Germline TYK2 mutation and cancer risk

James Yarmolinsky, PhD1,2, Christopher I. Amos, PhD3, Rayjean J. Hung, PhD4,5, Victor Moreno, PhD6,9, Kimberley Burrows, PhD1,2, Karl Smith-Byrne, DPhil10, Joshua R. Atkins, PhD11, Paul Brennan, PhD11, Colon Cancer Family Registry (CCFR), Colorectal Cancer Transdisciplinary study (CORECT), Genetics and Epidemiology of Colorectal Cancer Consortium (GECCO), Prostate Cancer Association Group to Investigate Cancer Associated Alterations in the Genome (PRACTICAL) consortium, James D. McKay, PhD11, Richard M. Martin, BMBS, PhD1,2,12, George Davey Smith, FRS, MD, DSc1,2

1Medical Research Council Integrative Epidemiology Unit at the University of Bristol, Bristol, United Kingdom
2Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
3Baylor College of Medicine, Houston, USA
4Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Canada
5University of Toronto, Toronto, Canada
6Biomarkers and Susceptibility Unit, Oncology Data Analytics Program, Catalan Institute of Oncology (ICO), L'Hospitalet de Llobregat, Barcelona, Spain
7Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
8Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
9Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Members of the Colon Cancer Family Registry (CCFR), Colorectal Cancer Transdisciplinary study (CORECT), Genetics and Epidemiology of Colorectal Cancer Consortium (GECCO), and Prostate Cancer Association Group to Investigate Cancer Associated Alterations in the Genome (PRACTICAL) consortium are provided in Supplementary Material. Further information on the PRACTICAL consortium can be found at http://practical.icr.ac.uk/.

Word count: 922

Corresponding author:

James Yarmolinsky, PhD

MRC Integrative Epidemiology Unit

Population Health Sciences

Bristol Medical School

University of Bristol

Bristol, UK

james.yarmolinsky@bristol.ac.uk
Abstract

Deucravacitinib, a novel, selective inhibitor of TYK2 is currently under review at the FDA and EMA for treatment of moderate-to-severe plaque psoriasis. It is unclear whether recent safety concerns (i.e. elevated rates of lung cancer and lymphoma) related to similar medications (i.e. other JAK inhibitors) are shared with this novel TYK2 inhibitor. We used a partial loss-of-function variant in TYK2 (rs34536443), previously shown to protect against psoriasis and other autoimmune diseases, to evaluate the potential effect of therapeutic TYK2 inhibition on risk of lung cancer and non-Hodgkin lymphoma. Summary genetic association data on lung cancer risk were obtained from a GWAS meta-analysis of 29,266 cases and 56,450 controls in the Integrative Analysis of Lung Cancer Risk and Etiology (INTEGRAL) consortium. Summary genetic association data on non-Hodgkin lymphoma risk were obtained from a GWAS meta-analysis of 8,489 cases and 374,506 controls in the UK Biobank and InterLymph consortium. In the primary analysis, each copy of the minor allele of rs34536443, representing partial TYK2 inhibition, was associated with an increased risk of lung cancer (OR 1.15, 95% CI 1.07-1.24, \(P = 1.72 \times 10^{-4} \)) and non-Hodgkin lymphoma (OR 1.18, 95% CI 1.05-1.33, \(P = 5.25 \times 10^{-3} \)). In secondary analyses, there was weak evidence of an association of rs34536443 with advanced prostate cancer risk (OR 1.08, 95% CI 1.00-1.17, \(P = 0.04 \)), but little evidence of association with three other common adult cancers examined. Our analyses using an established partial loss-of-function mutation to mimic TYK2 inhibition provide genetic evidence that therapeutic TYK2 inhibition may increase risk of lung cancer and non-Hodgkin lymphoma. These findings, consistent with recent reports from post-marketing trials of similar JAK inhibitors, could have important implications for future safety assessment of Deucravacitinib and other TYK2 inhibitors in development.
Background

