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Abstract 
The emergence of SARS-CoV-2 variants has prompted the need for near real-time genomic 

surveillance to inform public health interventions. In response to this need, the global scientific 
community, through unprecedented effort, has sequenced over 7 million genomes as of 
December 2021. The extraordinarily high sampling rate provides a unique opportunity to track 

the evolution of the virus in near real-time. Here, we present outbreak.info, a platform that 
can be used to track over 40 million combinations of PANGO lineages and individual mutations, 

across over 7,000 locations, to provide insights for researchers, public health officials, and the 
general public. We describe the data pipelines that enable the scalable ingestion and 

standardization of heterogeneous data on SARS-CoV-2 variants, the server infrastructure that 
enables the dissemination of the processed data, and the client-side applications that provide 

intuitive visualizations of the underlying data. 
 

Introduction 
In December 2019, a series of cases of pneumonia of unknown origin appeared in Wuhan, 

China, and on 7 January 2020, the virus responsible for the diseases was identified as a novel 
coronavirus, SARS-CoV-2 [1]. The first SARS-CoV-2 genome was made publicly available on 10 

January 2020 [2]. Since then, the global scientific community, through an unprecedented 
effort, has sequenced over 7 million genomes as of December 2021 [3]. To keep track of the 
evolving genetic diversity of SARS-CoV-2, Rambaut et al. developed a dynamic phylogeny-

informed nomenclature (PANGO) to classify SARS-CoV-2 lineages [4]. As of January 2022, over 
1,800 lineages have been designated and this has enabled public health agencies such as 

Public Health England (PHE), the Centers for Disease Control (CDC), and the World Health 
Organization (WHO) to identify Variants of Concern (VOC), Variants of Interest (VOI/VUI), and 

Variants Under Monitoring (VUM/VBM) based on the phenotypical characterization of these 
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lineages. Currently, there are five designated VOCs: B.1.1.7 (Alpha) lineage resulting in 
increased transmissibility [5], B.1.351 (Beta) lineage exhibiting immune evasion [6], the P.1 

(Gamma) lineage exhibiting immune evasion [7], the B.1.617.2 lineage exhibiting increased 
transmissibility due to the P681R mutation in the Spike gene [8], and most recently, the 

B.1.1.529 (Omicron) lineage exhibiting very rapid growth and the ability to substantially avoid 
antibody neutralization [9,10].  

 
The emergence of SARS-CoV-2 variants has prompted the need for near real-time genomic 

surveillance to inform public health interventions. In response to this need, thousands of 
academic, non-academic and public health labs have been depositing sequences on platforms 

such as GISAID [11]. The extraordinarily high sampling rate provides a unique opportunity to 
track the evolution of the virus in near real-time. For example, in December 2021, over a 

million new genomes were submitted to GISAID [12]. Traditionally, phylodynamic approaches 
have been employed to retrospectively characterize lineage dynamics during outbreaks of 

viruses such as Zika [13–15], West Nile [16] and Ebola viruses [17,18]. Existing tools like 
NextStrain [19] and frameworks such as Microreact [20] primarily rely on a phylogeny to 

elucidate transmission chains and monitor the evolution of the virus. However, these tools 
were not designed to track thousands of new genomes per day, and given that building 
phylogenies for large sets of genomes is computationally intensive and time consuming, 

obtaining timely insights from the data is often problematic [21]. However, the high sampling 
rate of the virus has opened up the possibility of tracking the pandemic using the available 

near real-time genomic data without the need for computationally intensive modeling.  
 

Here, we present outbreak.info, a platform that can be used to track over 40 million 
combinations of PANGO lineages and individual mutations, across over 7,000 locations, to 

provide insights for researchers, public health officials, and the general public. In the following 
sections, we describe the data pipelines that enable the scalable ingestion and standardization 

of heterogeneous data on SARS-CoV-2 variants, the server infrastructure that enables the 
dissemination of the processed data, and the client-side applications that provide intuitive 

visualizations of the underlying data.  
 

