
 1 

African-Ancestry Associated Gene Expression Signatures and Pathways in Triple 
Negative Breast Cancer, a Comparison across Women of African Descent  

Rachel Martini1,2, Princesca Delpe3, Timothy R. Chu4, Kanika Arora4, Brittany Lord1,2, Akanksha 
Verma3, Yalei Chen5, Endale Gebregzabher6, Joseph K. Oppong7, Ernest K. Adjei8, Aisha Jibril9, 
Baffour Awuah10, Mahteme Bekele11, Engida Abebe11, Ishmael Kyei12, Frances S. Aitpillah7,12, 
Michael O. Adinku12, Kwasi Ankomah13, Ernest B. Osei-Bonsu10, Dhananjay Chitale14, Jessica M. 
Bensenhaver15, Saul David Nathanson15, LaToya Jackson5, Evelyn Jiagge5, Lindsay F. 
Petersen15, Erica Proctor15, Kofi K. Gyan1, Lee Gibbs16, Zarko Monojlovic16, Rick Kittles17, Jason 
White18, Clayton Yates19, Upender Manne20-21, Kevin Gardner22, Nigel Mongan23-24, Esther 
Cheng25, Paula Ginter25, Syed Hoda25, Olivier Elemento3,26, Nicolas Robine4, Andrea Sboner25, 
John Carpten16, Lisa Newman1, Melissa B. Davis1,2,4,*  
1Department of Surgery, Weill Cornell Medical College, New York City, NY, USA; 
rnm4001@med.cornell.edu (RM), brittany.lord@nih.gov (BL), kkg4001@med.cornell.edu (KG), 
lan4002@med.cornell.edu (LN), mbd4001@med.cornell.edu (MD) 
2Department of Genetics, University of Georgia, Athens, GA, USA 
3Englander Institute for Precision Medicine, Weill Cornell Medical College, New York City, NY, 
USA; prd4001@med.cornell.edu (PD), vermaakanksha22@gmail.com (AV), 
ole2001@med.cornell.edu (OE) 
4New York Genome Center, New York City, NY, USA; tchu@nygenome.org (TC), 
kanikaarora316@gmail.com (KA), nrobine@nygenome.org (NR) 
5Department of Public Health Sciences, Henry Ford Health System, Detroit, MI, USA; 
ychen4@hfhs.org (YC), ljacks10@hfhs.org (LJ), ejiagge1@hfhs.org (EJ) 
6Department of Biochemistry, St Paul’s Hospital Millennium Medical College, Addis Ababa, 
Ethiopia; endalehadgu@gmail.com (EG) 
7Department of Surgery, Komfo Anokye Teaching Hospital, Kumasi, Ghana; 
josephkoppong@yahoo.com (JO), fraitp@yahoo.com (FA) 
8Department of Pathology, Komfo Anokye Teaching Hospital, Kumasi, Ghana; 
ernest24us@yahoo.com (EA),  
9Department of Pathology, St. Paul’s Hospital Millennium Medical College, Addis Ababa, 
Ethiopia; aisha.jibril@sphmmc.edu.et (AJ) 
10Directorate of Oncology, Komfo Anokye Teaching Hospital, Kumasi, Ghana; 
baff1470awuah@gmail.com (BA), ernest.bonsu@gmail.com (EO) 
11Department of Surgery, St. Paul’s Hospital Millennium Medical College, Addis Ababa, 
Ethiopia; mahteme.bekele@sphmmc.edu.et (MB), engida.abebe@sphmmc.edu.et (EA) 
12Department of Surgery, Kwame Nkrumah University of Science and Technology, Kumasi, 
Ghana; raskyei@yahoo.com (IK), michaeladinku@gmail.com (MA) 
13Directorate of Radiology, Komfo Anokye Teaching Hospital, Kumasi, Ghana; 
kyankomah@gmail.com (KA) 
14Department of Pathology, Henry Ford Health System, Detroit, MI, USA; dchital1@hfhs.org 
(DC) 
15Department of Surgery, Henry Ford Health System, Detroit, MI, USA; jbensen1@hfhs.org 
(JB), dnathan1@hfhs.org (SN), lpeters3@hfhs.org (LP), eprocto2@hfhs.org (EP) 
16Department of Translational Genomics, Keck School of Medicine, University of Southern 
California, Los Angeles, CA, USA; leedgibbsphd@gmail.com (LG), zmanojlo@usc.edu (ZM), 
carpten@usc.edu (JC) 
17Department of Population Sciences, City of Hope, Duarte, CA, USA; rkittles@coh.org (RK) 
18Department of Biology, Tuskegee University, AL, USA; jwhite7264@tuskegee.edu (JW) 
19Center for Cancer Research, Tuskegee University, AL, USA; cyates@tuskegee.edu (CY) 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted January 28, 2022. ; https://doi.org/10.1101/2022.01.27.22269747doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2022.01.27.22269747


 2 

20Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA; 
upendermanne@uabmc.edu (UM) 
21O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, 
AL, USA 
22Department of Pathology and Cell Biology, Columbia University, New York, NY, USA; 
klg2160@cumc.columbia.edu (KG) 
23Biodiscovery Institute, University of Nottingham, Nottingham, UK; 
nigel.mongan@nottingham.ac.uk (NM) 
24Department of Pharmacology, Weill Cornell Medical College, New York City, NY, USA 
25Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York 
City, NY, USA; esc9016@med.cornell.edu (EC), paula.ginter@nyulangone.org (PG), 
sahoda@med.cornell.edu (SH), ans2077@med.cornell.edu (AS) 
26Institute of Computational Biomedicine, Weill Cornell Medical College, New York City, NY, 
USA 
 
*Corresponding Author: Melissa B Davis, PhD 
Department of Surgery, Weill Cornell Medical College 
420 E 70th Street, New York City, NY, USA 10021 
Phone: (646) 962-2855 Fax: (646) 962-0023 Email: mbd4001@med.cornell.edu 
 
Running Title: African-ancestry specific TNBC gene expression profiles 
 
Keywords: African ancestry, health disparities, triple negative breast cancer, gene expression, 
genetic ancestry 
 
Financial Support: This work was supported by funding from Susan G. Komen (awarded to 
LN), and from U54-MD007585-26 (NIH/NIMHD), U54 CA118623 (NIH/NCI), and Department of 
Defense Grant (PC170315P1, W81XWH-18-1-0589) awarded to CY. These studies were partly 
supported by 5U54CA118948 (NIH/NCI) and by institutional funds (Department of Pathology 
and School of Medicine of the University of Alabama at Birmingham, UAB) awarded to UM. We 
acknowledge the help provided by the UAB Tissue Biorepository Shared Facility grant of the 
UAB OCCC, P30CA013148. 
 
Conflicts of Interest: CY received consultant/honorarium from Amgen, QED Therapeutics, and 
Riptide Biosciences. CY is an owner of stocks in Riptide Biosciences. 
 