On September 1, 2021 the U.S. Food and Drug Administration (FDA) announced that three Janus kinase (JAK) inhibitors approved to treat chronic inflammatory conditions would require safety warnings over increased rates of serious heart-related events, lung cancer, and lymphoma\(^1\). Recently, oral Deucravacitinib, a selective inhibitor of Tyrosine kinase 2 (TYK2, a member of the JAK family), was shown to lead to larger improvements in symptom severity for patients with moderate-to-severe plaque psoriasis than oral Apremilast, the current standard of care\(^2,3\). Deucravacitinib, therefore, has the potential to become an important treatment option for patients with psoriasis requiring systemic treatment and is currently under review for approval at the FDA and European Medicines Agency\(^2\). It is unclear, however, whether the elevated cancer risk associated with some JAK inhibitors is shared with this novel TYK2 inhibitor.

In the absence of long-term clinical trial data, naturally occurring genetic variation can be leveraged to validate therapeutic targets and predict their adverse effects\(^4\). Specifically, germline mutations causing partial or complete loss-of-function (LOF) of genes encoding drug targets can be employed to mimic pharmacological inhibition of these targets and have been used to correctly predict adverse effects of new medications\(^5\).

Here, we used an established partial LOF mutation in \(TYK2\) (rs34536443), previously shown to protect against psoriasis and other autoimmune diseases\(^6,7\), to evaluate the potential effect of therapeutic TYK2 inhibition on risk of lung cancer and non-Hodgkin lymphoma.

Methods

Minor allele homozygosity of rs34536443 causes near-complete (~80%) loss of TYK2 function, while heterozygotes have a more modest reduction in function (<40%), suggesting non-additive effects of this variant\(^6\). To validate this variant as a surrogate for therapeutic TYK2 inhibition, we evaluated the effect of each copy of the minor allele of rs34536443, representing partial TYK2 inhibition, on risk of psoriasis, inflammatory bowel disease, Crohn’s disease, and multiple sclerosis.
These analyses were performed using summary genetic association data on up to 78,334 cases and 150,030 controls from genome-wide association studies (GWAS) of these autoimmune diseases.

To evaluate the effect of this variant on risk of overall and histological subtype-specific lung cancer we obtained summary genetic association data on up to 29,266 cases and 56,450 controls from a GWAS meta-analysis of the Integrative Analysis of Lung Cancer Risk and Etiology (INTEGRAL). Summary genetic association data for non-Hodgkin lymphoma (NHL) were generated by meta-analysing genome-wide association (GWAS) data for rs34536443 from the UK Biobank and InterLymph consortium in METAL.

In secondary analyses, we explored whether rs34536443 increased risk of three other common adult cancers (breast, colorectal, prostate), which, along with lung cancer, account for approximately half of all new U.S. cancer cases. Summary genetic association data on overall and histological subtype-specific breast, colorectal, and prostate cancer on up to 260,346 cases and 234,774 controls were obtained from analyses of the Breast Cancer Association Consortium (BCAC), Genetics and Epidemiology of Colorectal Cancer Consortium (GECCO), ColoRectal Cancer Transdisciplinary Study (CORECT), Colon Cancer Family Registry (CCFR), and the Prostate Cancer Association Group to Investigate Cancer Associated Alterations in the Genome (PRACTICAL) consortium.

All analyses were restricted to participants of European ancestry. Further information on statistical analysis, imputation, and quality control measures for these studies is provided in Supplementary Material and in the original publications. All studies contributing data to these analyses had the relevant institutional review board approval from each country, in accordance with the Declaration of Helsinki, and all participants provided informed consent.

Results
To validate rs34536443 as a surrogate for therapeutic TYK2 inhibition, we confirmed that each copy of the minor allele, representing partial TYK2 inhibition, was associated with lower risk of psoriasis (OR 0.48, 95% CI 0.39-0.58, $P = 9.01 \times 10^{-14}$) and other autoimmune diseases (Table 1).