Results 
The growth rate of a given lineage is a function of epidemiology and its intrinsic biological 
properties (Figure 1A). For example, the B.1.177 lineage, characterized by an A222V 

mutation in the spike gene, increased in prevalence in Europe during the summer of 2020 
[22]. While initially thought to be more transmissible, it was eventually shown that the 

increase in prevalence was due to a resurgence in travel and not due to increased 
transmissibility. In contrast, a few months later the B.1.1.7 lineage was shown to be 40-60% 

more transmissible than previously circulating lineages and this intrinsic biological property led 
to the rapid growth in its prevalence worldwide [23,24]. Epidemiological factors such as 

mobility [25,26], mask usage [27], and public health interventions [28] vary over time and 
across geographies worldwide while biological properties are a function of the mutations that 

are found in given lineage (Figure 1A). Hence, to maximize the utility of genomic data for 
surveillance, we built outbreak.info to enable the exploration of genomic data across three 

dimensions: geography, time, and lineages/mutations. We use the PANGO nomenclature to 
estimate the prevalence of SARS-CoV-2 lineages over time and at varying geographic scales. 

Using a phylogenetically-informed nomenclature allows us to determine genetic features such 
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as the “characteristic mutations” of a lineage without directly building a global phylogeny
not building a global phylogeny, we can update our databases daily using the continuo

growing number of SARS-CoV-2 genomes. In addition, we closely track reports from agen
such as the PHE, the CDC and the WHO that designate VOC/VOI/VUMs based 

epidemiological analyses. In addition to genomic data, the server also ingests two other ty
of data: (1) epidemiological data curated by Johns Hopkins University [29], and (2) pu

literature, clinical trial, protocol, and dataset metadata from sources such as bioRxiv, medR
and LitCovid [30]. Here, we describe how each of these data sources can be used in cohes

to assist in genomic surveillance.  
 

The overall workflow of genomic data is shown in Figure 1B. Genomic data is ingested f
the GISAID Initiative, processed via a custom-built data pipeline, Bjorn, and stored on a se

which can be accessed via an Application Programming Interface (API). We built two clie
side applications, a web interface and an R package which consume this API (Figure 1B). 

web interface consists of three main tools focussing on different facets of the underly
genomic data: (1) Lineage and/or Mutation Tracker, (2) Location Tracker, and (3) Line

Comparison Tool. We designed an opinionated interface for each tool that focuses on 
primary dimension of the genomic data with additional customizability of one or m
secondary dimensions (Figure 1C). The Lineage and/or Mutation Tracker focus on a spe

lineage, mutation or a combination of these. The Location Tracker focuses on a given loca
and provides a snapshot of currently circulating lineages. Finally, the Lineage Comparison T

can be used to explore the prevalence of mutations across different lineages. In addition
the web interface, we have built an R package that authenticates against GISAID credent

and allows programmatic access to the processed data for downstream analyses.  
 

Figure 1. outbreak.info enables the exploration of genomic data across three dimensions. A) Growth rate 
lineage is a function of epidemiology and intrinsic biological properties of a lineage. Further, epidemiology v
over time and by geography while intrinsic biological properties are determined by the mutations present 
given lineage. B) Genomic data is ingested from GISAID, processed using the custom-built data pipeline, Bj
and stored on a server which can be accessed via an Application Programming Interface (API). The AP
consumed by two clients: A JavaScript based web client and an R package that provides programmatic acces
authenticating against GISAID credentials. C) The web interface contains three tools that allow exploratio
genomic data across three different dimensions: lineage/mutation, time, and geography.  
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Lineage and/or Mutation Tracker 

A fundamental part of genomic surveillance is tracking the growth of a lineage over time. 
Given the geographic variation in epidemiological, social, and economic factors, it is important 

to estimate variant prevalence at varying geographic scales. The Lineage/Mutation Tracker can 
be used to dynamically query the temporal and geographic variation in the prevalence of a (i) 

VOC/VOI and its sublineages (e.g., Delta and its sublineages), (ii) a lineage (e.g., B.1.1.7), (iii) 
a lineage and one or more mutations (e.g., B.1.1.7 with S:E484K), (iv) a mutation (e.g., 

S:E484K), or (iv) a group of mutations (e.g., S:E484K and S:N501Y) (Figure 1A). In addition, 
users can specify various location scales, such as a country, state, or county (or their local 

equivalents), to estimate the prevalence of a given lineage and/or mutations. To provide 
meaningful insights from these prevalence estimates, we designed an opinionated interface to 

address a specific set of questions listed in Table 1. 
 