  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted January 28, 2022. ; https://doi.org/10.1101/2022.01.27.22269747doi: medRxiv preprint 

https://doi.org/10.1101/2022.01.27.22269747


 3 

ABSTRACT 

Women of sub-Saharan African ancestry have disproportionately higher incidence of 

aggressive, early-onset Triple Negative Breast Cancer (TNBC), and TNBC mortality across all 

race groups. Population-based comparative studies show racial differences in TNBC tumor 

biology, with higher prevalence of basal-like and Quadruple-Negative subtypes in African 

Americans (AA). However, most investigations relied on self-reported race (SRR) of primarily 

United States (US) populations. However, given that genetic admixture in AAs is extremely 

heterogenous, and race-correlated social determinants can translate into biological differences, 

the true association of African ancestry with TNBC biology and gene expression is currently 

unclear. To address this, we conducted RNAseq on an international cohort of AAs, west and east 

Africans with TNBC. Using genetic ancestry estimation in this African-enriched cohort, we 

identified 613 genes associated with African ancestry and more than 2200 genes associated with 

regional-level African ancestry. Functional enrichment and deconvolution revealed tumor-

associated immune cell infiltration and activity. 

 

STATEMENT OF SIGNIFICANCE 

Using a rigorous ancestry quantification process, we show that TNBC has ancestry-

associated gene expression profiles, linked to immunological landscapes, which may contribute 

to racial differences in clinical outcomes. This is the first study to show the definitive link to tumor 

immunological landscape, associated with African ancestry, using a multiethnic African-enriched 

cohort.  
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INTRODUCTION 

Breast cancer (BC) is the most frequently diagnosed cancer among women globally, and 

the leading cause of cancer-related death among women1,2. Despite having lower BC incidence, 

mortality rates are among the highest across most sub-Saharan African nations, compared to 

other nations worldwide. While poorer survival is typically attributed to advanced-stage disease 

at presentation and limited access to treatment options in Lower-Middle Income Countries 

(LMIC)2, triple negative BC (TNBC) incidence rates across African nations represent 

approximately 33% of BC diagnoses compared to less than 20% in other nations3,4 with highest 

incidence of TNBC in west African nations compared to east African nations3,5,6. Globally, overall 

BC mortality and TNBC burden appears higher across the African diaspora at-large, 

corresponding with a higher prevalence of TNBC disease among women with African ancestry6, 

who reside in nations throughout Europe7,8, South Africa, and admixed African American 

populations in the US5,9,10. We previously reported a higher risk of TNBC, compared to other types 

of breast cancer, associated with west African ancestry5,6. Therefore, we hypothesized that there 

may be genetic drivers associated with west African ancestry that predispose and/or lead to 

aggressive breast cancer, including TNBC.  

TNBC continues to have the worst prognosis of BC subtypes, and the worst survival 

outcomes due to lack of targeted therapy options for these tumors11,12. Given TNBC incidence 

rates across the African diaspora, our efforts in oncologic anthropology have shifted to a 

molecular focus to uncover and characterize the influence of African ancestry on BC disease 

etiology and progression4,13,14. Previous comparative BC studies among patients of diverse race 

groups have focused on comparing tumors from African American (AA) and European American 

(EA) self-reported race (SRR) groups in the US. While there were inherent limitations of cohort 

size and heterogeneity of race, these approaches were useful in determining that broad biological 

differences do exist across diverse patient populations15,16. Some of these discoveries included 
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race-group distinctions in genomic differences in frequencies of Single Nucleotide Variants 

(SNVs)6,17,18, somatic tumor mutation signatures19,20, structural copy number variations (CNVs)21 

and differences in DNA methylation patterns in both ER+ and ER- tumors22. Our work and others 

has uncovered racial differences in gene expression that revealed distinctions in immune 

response signatures, repeatedly across independent cohorts, implicating differences in the Tumor 

Microenvironment (TME)16,23 as a possible cause of outcome disparities. The emerging promise 

of curative immunotherapies in overcoming treatment resistance in TNBC highlights an important 

opportunity to target the immune microenvironment and increasing relevance to racial group 

differences to overcome disparities24,25. However, there are limitations to using self-reported race 

in genomic studies, mainly due to complexity in genomic backgrounds of admixed groups.  

Our recent work was the first to use quantified genetic ancestry in admixed AA women to 

identify African ancestry-specific gene expression differences in TNBC tumors compared to EA 

women, which we also showed overlapped with SRR-associated gene networks26. Of the African 

ancestry-associated genes, 48.1% were distinct from the SRR-associated genes, indicating the 

functional influence of the genetic ancestry background upon gene expression, apart from SRR 

alone. Similarly, a recent study from our collaborators characterized gene expression of TNBCs 

from Bantu tribe from Kenya and found Bantu population-specific gene expression signatures as 

compared to TNBCs of AA and EA TNBCs14. However, the implications of ancestry are still 

untested, lacking the inclusion of the contemporary and appropriate representative ancestry 

groups that are specific and relevant to the admixed patient groups.  

Therefore, our current study utilized an African-enriched international cohort from the 

International Center for the Study of Breast Cancer Subtypes (ICSBCS)27, which will help to 

resolve a more precise understanding of genetic influences associated with African ancestry in 

race-associated gene signatures. We have measured the influence of African ancestry on TNBC 

tumor biology, derived from gene expression differences, that includes west African/Ghanaian 
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and east African/Ethiopian women with TNBC, compared to admixed AAs. Our rationale was 

based on firmly in prior studies indicating that shared African ancestry harbors both unique genetic 

risk of TNBC tumor etiology and the distinct gene signatures of TNBC among women of the 

African diaspora6,18,26. We identified both African ancestry-associated gene expression 

signatures, and TME cell type differences from bulk RNA sequence (RNAseq) data. We 

demonstrate that inclusion of native Africans with admixed AA patients, who share the same 

genetic ancestry, can overcome population complexity to help deduce the shared genetic drivers 

observed in race-group differences and discern these from environmental or other exogenous 

drivers of gene expression changes. We have identified subpopulation differences in gene 

expression between east vs west African ancestry lineages, which can be applied throughout 

population studies of the African diaspora in Europe7,8, the US5,9,10 and abroad (i.e. Afro-Latinx 

and Afro-Caribbean). 
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RESULTS 

Characterization of ancestry profiles reveals complex admixture in African and AA cohort 

 We estimated the global genomic ancestry for each patient in our cohort to determine the 

varying levels of admixture, based on 1000 Genomes superpopulation and subpopulations 

(Supplemental Table S1)28. Our cross-sectional set of 148 TNBC cases includes 66 AAs and 41 

EAs, enriched with 13 west African Ghanaians, and 22 east African Ethiopians, with four 

individuals who declined to report SRR (Supplemental Figure S1). African ancestry comparisons 

indicated significant differences in African ancestry across our cohort (ANOVA p < 0.001), with 

Ghanaian patients having the highest levels of African ancestry (median 97.3%), and AA having 

an average 15% less African ancestry (median 82.6%). Ethiopian patients had a surprisingly lower 

African ancestry (median 43.0%), with nearly equal amounts of European ancestry (median 

43.5%), which is consistent with previous anthropological studies29-31. (Figure 1A, Supplemental 

Table S2). Our EA patients generally show exceptionally low levels of African ancestry (median 

2.4%); however, three self-identified EA patients had between 30-80% African ancestry.  