In analyses of 29,266 lung cancer cases and 56,540 controls, each copy of the minor allele of rs34536443 was associated with an increased risk of lung cancer (OR 1.15, 95% CI 1.07-1.24, $P = 1.72 \times 10^{-4}$). This association was stronger for current and former smokers (OR 1.15, 95% CI 1.09-1.23, $P = 2.29 \times 10^{-6}$) compared to never smokers (OR 1.09, 95% CI 0.91-1.32, $P = 0.34$). The magnitude of effect was similar across histology types. In analyses of 8,489 cases and 374,506 controls, each copy of the minor allele of rs34536443 was associated with an increased risk of non-Hodgkin lymphoma (OR 1.18, 95% CI 1.05-1.33, $P = 5.25 \times 10^{-3}$). In secondary analyses, rs34536443 was weakly associated with risk of advanced prostate cancer, but not associated with other cancers examined.

Discussion

The efficacy of Deucravactinib in treating plaque psoriasis is attributed to the selective inhibition of TYK2, a downstream mediator of pro-inflammatory signalling pathways critical to psoriasis\(^3\). Using an established partial loss-of-function variant to mimic therapeutic TYK2 inhibition, we show that potential protection from autoimmunity mediated by TYK2 inhibition may be counteracted by an increased risk of lung cancer and non-Hodgkin lymphoma. This finding, including the restriction of an increased lung cancer risk to current and former smokers, is consistent with recent reports of higher rates of these two cancers in users of the JAK inhibitor Tofacitinib in the ORAL Surveillance safety trial\(^1\). Importantly, the per-allele estimates presented in this analysis may underestimate the effect of therapeutic TYK2 inhibition on cancer given larger TYK2 reductions achieved by Deucravacitinib at doses shown to confer therapeutic benefit (50-80% TYK2 inhibition) compared with the $<40\%$ expected per copy of the rs34536443 minor allele\(^18\). These findings, suggesting potential adverse target-mediated effects of TYK2 inhibition on lung cancer and non-
Hodgkin lymphoma, could have important implications for future safety assessment of Deucravacitinib and other TYK2 inhibitors in development.
Table 1. Effect of the minor allele of TYK2 variant rs34536443 on risk of autoimmune conditions, lung cancer and non-Hodgkin lymphoma, and other common adult cancers