Table 1. Questions addressed by the Lineage and/or Mutation Tracker 

Question Relevant visual elements 

What is the prevalence of a 
set of mutations within 
different lineages? 

Mutations such as S:N501Y, S:DEL69/70, and S:E484K have been shown to 
have functional impact on the phenotype exhibited by a lineage such as 
increased pathogenicity or immune evasion [31,32]. Furthermore, these 
mutations have been acquired independently by many lineages. Convergent 
evolution can be used as a metric to assess the importance of any advantage 
conferred on a lineage by a mutation. Hence, if a query contains a set of 
mutations (e.g., S:E484K and S:N501Y), we estimate the prevalence of that set 
of mutations across all lineages globally. (Figure 2B).  

What is the trend shown by 
the prevalence of a lineage 
and/or a set of mutations over 
time? 

Tracking the growth rate of a lineage or a set of mutations over time is very 
important to inform public health interventions. We estimate the prevalence of a 
given query as a proportion of the total number of sequences collected on a 
given day at a given location. To convey the uncertainty in estimating the 
prevalence, we calculate binomial proportion confidence intervals using Jeffrey’s 
interval (Figure 2C).  

What are the “characteristic 
mutations” of a lineage? 

The mutations that are characteristic of a lineage can be used to generate 
hypotheses about the phenotype exhibited by a lineage based on prior studies 
on the functional impact of mutations. We define the “characteristic mutations'' 
of a lineage as those mutations found in at least 75% of the genomes classified 
as the lineage (Figure 2D). These mutations are displayed in a “mutation map” 
that can be exported as a TSV file.  

What is the total number of 
sequences that belong to a 
lineage and/or a set of 
mutations? 
 
In how many countries was a 
lineage and/or a set of 
mutations detected? 
 

When was this lineage and/or 
a set of mutations first 
detected? 

In order to assess how quickly a variant spread and the extent of the 
geographic spread, we show summary of relevant statistics such as the total 
number of sequences that match the query, the cumulative prevalence of these 
mutations, the first and last date a sequence matching the query was detected 
worldwide for a customizable set of locations (Figure 2E).  
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What is the geographic 
prevalence of a lineage and/or 
a set of mutations? 

Many lineages including VOCs Beta and Gamma show a lot of variation in growth 
rates across different locations. Hence, it is essential to be able to access the 
geographic distribution of a given lineage. To facilitate this, we show the 

cumulative prevalence of sequences over the last 60 days across the sub-admin 
levels of a given location for a lineage/mutation query (Figure 2F). Choropleths 
are useful visual elements to map geographic variation in prevalence but to 
further highlight the uncertainty in these estimates and to account for cognitive 
biases in evaluating locations with different areas, we use a dot chart to show 
the uncertainty in the point estimate of prevalence over the last 60 days and a 
bar chart to show the number of sequences used to calculate it (Figure 2G). 
These two charts can be sorted by the prevalence of the query or the total 
number of sequences that match the query. This allows the user to account for 
the effects of sampling bias on prevalence estimates. 

What is the latest research 
available on this lineage 
and/or set of mutations? 

