-side web 423 
application. Documentation is available at: https://outbreak-info.github.io/R-outbreak-info  with 424 
vignettes located at https://outbreak-info.github.io/R-outbreak-info/articles/index.html. The R 425 
package can be downloaded and installed using the remotes package function: 426 
install_github("outbreak-info/R-outbreak-info").  427 
 428 
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