For more precise ancestry estimations that reflect regional origins, we estimated genetic 

ancestry for five African subpopulations, which includes four populations representing west 

African Ancestry, including: Esan in Nigeria (ESN), Yoruba in Ibadan, Nigeria (YRI), Gambian in 

Western Divisions in the Gambia (GWD) and Mende in Sierra Leone (MSL). There was only one 

population representing east Africa in 1000 Genomes, Luhya, in Webuye, Kenya (LWK). (Figure 

1B, Supplemental Table S1). As anticipated, AA patients presented with African ancestry 

primarily of west African origin, which included ESN (median 36.1%) and MSL (median 19.7%) 

ancestry, with less than 10% estimated east African ancestry (LWK median 7.5%). Interestingly, 

the heterogeneity of African origin within AAs is more extensive and wide-ranging than the origin 

of African ancestry in Ghanaians or Ethiopians, where the amount of specific subpopulation 

ancestry can range from 0% to 90% for a given individual, indicating the complex diversity of 
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African admixture in AAs. African patients’ subpopulation ancestry is highly correlated with their 

regions of origin, where Ghanaian ancestry is overwhelmingly correlated with the west African 

reference groups from YRI (median 66.0%), and MSL (median 24.1%) and Ethiopian patients 

have almost exclusively east African ancestry, represented as LWK (median 43.0%). Phylogeny 

of patients based on estimated genetic ancestry shows separation of Ghanaian and AA patients 

from Ethiopian and EA patients (Figure 1C). Interestingly, the European ancestry in our Ethiopian 

patients was primarily Italian (Toscani in Italia (TSI), median 41.2%). Ethiopian patients also 

showed substantial levels of East and South Asian ancestry (EAS median 1.9%, SAS median 

9.0%), with more SAS compared to other SRR groups. All of these admixture revelations are 

consistent with the social histories of each SRR group and reflect the diversity across the African 

diaspora29-33.  

Influence of ancestry in gene expression profiles of TNBC tumors results in ancestry-

associated differential immune signatures 

 To investigate African ancestry-specific gene expression profiles in our ICSBCS TNBC 

samples, we isolated our analyses to patients with significant (>35%) AFR ancestry. As previously 

described26, we performed gene-by-gene linear regression, using genetic ancestry as a 

continuous variable, which determined ancestry-associated gene expression. We identified gene 

signatures associated with AFR (n = 613) and EUR (n = 345) ancestry (p < 0.001), with 293 genes 

shared between these gene signatures (Figure 2A) (Supplemental Table S3). Given the 

significant inversely correlated AFR vs EUR ancestry in our patient cohort (Figure 1D), we 

compared the polarity of gene expression levels of the 293 overlapping genes and found that 

genes upregulated in association with AFR ancestry are conversely downregulated in association 

with EUR ancestry (Figure 2B). This may represent genes that have expression drivers that are 

ancestral informative variants, isolated to certain ancestry groups. 
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 Unsupervised hierarchical clustering of the 613 AFR-associated genes separated patients 

into two distinct clusters, correlating with levels of AFR ancestry, which we denote as a Low AFR 

cluster, including primarily Ethiopian TNBC patients, and a High AFR cluster, including primarily 

AA and Ghanaian patients (Figure 2C). The High AFR subcluster includes two sub nodes 

representing ESN, MSL and LWK ancestry, (6/9 AA and 1/6 Ghanaians), and a second node 

representing YRI, GWD and ESN ancestry, (3/9 AA and 4/6 Ghanaians) (Figure 2C, red 

asterisk; Figure 2D, red box). The sub nodes reflect differences in origin of AFR ancestry 

composition observed among west Africans and AAs in our cohort.  

 We calculated AFR-associated DEGs (Figure 2D) for functional pathway enrichment, 

using the log2fold change between the distinct High AFR and Low AFR clusters to measure 

differential expression. Top canonical pathways included some previously implicated processes 

in race-group comparisons; such as: RNA post-transcriptional modification through spliceosomal 

cycle pathway enrichment (p value = 0.0002, z-score = 3.804)34, cell to cell and extracellular 

matrix interactions in the integrin signaling pathway (p value = 0.004, z-score = 0)35 and chronic 

inflammation in atherosclerosis signaling (p value = 0.006, no z-score predicted)36. Upregulation 

of WNT family member genes drive enrichment in a colorectal cancer metastasis signaling 

pathway (p value = 0.004, z-score = -0.302)37, and HOTAIR regulatory pathway (p value = 0.006, 

z-score = -0.707). One of the top enriched functions identified was Immune Cell Trafficking (p 

value range of sub-terms 0.0119 – 0.000502) (Figure 2F). Specifically, there was a predicted 

increase in signals relating to immune cell movement and migration, but conversely a predicted 

inhibition of signals relating to immune cell activation. This finding was of particular interest, given 

our previous findings related to DARC-regulated immune cell infiltration, associated with race-

groups38. 

 

Resolution of subpopulation African ancestry influence on gene expression signatures 
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 We determined a higher resolution of African subpopulation origins to harness the shared 

genetic diversity and identify subpopulation associated gene signatures. Specifically, we utilized 

1K Genomes African subpopulation ancestry (Figure 1) estimates for west African (YRI, ESN, 

GWD and MSL), and east African (LWK) populations (Supplemental Table S1). By repeating the 

gene-by-gene statistical model with African subpopulations, we identified a combined 2567 genes 

associated with the five African population groups (Figure 3A). African subpopulation-specific 

gene associations included 338 YRI genes, 643 ESN genes, 201 GWD genes, 146 MSL genes, 

and 1229 LWK genes (Supplemental Table ST4). These gene lists included, but extended 

beyond, the genes identified in the AFR superpopulation ancestry analysis (Figure 3A). 

Surprisingly, there were no DEGs shared among all five populations, suggesting there are unique 

gene expression drivers from each ancestry group. Though, a small fraction of each individual 

west African subpopulation genes were shared with the east African LWK population (total n = 

210). As what may be anticipated, we found the largest overlap of African subpopulation-

associated genes were shared between ancestry groups that are geographically adjacent nations 

(29.0% of YRI and 48.8% of GWD shared between these populations). However, the closest west 

African groups, YRI and ESN of Nigeria, did not share any associated genes.  

Therefore, we considered which SRR/nationality groups carried the specific subpopulation 

ancestry and therefore which groups these gene signatures may be found. The east African 

population, LWK with the largest set of associated genes (n = 1229) predominantly represented 

our Ethiopian patients with a small portion AA ancestry represented by LWK (median ~8%). 