With the growth of new variants over the pandemic, we have seen many 
studies that focus on important aspects of a lineage such as the ability to evade 
immune response and the impact on vaccine efficacy. In order to aid in the 
discoverability of preprints, publications, datasets and other resources, we show 
the entries that match a given lineage or mutation query from our up-to-date 
research library [30] (Figure 2H). 
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Figure 2. Lineage and/or Mutation Tracker. A) Search and filter options for Lineage/Variant of Con
tracker. B) Prevalence of S:Y145H + S:A222V mutations across different lineages globally. C) Prevalence of 
in the United Kingdom. D) Mutation map showing the characteristic mutations of AY.4. E) Summary statistic
AY.4 lineage. F) Geographic distribution of the cumulative prevalence of AY.4 lineage globally. G) Cumula
prevalence of B.1.1.7 in each country globally. H) Research articles, and datasets related to B.1.1.7.  
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vaccination, and social mobility vary from one region to the next and have a significant impact 
on the growth rates exhibited by a given lineage. To account for such localized factors, it is 

important to have the ability to track the growth of lineages at different geographic scales. We 
built the Location Tracker on outbreak.info to facilitate the surveillance of SARS-CoV-2 lineages 

at a country, state/province, or county/city level. The Location Tracker provides a snapshot of 
circulating lineages with a focus on the last 60 days, and allows users to compare the 

prevalence of a customizable set of lineages/mutations over time in that location. 
Furthermore, the tracker also integrates reported cases over time to provide insights on the 

impact of growth of various lineages on caseloads in the region. As with the Lineage/Mutation 
Tracker, we designed the user interface to answer a set of specific questions as shown in 

Table 2. 
 

Table 2. Questions addressed by the Location Tracker 

Question Relevant visual elements 

What are the most prevalent 
lineages over the last 60 days? 

In order to quickly provide a snapshot of the lineages currently circulating in 
a given location, we show a stream graph of the prevalence of lineages over 
the last 60 days (Figure 3A). In order to increase interpretability, we 
grouped lineages that are below 3% prevalence for at least five days over 
the last 60 days into a separate category, "Other". The prevalence over time 
can be skewed especially in recent days due to the lag between sample 
collection, sequencing, and the deposition of sequence data. To convey this 
uncertainty, the total number of samples collected are shown in an inverted 
bar graph below the stream graph. In addition, a stacked bar graph shows a 
snapshot of the cumulative prevalence of the lineages over the last 60 days 
(Figure 3B). Additionally, the user can adjust this window to look at 
different time windows, e.g. 180 days. 

What is the distribution of 
mutations across these 

lineages? 

The Location Tracker shows a snapshot of currently circulating lineages 
which will help identify a newly emerging lineage that exhibits a high relative 

growth rate. Often in such cases, the mutations found in the lineage might 
provide preliminary evidence on phenotypes exhibited by the virus such as 
increased transmissibility or immune evasion. To facilitate this process, we 
show the prevalence of mutations that are present in the spike gene of at 
least 75% of the sequences of currently circulating lineages (Figure 3C). A 
Lineage Comparison Tool is also available which expands upon this 
functionality with customizable queries to add lineages based on the name, 
VOC/VOI classification, prevalence of mutations, and prevalence within a 
location.  

How does the prevalence of 
different lineages or mutations 
within this location change over 
time? 

In addition to showing a snapshot of the lineages circulating over the last 60 
days, we developed a component to show the temporal variation in the 
prevalence of a customizable set of lineages/mutations for a given location. 
This offers additional flexibility to dynamically select lineages or mutations of 
interest and compare their prevalence over time with a customizable time 
window (Figure 3D).  

How does the lineage 
prevalence over time 
correspond to the number of 
daily reported cases in this 
region?  

The impact of lineage dynamics on the reported cases over time is of 
primary concern to public health. To accomplish this, we cross-linked the 
reported cases for each location using a standardized location identifier, and 
this is shown in a line graph below the prevalence of a lineage (Figure 3E). 
In addition, users can select a time range within the prevalence chart or the 
reported cases chart to compare trends over a shorter time span. 
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Figure 3. Location report. A) Relative prevalence of all lineages over time in San Diego, California. T
number of sequenced samples collected per day are shown in the bar chart below. B) Relative cumula
prevalence of all lineages over the last 60 days in San Diego. C) Mutation prevalence across the most preva
lineages in San Diego over the last 60 days. D) Comparison of the prevalence of VOCs grouped by W
classification: Alpha, Beta, Gamma, and Delta over time in San Diego. E) Daily reported cases in San Diego
shown in the line chart below.  
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Case Study: Outbreak.info as a hypothesis generation tool to investigate 
geographic variation in lineage dynamics of VOCs 

As the pandemic has continued to progress we have seen the emergence of VOCs with 
significant fitness advantages that were able to outcompete previously circulating lineages. As 

of January 2022, there have been five designated VOCs: Alpha (B.1.1.7 + sublineages, 
indicated by *), Beta (B.1.351*), Gamma (P.1*), Delta (B.1.617.2*), and Omicron 

(B.1.1.529*). Of these, Alpha, Beta and Gamma were estimated to have emerged between 
September and December 2020 [7,36,37] and were subsequently outcompeted globally by the 

Delta variant that was first detected in December 2020 [38]. The Omicron lineage, first 
detected in November 2021 [9], was able to outcompete Delta and grew much more rapidly 

relative to previous VOCs during their emergence (Figure 4A). Whereas Delta and Omicron 
variants exhibited high growth rates with little variation globally, Alpha continued to circulate 

in low prevalence in Brazil and South Africa where Gamma and Beta variants were dominant 
respectively (Figure 4B, 5C). Additionally, there is geographic variation in the prevalence of 

sublineages within Delta and Omicron variants. The Location Tracker on outbreak.info can be 
used to track the growth of VOCs within a given location, thus facilitating the comparison of 

lineage growth rates across locations. The Location Tracker can also be used to track the 
relative prevalence of sublineages within these VOCs, shedding light on any geographic 
variation in these dynamics. Here, we examine trends in the prevalence of the five VOCs 

globally and we highlight the geographic variation in growth rates of Alpha, Beta, Gamma, 
Delta, and Omicron variants.  

 
The earliest samples of the Alpha variant were sequenced in Southern England in late 

September 2020 [36]. There were multiple introductions of the lineage into the U.S. as early 
as late November. The Alpha variant showed a transmission advantage of 40-50% in the U.S. 

[24], in line with observations in the United Kingdom and the Netherlands. In the United 
States, Alpha was able to outcompete previously circulating lineages and continued to increase 

in prevalence until the introduction of the Delta variant around April 2021 (Figure 4D). In 
contrast to the U.S., the Alpha variant circulated at very low prevalence in Brazil, while the 

Gamma variant remained dominant in the country[7] until the introduction of the Delta variant 
around April 2021 (Figure 4B). Similarly, in South Africa, the Beta variant continued to spread 

until the emergence of the Delta variant and the Alpha variant never became dominant 
(Figure 4C). Whereas the Beta and Gamma variants were able to outcompete Alpha in South 
Africa and Brazil respectively, Gamma only reached a maximum prevalence of 8% in the U.S. 

in May 2020, and Beta circulated at a prevalence of <1% (Figure 4D). The growth of a 
lineage is determined by epidemiological factors such as number of introductions, travel 

between locations, and by intrinsic biological properties such as transmission advantage or 
immune evasion. Both Beta and Gamma variants show varying degrees of immune evasion 

[39]. Regions of Brazil had attack rates as high as 75% in October 2020 [40], indicating that 
immune evasion was the primary reason for the rapid growth of the P.1 lineage in Brazil. In 

contrast, states in the U.S. had an estimated attack rate between 0.1% and 16% in June 2020 
[41]. Given this difference in attack rates, we can hypothesize that the intrinsic transmission 

advantage of the Alpha variant was able to outcompete the advantage conferred by immune 
evasion of Gamma in the U.S., but the opposite was true in Brazil and South Africa. In all three 

countries, the introduction of the Delta lineage displaced previously circulating Alpha, Beta, 
and/or Gamma lineages in the summer 2021.  
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The Delta variant of SARS-CoV-2 was first detected in Maharashtra, India in December 2020 
[38], has been shown to be 40%-60% more transmissible than Alpha [42,43], and causes a 

reduction in vaccine efficacy relative to previously circulating lineages [44]. Vaccination 
campaigns against COVID-19 started in December 2020 and despite the progress of these 

campaigns [45], the Delta variant continued to cause a renewed surge in infections globally. 
The Delta variant report, which can be accessed directly on the landing page of the lineage 

reports view, can be used to understand the dynamics of its sublineages. Figure 4A shows 
the global prevalence of the Delta variant over time. The growth reflects the transmission 

advantage that Delta has over previously circulating lineages including VOCs Alpha, Beta, and 
Gamma. As the Delta variant continued to spread, its genetic diversity increased and as of 