Pathway analysis predicted decrease in immune response related function in east African 

ancestry gene sets, including inhibition of CSF-1 and various interleukins, CD28 and 

lymphopoiesis, and the canonical tec kinase signaling pathway (Figure 3B). This inhibitive effect 

of LWK ancestry on these functions clearly distinguishes the differences in tumor biology between 

west vs east Africans and suggests important differences in immune cell development, response, 
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and activation. MSL ancestry was predominantly found among AAs and Ghanaians, and included 

genes (n=146) that also involved function of immune response signals that suggest activation of 

immune-related functions (Figure 3C). Specifically, there was activation of REL and IL21, both 

playing important roles in immune response regulation. To validate our findings, we conducted a 

re-analysis of the AA subset of our previously published cohort, and identified AFR subpopulation-

associated gene signatures enriched for pathways that involve immune function (Supplemental 

Figure S2). 

 

Expressed signatures of immune cell enrichment are associated with African ancestry 

We estimated immune cell populations and overall tumor-associated leukocyte (TAL) 

abundance with deconvolution and cell-type enrichment methods, CIBERSORTx39 and xCell40. 

Absolute scores, which are the sum of all estimated immune populations, was significantly higher 

among patients with high AFR ancestry, compared to low AFR patients (Figure 4A, p = 0.0076). 

Specific immune cell populations driving the bulk of these differences included naïve B cells, 

CD8+ T cells, helper T cells, regulatory T cells, and activated mast cells (Figure 4B). Ancestry-

specific association testing show that these same immune cell populations are significantly 

associated with African ancestry (Figure 4C). The African ancestry pathway enrichment had 

indicated stimulation of ‘migration/movement’ functions with repression of ‘cell-type activation’ 

functions associated with African ancestry, and interestingly, the largest contributing cell type the 

AFR-associated TALs are naïve B cells, a non-activated immune cell population. Conversely, an 

activated immune cell population, activated mast cells, are more prominent in tumors of patients 

with low AFR ancestry. In an independent cell-type enrichment analysis using xCell36, we 

replicated the CIBERSORTx findings of AFR-associated immune cell infiltration, and further 

discerned that the specific T populations associated with African ancestry are CD8+ T cells, and 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted January 28, 2022. ; https://doi.org/10.1101/2022.01.27.22269747doi: medRxiv preprint 

https://doi.org/10.1101/2022.01.27.22269747


 12 

CD8+ T effector memory cells (Supplemental Figure S3, p < 0.05), which is concordant with the 

association of CD8+ T cells from CIBERSORTx deconvolution (Figure 4C, p < 0.05). 

To validate the RNAseq-based immune cell estimations, we used clinical-grade IHC 

marker assays to score the infiltration of immune cells in an independent set of ICSBCS TNBC 

patients (n=40), distributed across each ethnicity group represented in the RNAseq cohort. We 

found similar immune cell infiltration trends across race/ethnic groups, with Ghanaian and AA 

tumors having higher counts of CD3+ and FOXP3+ cells, compared to Ethiopian and EA tumors 

(Figure 4D). CD3+ cells showed significant variation across all race/ethnic groups (ANOVA p = 

0.0102, Figure 4E), with significant pair-wise differences between Ghanaians and Ethiopians (p 

= 0.0457) and between AA and EA (p = 0.0379). We then verified that the IHC T cell markers’ 

corresponding gene (CD3D and FOXP3) RNA expression matched IHC findings among SRR 

groups (Figure 4F) and found that the greatest differences were found between AFR ancestry, 

overshadowing the SRR group differences (Figure 4F). This indicates that the genetic ancestry 

is the driver of these immunological differences, not SRR.  

FOXP3 expression in T-regs is correlated with a suppressive immune tumor 

microenvironment (TME), suggesting patients with higher African ancestry may have TME that is 

more suppressive vs stimulating, compared to patients of European ancestry. Therefore, we 

investigated immune suppressive vs stimulating TME marker associations41 with African ancestry 

by comparing the relative expression of several well-known immune checkpoint genes, including, 

CD274 (PD-L1 marker), CTLA4, and PDCD1 (PD-1 marker) (Figure 4F). We found that PDCD1 

was significantly associated with AFR ancestry and SRR (ANOVA p < 0.01), with both Ghanaian 

(mean 12.42) and AA (mean 13.72) tumors patients having 4x higher expression than Ethiopian 

patients (mean 3.68). This further suggests an immune suppressive tumor environment being 

associated specifically with west African ancestry, as opposed to east African or European 

ancestry. To ensure these immunosuppressive markers’ gene expression patterns were derived 

from the immune cell population within the bulk tumor, we tested the correlation of specific 
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immune cell estimates from CIBERSORTx with the CTLA4, CD3D and PDCD1 markers. We 

found each correlated with the abundance of relevant T-cell subtypes, indicating these cells are 

the likely source of the RNA expression (Figure 4G). 

 

TNBC subtyping reveals ancestry bias in composition of mosaic heterogeneity  

 TNBC tumors can be categorized into subtypes that have previously been shown to 

predict distinct clinical, as established outcomes42,43. The initial report of these subtypes by the 

landmark study introducing the well-known Vanderbilt TNBCtype tool. At its inception, the tool 

designated tumors into five distinct subtypes, correlated to the gene expression signatures of a 

tumor training set: including, basal-like 1 (BL1), basal-like 2 (BL2), luminal androgen receptor 

(LAR), mesenchymal (M), mesenchymal-stem like (MSL) and immunomodulary (IM). An 

additional ‘subtype’ category harbors tumors with ‘unsure calls’ (UNS), which describes a tumor 

with either multiple subtype correlations, or no positive correlations with any of the established 

phenotypes. Further consideration of the histological context of these tumor subtypes determined 

that the MSL and IM subtypes are stromal and tumor-associated immune derived, rather than 

distinct phenotypes. The correction currently applied to IM or MSL tumors are to manually re-

assign the calls with their second-most significant correlated call43. Distribution of the original 

Vanderbilt TNBC subtypes in our cohort and found tumors from Ghanaian and Ethiopian patients 

were more often BL1, and tumors from AA patients were more often IM subtype (Figure 5A, top). 

Interestingly, all IM tumors were from the High AFR ancestry Ghanaian and AA individuals, 

indicating the strong tumor immune signatures in these ancestry groups. After the suggested re-

assignment of the IM and MSL subtypes, AAs had a predominance of UNS calls, indicating an 

unresolved heterogeneity that would not allow designation of a single subtype (Figure 5A, 

middle). Therefore, to ascribe a biological phenotype to these tumors, we employed a previously 

described median-ranking26 which excludes the confounding influence of the immune signature 
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genes. Our results indicate that BL1 is the predominant subtype for Ghanaians, and M is the 

predominant subtype for both AA and Ethiopians (Figure 5A, bottom). 

Given the heterogeneity of TNBC tumors among AA patients, we also employed our 

previously established Triple-Negative Hetero Fluid (TNHF) subtyping method26, which allows for 

assignment of multiple subtypes in a tumor’s composition. Our method also considers the 

exclusion of certain subtypes to establish unique combinations of subtype composition. 

Unsupervised hierarchical clustering correlated the various rankings of subtype categories among 

all these tools for each tumor and resulted in distinct clusters of similar subtypes based on the 

heterogenic designations, resolving into five distinct nodes (Figure 5B and 5C). Cluster 1 is the 

largest node composed of BL1+/M+/BL2-/LAR- tumors from Ghanaians and Ethiopians. Cluster 

2 represents AFR high cases only and are BL2+/M-. Cluster 3 tumors are BL2+ and M+ tumors 

originating from AA and Ethiopian tumors. Cluster 4 are also AFR high cases only, and BL1+/BL2-

. Lastly, cluster 5 includes LAR+ tumors derived from each of the patient groups (Figure 5C-E). 

Further evaluation of heterogeneous clusters 2 and 4 show all samples were initially called IM 

(with 1 initially called UNS), and all belong to the high AFR cluster (Figure 5E). Correlation of TAL 

populations with TNHF cluster 2 and 4 designations show enrichment in immune cell populations 

(Figure 5F), including B cells, CD8+ Tcell, M2 macrophages and NK cells.  

 

Genes associated with self-reported race, are involved in comorbidity pathways 

In the interest of determining any distinct impact of racial social constructs on the biological 

phenotypes of tumors, we also investigated the functional pathway enrichment of SRR-associated 

genes. We hypothesized that pathways associated with SRR-associated gene signatures would 

yield different findings from our ancestry-associated gene signatures. The SRR-associated gene 

signature identified 1071 differentially expressed across SRR groups, and these were compared 

to our 613 AFR-associated genes and 345 EUR-associated genes to determine any overlaps in 

the gene signatures (Figure 6A). The overlap of ancestry-associated genes (AFR and/or EUR) 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted January 28, 2022. ; https://doi.org/10.1101/2022.01.27.22269747doi: medRxiv preprint 

https://doi.org/10.1101/2022.01.27.22269747


 15 

with SRR genes included 320 genes, where 751 genes were uniquely associated with SRR. 

These differences indicate the importance of both an individual’s genetic ancestry and SRR on 

gene expression signatures, even in the context of tumor gene expression profiles. 

 Upon investigation of the 1071 genes associated with SRR, unsupervised hierarchical 

clustering revealed that cases were grouped by African ancestry, where we saw Ethiopian cases 

cluster distinctly from Ghanaian and AA cases (Figure 6B), and this is likely due to the significant 

fraction of shared genes from the two analysis approaches. However, after unsupervised 

clustering of the 751 genes unique to the SRR analysis, we found that the clustering pattern of 

our cases drastically changed (Figure 6C). Instead, we found a distinct cluster of AA cases, and 

a second cluster containing all African cases. The African cluster did separate into two subnodes, 

but were distinct from AA cases, largely driven by an upregulated gene signature found among 

AA and not seen among our African patients.  

We hypothesized that this signature may be driven by environmental influences or co-

morbidity status differences between AA and African cases, that were being detected at the tumor 

level. We identified several known canonical pathways that had significant enrichment among 

AAs compared to Ghanaians and Ethiopians (p < 0.05). Strikingly, a significant number of 

canonical pathways were related to comorbidities and environmental influences, which may 

reflect patient comorbidity health status in our cohort. Specifically, pathways related to cardiac 

function, adiposity/obesity related pathways, viral pathways, diabetes, and insulin signaling 

pathways were found to be activated among AA patients (Figure 6D).  
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DISCUSSION 

This study is the first comparative RNAseq study of TNBC that utilized an African-enriched 

cohort of east and west Africans with African Americans to discern the influence of the complex 

genetic admixture on TNBC tumor biology related to racial disparities. Previous comparative 

studies with similar study designs have either only used self-reported race as a proxy to infer 

shared biological differences or used global AFR ancestry to categorize patients into groups 

based on arbitrary majority ancestry thresholds. However, those methods do not consider the 

range of diversity in genetic origin of both AFR and EUR ancestry due to the unique social history 

and resulting genetic admixture across the African diaspora33. Our findings support the emerging 

notion that inclusion of multi-ethnic patient groups into genomics disparities research can have a 

transformative impact on cancer research. The unique composition of the African diaspora in 

patient ancestry across our international ICSBCS cohort continues to allow us access to a broad 

range of admixture and unique genetic drivers of disparities.  

Our ancestry estimations revealed a broad range and distribution of African ancestry 

among self-reported AAs, ranging from 52.73% to 99.99%. Variation in European admixture 

among AA patients is expected and has been shown to differ regionally through the US, where 

less European admixture was reported among AA individuals in the southeast compared to the 

northeast or pacific northwest32,33. In our present analysis, we have shown a range of African 

versus European admixture among AA patients. Among our Ethiopian patients, the surprisingly 

high level of European admixture was almost equal to African ancestry, with a significant 

proportion of South Asian admixture also shown. These non-African ancestral origins in 

Ethiopians have been previously reported, where a significant proportion of mtDNA haplotypes29 

and Y chromosome haplotypes30 represent non-African origins, and more recent genetic analysis 

shows up to 50% of non-African ancestry among Ethiopians31. Our sub-continental ancestry 

estimates indicated that the shared west African origins between our Ghanaian and AA patients 
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corresponds with MSL ancestry (medians: 24.1%, and 19.7%, respectively). However, while the 

predominant AFR ancestry of AA and Ghanaian patients is generally west African, the regional 

origin of African ancestry was distinct between these groups. Specifically, Ghanaians were 

primarily represented by YRI ancestry with less than 0.01% ESN ancestry, and AA were primarily 

represented by ESN, with only two of 66 AA reporting YRI ancestry over 30% (AA median YRI 

0.00%). This is a relevant distinction, given that most studies that sought to identify AA-specific 

risk alleles utilized a YRI reference genome as the template for imputing genotypes. Our work 

indicates the YRI genetic background is less appropriate for AA patients than other AFR genome 

references and this could adversely impact the relevance and rigor of genetic risk studies that 

utilize a single AFR genome reference. Given the presence of distinct AFR subpopulation gene 

signatures, our findings support the hypothesis that AFR subpopulations harbor population-

specific genetic drivers of gene regulation that are relevant to disease pathology and therefore 

also disease risk.  

In this study, we also found that distinct gene expression signatures in TNBC are 

associated with superpopulation African ancestry, as well as regional/national African ancestry. 