January 2022, over 200 sublineages of Delta have been designated [46]. Importantly, the 
prevalence of these sublineages varies geographically. For example, the most prevalent 

sublineage of Delta in the United Kingdom was AY.4 (Figure 4E) while in the United States 
most of the transmission was caused by B.1.617.2 (Figure 4F). There was a steady increase 

in the prevalence of the AY.4.2 lineage in the United Kingdom [47] (Figure 4E) which led to 
the close monitoring of this lineage until the recently discovered Omicron variant rapidly 

displaced the Delta variant globally.  
 
The Omicron variant was first detected in November 2021 by genomic surveillance teams in 

South Africa and Botswana. This variant was associated with a rapid resurgence of infections 
in Gauteng Province, South Africa and was designated a VOC by the WHO within 3 days of 

uploading the first genome [9]. The variant grew in prevalence very rapidly and within three 
weeks, the variant was detected in 87 countries and as of January 2022, Omicron has a 

prevalence of over 95% globally (Figure 4A). While increased transmissibility confers a bigger 
fitness advantage compared to immune evasion when population immunity is low, the 

opposite is true as population immunity increases either due to vaccination or previous 
infection [48]. The Omicron variant was found to have a five fold higher chance of reinfection 

compared to Delta [49] and Omicron infections presented with a higher viral load than wild 
type but still lower than Delta [50] . As viral load is one of the determinants of transmissibility, 

this indicates that Omiron is intrinsically not as transmissible as Delta, but it exhibits better 
immune evasion. This combination gave Omicron a large fitness advantage over Delta as 

evidenced by its rapid growth rate worldwide (Figure 4A). With the continued spread of the 
variant, geographic variation in the relative prevalence of its sublineages have emerged. While 
BA.1 continues to be the dominant sublineage within Omicron globally and in countries such as 

the United States (Figure 4G), we see the growth of the BA.2 sublineage in Denmark, 
Singapore, and India (Figure 4H, I, J). While there are no known phenotypic differences 

between BA.1 and BA.2, it remains to be seen if BA.2 will continue to grow in relative 
prevalence within Omicron globally.  

 
This case study illustrates how outbreak.info can be used to not only track and compare the 

prevalence of lineages across locations but to also derive and support hypotheses regarding 
the complex interplay between epidemiology and the intrinsic phenotypic characteristics of 

emerging SARS-CoV-2 lineages as the virus continues to spread.  
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Figure 4. Prevalence of Variants of Concern: Alpha, Beta, Gamma, and Delta lineages over time in the
Worldwide, B) Brazil, C) South Africa, and D) United States. Relative prevalence of sublineages within D
variant over time in E) United Kingdom, and F) United States. Relative prevalence of sublineages within
Omicron variant over time in G) United States, H) Denmark, I) Singapore, and J) India.  

Discussion 
We developed a platform, outbreak.info, for the continuous monitoring of SARS-Co
variants, based on the integration of three main types of data: genomic data, epidemiolog

data, and metadata from publicly available resources. For each of these data types, we b
pipelines to ingest data from their primary source(s): Bjorn, to ingest genomic data f