Over 600 genes associated with African ancestry, which clustered among Ghanaian and AA 

patients compared to Ethiopians, were enriched for functions of increased immune cell trafficking 

and activation of migration signals. A combination of genomic and classical IHC methods across 

independent cohorts verified AFR-associated higher infiltration of tumor-associated leukocytes in 

the TME, supporting previous studies that indicate higher levels of inflammation and immune cell 

enrichment in African patients16,23. The distinction of immune gene expression signatures, shared 

among patients with substantial west African ancestry, is supported by observations in human 

evolution research of differential immune responses between European and African 

populations44,45 that may be related to clinical consequences of the African-specific Duffy-null 

blood group status6,18. Also, the immune signals that were identified in our superpopulation 
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African-associated genes, were also specifically associated with MSL ancestry (Figure 4C-E, 

Figure 5B, respectively). Therefore, the shared MSL ancestral origin of our cohort is likely the 

region harboring a genetic factor of immunological responses we observe. Further studies are 

needed to untangle the actual alleles that may be MSL-specific and functionally involved in 

immune responses. 

 Interestingly, no overlapping genes signatures were found between YRI and ESN, the 

predominant African origin of Ghanaians and AA, respectively. Only YRI and GWD associated 

genes overlap among the west African population-associated genes. This was surprising given 

the YRI and ESN populations are geographically closer and presumably would have more similar 

genetic backgrounds leading to the largest overlap in gene signatures. The lack of any overlap 

suggests there is significant population-level divergence of genetic drivers that direct gene 

expression signatures even within African nations. However, the only source of ESN ancestry in 

our cohort is derived from AA patients, who also have unique environmental influences mediating 

genetic impact on gene signatures36, and so the lack of overlap may be due to these mediating 

factors.  

Epidemiological studies show that an individual’s disease is influenced by the intersection 

of their genetics and their environment, where genetic ancestry, lifestyle, neighborhood, and diet 

all play significant roles. Whereas SRR is typically used to define or characterize these factors in 

comparisons between different ancestry groups, for SRR groups like AA, range of genetic 

admixture among this population alone warrants further steps to be taken to not generalize the 

influence of genetic ancestry, especially as we are continually moving in the direction of precision 

medicine in cancer. In our previous and present work, we have highlighted that by using estimated 

genetic ancestry as a continuous variable in LR models to define African ancestry-associated 

genes, a significant proportion of genes are distinct compared to using typical SRR-based 

approaches. It is important to note that SRR should not be ignored in this context either, where in 
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the present analysis the SRR-associated gene signature highlighted canonical pathways that 

seem to be influenced by individual’s environment. These exciting findings begs for further 

evaluation of individuals with TNBC across the African diaspora, as we have established 

additional working relationships with African partners through ICSBCS across African nations and 

expanding our analysis of AA individuals from our various recruitment sites across the US to 

characterize the influence of African ancestry and environmental differences across individuals 

with varying admixture and lifestyle exposures.   
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METHODS 

Ancestry patient cohort  

ICSBCS patient cohort. The International Center for the Study of Breast Cancer Subtypes 

(ICSBCS) biorepository represents the efforts an international consortium of breast cancer 

clinicians and researchers with the goal to characterize breast cancer disease in diverse 

populations worldwide. We have prospectively recruited breast cancer patients since 2006, where 

formalin-fixed paraffin embedded (FFPE) tumor tissue has been collected. Institutional Review 

Board (IRB) approval for utilization of biorepository samples was obtained from participating sites 

in the United States (Weill Cornell Medical College, New York City, NY; Henry Ford Health 

System, Detroit, MI; and University of Michigan, Ann Arbor, MI) and our international African 

partnering institutions (Komfo Anokye Teaching Hospital, Kumasi, Ghana and the Millennium 

Medical College St. Paul’s Hospital, Addis Ababa, Ethiopia). In the present study, TNBC tumor 

tissue was obtained from a total of 45 patients, including 9 AA, 3 EA, 12 Ghanaians and 21 

Ethiopians (Supplemental Figure S1). Confirmation of TNBC diagnosis by IHC was completed 

for Ghanaian and Ethiopian cases at our ICSBCS US site locations in Michigan (University of 

Michigan, Henry Ford Health System) and New York (Weill Cornell Medical College)  

 UAB patient cohort. The UAB TNBC has been previously described26, and consists of a 

convenience cohort of retrospective FFPE TNBC tissue collected between 2000 and 2012 at the 

University of Alabama at Birmingham (UAB). Samples were collected and used under the UAB 

IRB. In the present study, samples were analyzed from 74 patients, including 42 AA and 32 EA 

patients (Supplemental Figure S1). 

 EIPM patient cohort. All samples were collected and used under the Weill Cornell Medical 

College IRB. In the present study, we have estimated ancestry from TNBC tissue of 13 patients, 

including 1 AA, 6 EA, 2 Asian and 4 patients who responded “other” or declined to provide 

race/ethnicity information (Supplemental Figure S1). 
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RNA extraction from archival FFPE tissue  

RNA was extracted from archival FFPE tissue using a modified QIAGEN Rneasy® FFPE kit 

protocol. Briefly, prior to deparaffinization of the FFPE tissue, the samples are incubated with 1X 

acidic antigen retrieval solution at 90C for 5 minutes. Following incubation, samples are cooled to 

room temperature, and any excess paraffin is removed from the tube. We then proceeded through 

the standard kit protocol. RNA yield was quantified using the Qubit® RNA Broad Range kit and 

Qubit® 4.0 fluorometer.  

 

RNA library preparation and sequencing  

The quality of each RNA is assessed using RNA High Sensitivity Screen on TapeStation 

(Agilent Technologies). For RNA sequencing, 100 ng of total RNA molecules were used to 

construct libraries using Illumina TruSeq RNA Exome Library Prep Kit, following manufacturer’s 

protocols. The final libraries were then quantified using Agilent D1000 Screen Tape as well as 

sequenced on Illumina MiSeq V2 Micro Kit to assess insert sizes and integrity before sequencing 

on a high-throughput sequencer. Each library was normalized to 4 nM and pooled and sequenced 

on Illumina NextSeq500 High Output Kit (Illumina, San Diego, CA). All sequencing reads were 

converted to industry standard FASTQ files using BCL2FASTQ (version 1.8.4). 

 

RNAseq data processing and QC of samples  

Raw RNAseq reads were assessed with Fast QC46 (version 0.11.8), and Trimmomatic47 

(version 0.36) was utilized for read trimming and adapter removal. Reads were aligned using 

HISAT248 (version 2.0.4) with the GrCh37 reference genome. Picard tools (version 2.18.3, 

https://broadinstitute.github.io/picard/) was used to pull alignment metrics for the samples, where 

a number of sequenced reads were found to have high levels of read duplication. Duplicate reads 
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were removed using Picard, and only samples that had 10M reads post de-duplication were 

utilized in subsequent gene expression analyses.  

 

Ancestry estimation using variants called from RNAseq alignments  

Ancestry proportion is determined by the software ADMIXTURE v1.3.049, which uses a 

maximum likelihood-based method to estimate the proportion of reference population ancestries 

in a sample. We genotyped the reference markers generated from 1,964 unrelated 1000 

Genomes project28 samples directly on the RNASeq samples using GATK pileup. Individuals from 

populations MXL (Mexican Ancestry from Los Angeles USA), ACB (African Caribbean in 

Barbados), and ASW (African Ancestry in Southwest US) were excluded from the reference due 

to being putatively admixed. The reference was further filtered by using only SNP markers with a 

minimum minor allele frequency (MAF) of 0.01 overall and 0.05 in at least one 1000 genomes 

superpopulation. Variants are additionally linkage disequilibrium (LD) pruned using PLINK v1.950 

with a window size of 500kb, a step size of 250kb and r2 threshold of 0.2, resulting in 122377 

markers remaining. The analysis results in a proportional breakdown of each sample into 5 

superpopulations (AFR, AMR, EAS, EUR, SAS) and 23 subpopulations (Supplemental Table 

S1).  

 

Gene expression quantification and differential gene analysis  

Stringtie48 (version 1.3.3) was used to quantify gene expression from our de-duplicated 

aligned reads. Quantified genetic ancestry and self-reported race (SRR) groups were used to 

identify ancestry- or SRR-associated genes in our cohort, using logistic regression analysis 

comparing gene expression either with the continuous ancestry variable, or categorical SRR 

variable. Genes with a p < 0.01 were included in further analyses. Unsupervised hierarchical 

clustering of our gene lists were completed using JMP® Pro 16 (SAS Institute Inc., Cary, NC). 
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Network analyses of differentially expressed genes 

 Ingenuity Pathway analysis software (Qiagen, version 01-16) was used to determine 

involvement of our gene lists in various canonical pathways, determine upstream regulators, and 

to draw de novo networks involving our gene lists. For each analysis and gene list, the log fold 

change was calculated based on the resulting node structure of the samples when the gene lists 

underwent unsupervised hierarchical clustering, as our ancestry associated versus SRR gene 

lists resulted in different clustering patterns of our samples. 

 

Tumor associated immune cell abundance in tumors using RNAseq deconvolution and 

enrichment methods 

 To determine estimated abundances to tumor-associated immune cell populations, we 

used the online CIBERSORTx39 platform (https://cibersortx.stanford.edu/) with our gene 

expression values as input. The LM22 signature matrix file was used as reference, and the 

estimation was completed with quantile normalization disabled (as recommended for RNAseq 

data) with 500 permutations. Only CIBERSORTx output with that was determined to be significant 

(p < 0.05) was included in our analyses. 

 We have additionally used xCell for deconvolution of immune and other cell populations 

from our bulk RNAseq data40. Normalized TPM expression was used as input for the xCell 

algorithm. 

 

Immunohistochemistry (IHC) of CD3 and FOXP3 

 Formalin-fixed paraffin embedded (FFPE) tumor block were obtained from the ICSBCS 

biorepository. Slide preparations were conducted through Henry Ford Health System Histology 

Core, using standard operating protocols. From the FFPE blocks, 4um sections were obtained. 
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Multiplex staining was done using FOXP3 at 1:100 dilution (BioLegend Cat No. 320101) with CD3 

pre-dilute (Agilent, IR503) as the antibody diluent. 

 

Tumor infiltrating leukocyte (TIL) analysis from IHC 

 TIL markers from multiplex IHC staining were analyzed using HALO software (V3, Indica 

Labs). Stained slides were electronically scanned using the Leica Aperio scanner and transferred 

into the HALO program. Positively stained tumor cells were annotated from hematoxylin and eosin 

staining and matched to a serial section with FOXP3 and CD3 multiplex staining. A custom 

algorithm optimized to detect color differences between the two markers was used to determine 

the number of positively stained cells for each marker. Positive tumor cells for each marker were 

divided by the total number of tumor cells and converted to a percent for subsequent data 

analysis. 

 

TNBC subtyping 

 To determine TNBC subtypes of our samples, we input gene expression values into the 

Vanderbilt TNBC type online tool (https://cbc.app.vumc.org/tnbc/)42. The TNBC subtypes IM and 

MSL have been determined to primarily represent infiltrating immune cells and tumor associated 

stroma, respectively, and therefore these calls are reassigned to their second most correlated call 

and significant call43. Unsure calls (UNS) are where multiple correlations are significantly 

associated with a tumor gene expression profile, and in our cohort, these were able to be resolved 

after disregarding IM and MSL calls.  

As a supplementary validation method to the gene expression correlation-based 

Vanderbilt TNBC classification tool, a summarized ranks measure was computed using the 

original TNBC Subtypes signatures for all samples using normalized RNA-Seq expression data. 

TNBC Subtype signatures were obtained from Lehmann et al42. Across all samples, all genes 

expressed were ranked from low to high expression using the rank function in R statistical 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted January 28, 2022. ; https://doi.org/10.1101/2022.01.27.22269747doi: medRxiv preprint 

https://doi.org/10.1101/2022.01.27.22269747


 25 

software with minimum rank method used to resolve duplicate expression ties. For each sample, 

ranks for each gene in the given subtype signature were extracted and a representative median 

of ranks for the gene signature was calculated to estimate the overall regulation of the signature 

with respect to the total expression. The TNBC subtype signature with max median signature rank 

per sample was the assigned TNBC subtype for the sample. 

Data Availability Statement 

The data generated in this study are not publicly available due to the nondisclosure of genetic 

data issued through the Ministries of Health at corresponding African sites. These data must be 

approved for use by these entities, but may be available upon reasonable request from the 
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Figure Legends 

Figure 1. Estimated genetic ancestry distribution in an African-enriched TNBC RNAseq 

cohort. Genetic ancestry was estimated from genotypes of the ancestry-informed markers, 

obtained from our RNAseq alignments, where we have (A) superpopulation ancestry estimations, 

relative to the 1000 Genomes superpopulation populations, and (B) subpopulation ancestry 

estimations for each individual in our cohort. In both (A) and (B), each column represents an 

individual in the cohort, where estimated ancestry from a given superpopulation or subpopulation 

is shown on the y-axis, and the x-axis is annotated by SRR and location. Superpopulation 

populations in (A) are East Asian (EAS, red), South Asian (SAS, blue), European (EUR, green), 

American (AMR, purple) and African (AFR, orange). Subpopulations in (B) are shown in variations 

of their corresponding superpopulation population color (i.e. African populations are in varying 

shades of orange). Samples are ordered by decreasing AFR ancestry (x-axis left to right: 

African/Ghanaian (Ghana), AA (Alabama, Detroit, New York), African/Ethiopian (Ethiopia), EA 

(Alabama, Detroit, New York), Other/Declined (New York) and Asian (New York). (C) 

Constellation plot showing phylogeny of samples based on ancestry estimations. SRR of samples 

are indicated by the colored dots (Ghanaian = light blue, AA = light green, Ethiopian = dark blue, 

EA = dark green, Asian = light pink, Other/Declined = dark pink). Site location of samples are 

annotated next to the color dots (A = Alabama, USA, D = Detroit, MI, USA, E = Ethiopia, G = 

Ghana, N = New York City, NY, USA). (D) Scatterplot showing inverse correlation of AFR and 

EUR ancestry in our gene expression cohort. 