GISAID [12] via their API feed, EpiData pipeline to ingest epidemiological data from Jo
Hopkins University [29], and individual parsers to ingest metadata on published literat

clinical trials, and datasets from many data repositories such as LitCovid [51], bioRxiv [
medRxiv [53], Protein Data Bank [54], and clinicaltrials.gov [55]. In addition, we use the d

pipelines to standardize quantities such as dates, and geographics identifiers, to enable cro
linking data across different sources.  
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We designed outbreak.info keeping four goals in mind: Scalability of the application 
programming interface (API) as existing data sources increase in size and new data sources 

are incorporated, Interactivity via responsive User interface (UI) elements powered by a 
high performance API, Interpretability via intuitive visualization of data, and Reusability by 

providing access to the underlying data through an R package (Figure 5). To scale with the 
increasing size of existing data sources and the heterogeneity of newly emerging data sources, 

we used the BioThings [56] framework that leverages the powerful search capabilities of 
Elasticsearch [57] Python-based toolkit to easily generate high performance APIs from a 

number of data sources. We developed customized D3.js [58] visualizations to answer specific 
questions of interest to epidemiologists, researchers, and public health officials based on user 

interviews with these audiences followed by iteration guided by usability studies. These 
visualizations are all interactive and customizable, allowing users to create specific reports for 

particular locations, variants, and time windows.  
 

Genomic sampling varies globally with the vast majority of sequences coming from high 
income countries; even within well sampled regions, there is geographic and temporal 

variation [11]. To communicate the increased uncertainty due to low sampling, we calculate 
confidence intervals of estimates wherever applicable, provide histograms of sampling density, 
and mask data when there are very few data points available. Furthermore, sampling can be 

selective as samples of the Alpha variant and BA.1 lineage (sublineage of Omicron) show S 
gene target failure when using a widely used qPCR assay ref. Such sampling biases impact the 

insights that can be derived from quantities such as the prevalence of a lineage/mutation. We 
have tried to communicate these limitations through a dedicated “caveats” page with warnings 

regarding the interpretation of data interspersed throughout the interface. Lastly, to maximize 
the accessibility of the processed data, we also built an R package which can be used to 

authenticate against GISAID credentials and programmatically access the API, enabling 
researchers to access the data within R scripts for downstream analyses.  
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Figure 5. Software infrastructure of outbreak.info. The infrastructure can be broadly divided into (1) 
ingestion pipelines, (2) Server side hosting the database and API server, and (3) Client-side applications that
the API from the server.  
 
Conclusion 

The Omicron variant which was first detected in late November has outcompeted Delta an
currently the most dominant lineage globally. However, it is important to note that regard

of how prevalent previously circulating VOCs were, all five VOCs emerged independent of e
other. Hence, continued surveillance of all currently circulating lineages is of utm

importance to public health globally - particularly as SARS-CoV-2 continues to spread 
evolve worldwide. We developed outbreak.info as a platform to track the evolving mutatio

landscape of SARS-CoV-2 at varying temporal and geographic scales. Outbreak.info offer
high degree of customizability, allowing users to interrogate the underlying data to ans

specific biological questions and use the platform as a hypothesis generation tool. The u
interface has been designed to maximize interpretability by researchers, epidemiologists, 

public health officials. The high-performance API in outbreak.info, available through a
package, increases the accessibility of the underlying data for downstream modeling analy

The platform has been developed to ensure scalability with growing size of primary d
sources and interoperability between different types of primary data, thus, allowing users
track the pandemic comprehensively under a unified framework.  
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Methods 

 
Ingestion of genomic data 

We built a data pipeline, Bjorn, to count mutations from a given set of genomes in a scala
manner daily (Figure 6). The pipeline consists of the following steps: (1) Download SA

CoV-2 genomes from GISAID API; (2) Divide sequences into chunks of 10,000; (3) Align th
sequences using minimap2 [59]; (4) Convert the alignment into a FASTA file using gofa

(https://github.com/virus-evolution/gofasta); (5) count mutations and deletions from 
alignment; (6) standardize and filter the metadata: country, division, location, pang

lineage, date of collection, and date of submission and (7) combine results from all chunks 
convert to a JSON object. We standardized geographic identifiers using shapefiles from GA

[60]. The final JSON object is loaded into an Elasticsearch index within the BioThi
framework [57]. The code for Bjorn is available at https://github.com/andersen-lab/bjorn.  

 
Figure 6. Flowchart describing the steps in Bjorn. 

 

Ingestion of epidemiological data 
We built the EpiData pipeline to ingest reported global cases, and deaths from Johns Hop

University [29]. We used shapefiles from Natural Earth [61] to standardize geograp
identifiers, and obtain populations for countries and states outside the U.S. For the U.S.,

used the county level shapefiles and population estimates from the 2019 Census
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standardize geographic identifiers and get population estimates. We standardized reported 
date formats, and geographic identifiers across the two resources. The code for the EpiData 

pipeline is available at https://github.com/outbreak-info/biothings_covid19. 
 

Calculation of confidence intervals on prevalence 
Most estimates of prevalence on outbreak.info are binomial proportions. We calculate 95% 

confidence intervals for these estimates using Jeffrey's Interval, the 2.5 and 97.5 quantiles of 
���� 0.5,���� 0.5� where x is the number of successes and n is the number of trials. 

 
Creation of outbreak.info API 

In order to scale with the increasing size of existing data sources and the heterogeneity of 
newly emerging data sources, we used the BioThings [56] framework [57]. The JSON outputs 

of our data pipelines are ingested by the BioThings framework and the processed data is 
stored in individual Elasticsearch indices. A Tornado server is used to create API endpoints that 

leverage the search capabilities of Elasticsearch to perform complex aggregations of the 
underlying data. These API endpoints allow the client-side applications to query the underlying 

data within reasonable query times while accounting for the scale of the ingested data. The 
BioThings Hub maintains historical data by default, allowing us to roll back to previous data 
backups if issues are discovered with new data after they are deployed. The code for the 

server-side application is available at https://github.com/outbreak-info/outbreak.api.  
 

outbreak.info web application 
The web application was built using Vue.js [62], a model–view–viewmodel JavaScript 

framework which enables the two-way binding of user interface elements and the underlying 
data allowing the user interface to reflect any changes in underlying data and vice versa. The 

client-side application uses the high-performance API to interactively perform operations on 
the database. Customized data visualizations on the client were built using D3.js [58], giving 

us the ability to develop novel, and intuitive visual elements as part of the user interface. We 
designed these visualizations to answer specific questions of interest to epidemiologists, 

researchers, and public health officials. We further added functionality to enable the 1-click 
copy or download of every chart in the interface as a png or svg. The code for the client-side 

application is available at https://github.com/outbreak-info/outbreak.info.  
 

R package 
We developed an R package for outbreak.info to allow researchers and other individuals to 
easily access the data via the API for downstream analyses and visualizations. The R package 

is composed of three parts: functions that allow the user to access genomic data, functions to 
access the epidemiological data, and functions to access the Research Library metadata. They 

all consist of a base function that contains arguments for all possible parameters that can be 
used to query the API. While users can utilize this base function directly to access data, 

several wrapper functions are available that inherit the arguments from the base function in 
addition to pre-specified parameters to simplify the process of querying the API. For example, 

while getGenomicData() can be used directly to access data regarding the daily global 
prevalence of a specified lineage, doing so would require a user to be familiar with the name 

of the endpoint as specified in the API URL (in this case, global-prevalence). Therefore, these 
wrapper functions allow users to easily and quickly obtain the data they need. 
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In addition, as the API queries location by ISO3 code, rather than by location name, two 
functions have been created that allow users to forgo the step of searching for the ISO3 code 

themselves: getISO3Code() and getISO3Code_genomic(). The latter function uses the 
genomics API endpoint to obtain the ISO3 code for a given location. The ISO3 code can be 

obtained with either a full or incomplete location name; in the latter case, the user will be 
provided a list of matching locations and must specify the location they are interested in. This 

function is embedded in the parent getGenomicData() function, and is therefore inherited in all 
wrapper functions. Therefore, searching for data by location in the R package replicates the 

experience on the client side web application. Documentation is available at https://outbreak-
info.github.io/R-outbreak-info with vignettes located at https://outbreak-info.github.io/R-

outbreak-info/articles/index.html, and the R package can be downloaded using the devtools 
function install_github("outbreak-info/R-outbreak-info").  
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