Figure 2. African ancestry associated genes show enrichment in immune response. (A) 

Venn diagram of ancestry-associated genes identified from AFR and EUR genetic ancestry 

logistic regression model, where ancestry was used as a continuous variable. (B) Scatterplot 

showing log2foldchange of 293 overlapping genes from AFR- and EUR-associated gene 

signatures. The upper left quadrant represents those genes upregulated with increasing AFR 
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ancestry (positive log2foldchange on y-axis), and subsequently downregulated with increasing 

EUR ancestry (negative log2foldchange on x-axis). (C) Unsupervised hierarchical clustering of 

613 AFR QGA associated DEGs. Columns represent individuals, where SRR, QGA estimates 

and TNBC subtypes are indicated in the colormap at the top of the heatmap. Rows represent 

DEGs, where lighter yellow indicated minimum row expression, and darker purple shows 

maximum row expression. (D) Constellation plot representing nodal structure of individuals from 

(C), where points are colored by SRR (Ghanaian = light blue, Ethiopian = dark blue, AA = light 

green). Node highlighted by red box indicated increased admixture node, highlighted in (C) by the 

red star. (E) Volcano plot of AFR-associated genes, where 613 significant genes area shown in 

red. (F) Network and treemap diagram of Ingenuity Pathway Analysis (IPA) immune cell trafficking 

disease and function terms, where the 613 AFR gene signature was enriched (p value range of 

terms = 0.0119 – 0.000502). Genes in red or green are upregulated or downregulated among 

High AFR individuals, respectively. Genes and treemap boxes in orange represent a positive z-

score (predicted activation), and those in blue represent a negative z-score (predicted inhibition). 

Figure 3. African subpopulation associated genes are also enriched in immune response. 

(A) Venn diagram of unique and overlapping gene signatures associated with LWK, ESN, MSL, 

YRI and GWD ancestry, respectively. Dots that are bolded are genes that overlap with the 613 

AFR-associated gene signature. IPA analysis of (B) LWK-associated and (C) MSL-associated 

genes. (B) Colors in blue indicate inhibition of regulators, disease/function terms and canonicals 

pathways among individuals with increasing LWK ancestry. (C) Colors in orange indicated 

activation or regulators, disease/function terms and canonical pathways among individuals with 

increasing MSL ancestry. 

Figure 4. Immune deconvolution of bulk tumors shows enrichment of immune cells among 

High AFR ancestry tumors. (A) Box plot of TAL absolute score among High AFR and Low AFR 

samples (student’s t-test p = 0.0076). (B) Stacked bar chart of TAL populations significantly 
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different between AFR High and AFR Low samples. (C) Correlation of African ancestry and 

CIBERSORTx tumor-associated leukocyte (TAL) populations. Significant correlations are 

highlighted in shades of red. TAL populations with a star represent immunosuppressive cell 

populations41. (D) Representative IHC images of CD3 (blue) and FOXP3 (black) staining in 

African American (upper left), Ghanaian (upper right), Ethiopian (lower left) and European 

American (lower right) TNBC cases. € Boxplots of percent positive CD3 (blue) and FOXP3 (black) 

stained cells from IHC images by SRR groups. ANOVA p values and paired student’s t-tests (** 

= p < 0.01, * = p < 0.05) are reported on the plot. (F) Box plot of gene expression of CD3D (light 

blue), CD3E (dark blue), CD3G (light green), CD274 (dark green), CTLA4 (light pink), FOXP3 

(dark red) and PDCD1 (light orange), across SRR groups (G = Ghanaian, AA = African American, 

E = Ethiopian) or AFR cluster groups (AFR High, AFR low). Significant ANOVA p values and 

paired student’s t-tests (*** = p < 0.001, ** = p < 0.01, * = p < 0.05) are reported. (G) Correlation 

of immune marker gene expression (bottom) and CIBERSORTx tumor associated leukocyte 

populations (left). Positive correlation is shown in red, and negative correlation is shown in green. 

Size of the dot represents the significance of the correlations.  

Figure 5. TNBC subtyping reveals heterogeneity of tumors. (A) Pie charts showing 

distribution of TNBC subtypes across SRR groups for the TNBCtype initial call (Vandy Call, top 

row), TNBCtype call after removing/re-assigning IM and MSL calls (middle row), and the calls 

using our median ranks method (bottom row). (B) Heatmap of correlations from the Vanderbilt 

TNBC subtyping tool, and our median ranks calling for TNBC subtypes. Color map at the top 

indicates self-reported race/ethnicity, High or Low AFR cluster sample, Vanderbilt TNBC 

subtyping call, Vanderbilt call after removal of IM/MSL, and our median ranks call. Samples 

clustered into 5 groups, which are color-coded and labelled 1-5 on the dendrogram at the bottom. 

(C) Line plot depicting positive and negative correlations with the Vandy tool and the median 

ranking subype calls in each of the TNHF clusters. (D) Pie charts showing distribution of TNHF 
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clusters across SRR groups. (E) Sankey plot showing distribution of calls from initial Vanderbilt 

TNBCtype results to Vanderbilt call after removal of IM/MSL, to our Median Ranks method, to the 

final TNHF clusters from (B). Color coding is based of initial Vandy Call (left). Bar chart to the right 

shows the number of tumors from AFR High or AFR low in a given cluster. (F) Stacked bar chart 

of CIBERSORTx TAL populations in each of the TNHF clusters. 

Figure 6. SRR-unique gene signature enriched in co-morbid canonical pathways. (A) Venn 

diagram depicting overlap of AFR-, EUR- and SRR-associated genes. (B) Unsupervised 

hierarchical clustering of the 1071 SRR-associated genes. (C) Unsupervised clustering of 751 

genes unique to SRR. In both (B) and (C), columns represent individuals, where SRR and QGA 

is showing in the color map at the top, and rows represent DEGs. Node structure of individuals is 

shown at the bottom of the heatmaps, where clustering was individual node structure significantly 

changed between panels (B) and (C). (D) Comparing gene expression values from panel (C) node 

structure, we determined enrichment of genes in known canonical pathways that would be 

associated with environmental exposures/differences and/or potential patient co-morbidities. Z-

scores indicated predicted activation (positive z-score, orange) or inhibition (negative z-score, 

blue) of the pathway based on the expression of the genes in the pathway, in the directionality of 

AAs. Black striped bars indicated pathways where no z-score/predication was indicated due to 

insufficient evidence in the IPA knowledgebase. The starred red line indicates a p value cut of 

0.05 (-log(0.05) = ~1.3). 
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