<table>
<thead>
<tr>
<th>Outcome</th>
<th>N (cases, controls)</th>
<th>OR (95% CI)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autoimmune conditions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Psoriasis</td>
<td>10,588; 22,806</td>
<td>0.48 (0.39-0.58)</td>
<td>9.01 x 10^{-14}</td>
</tr>
<tr>
<td>Crohn’s disease</td>
<td>5,956; 14,927</td>
<td>0.65 (0.55-0.76)</td>
<td>3.29 x 10^{-7}</td>
</tr>
<tr>
<td>Multiple sclerosis</td>
<td>47,429; 68,374</td>
<td>0.77 (0.69-0.85)</td>
<td>2.87 x 10^{-7}</td>
</tr>
<tr>
<td>Rheumatoid arthritis</td>
<td>14,361; 43,923</td>
<td>0.68 (0.63-0.75)</td>
<td>4.60 x 10^{-16}</td>
</tr>
<tr>
<td>Primary cancer outcomes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lung cancer</td>
<td>29,266; 56,450</td>
<td>1.15 (1.07-1.24)</td>
<td>1.72 x 10^{-4}</td>
</tr>
<tr>
<td>Current or former smokers</td>
<td>23,223; 16,964</td>
<td>1.15 (1.09-1.23)</td>
<td>2.29 x 10^{-6}</td>
</tr>
<tr>
<td>Never smokers</td>
<td>2,355; 7,504</td>
<td>1.09 (0.91-1.32)</td>
<td>0.34</td>
</tr>
<tr>
<td>Lung adenocarcinoma</td>
<td>11,273; 55,483</td>
<td>1.17 (1.08-1.27)</td>
<td>1.37 x 10^{-4}</td>
</tr>
<tr>
<td>Squamous cell carcinoma</td>
<td>7,426; 55,627</td>
<td>1.19 (1.08-1.31)</td>
<td>2.98 x 10^{-4}</td>
</tr>
<tr>
<td>Small cell lung cancer</td>
<td>2,664; 21,444</td>
<td>1.16 (1.00-1.34)</td>
<td>0.05</td>
</tr>
<tr>
<td>Non-Hodgkin lymphoma</td>
<td>8,489; 374,506</td>
<td>1.18 (1.05-1.33)</td>
<td>5.25 x 10^{-4}</td>
</tr>
<tr>
<td>Secondary cancer outcomes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Breast cancer</td>
<td>122,977; 105,974</td>
<td>0.99 (0.96-1.03)</td>
<td>0.69</td>
</tr>
<tr>
<td>ER+ Breast cancer</td>
<td>69,501; 105,974</td>
<td>1.00 (0.96-1.04)</td>
<td>0.95</td>
</tr>
<tr>
<td>ER- Breast cancer</td>
<td>21,468; 105,974</td>
<td>1.00 (0.96-1.04)</td>
<td>0.96</td>
</tr>
<tr>
<td>Colorectal cancer</td>
<td>58,221; 67,694</td>
<td>1.03 (0.99-1.08)</td>
<td>0.18</td>
</tr>
<tr>
<td>Colon cancer</td>
<td>32,002; 64,159</td>
<td>1.02 (0.97-1.08)</td>
<td>0.39</td>
</tr>
<tr>
<td>Rectal cancer</td>
<td>16,212; 64,159</td>
<td>1.05 (0.98-1.13)</td>
<td>0.15</td>
</tr>
<tr>
<td>Prostate cancer</td>
<td>79,148; 61,106</td>
<td>1.04 (1.00-1.09)</td>
<td>0.07</td>
</tr>
</tbody>
</table>
Advanced prostate cancer

| | 15,167; 58,308 | 1.08 (1.00–1.17) | 0.04 |

OR represents the exponential change in odds of cancer per each copy of the minor allele of rs34536443.

Advanced prostate cancer defined as Gleason score ≥8, prostate-specific antigen > 100 ng/mL, metastatic disease (M1), or death from prostate cancer.
Citations

1. U.S. Food and Drug Administration. FDA requires warnings about increased risk of serious heart-related events, cancer, blood clots, and death for JAK inhibitors that treat certain chronic inflammatory conditions. 2021.

Funding

JY is supported by a Cancer Research UK Population Research Postdoctoral Fellowship (C68933/A28534). JY, RMM, and GDS are supported by a Cancer Research UK (C18281/A29019) programme grant (the Integrative Cancer Epidemiology Programme). JY, KB, RMM, and GDS are part of the Medical Research Council Integrative Epidemiology Unit at the University of Bristol which is supported by the Medical Research Council MC_UU_00011/1, MC_UU_00011/5) and the University of Bristol. RMM is also supported by the NIHR Bristol Biomedical Research Centre which is funded by the NIHR and is a partnership between University Hospitals Bristol NHS Foundation Trust and the University of Bristol. The US National Cancer Institute supports JM and PB (U01CA203654) and JM (U01CA257679). Department of Health and Social Care disclaimer: The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR, the International Agency for Research on Cancer or the Department of Health and Social Care.

Acknowledgements

The authors would like to thank the participants of the individual studies contributing to the BCAC, GECCO, CORECT, CCFR, IIBDGC, IMSGC, INTEGRAL-ILCCO, InterLymph, PRACTICAL, and UK Biobank studies. The authors would also like to acknowledge the investigators of these consortia and studies for generating the data used for this analysis. The authors would like to acknowledge the following investigators of the OncoArray and GAME-ON1KG INTEGRAL-ILCCO analyses: Maria Teresa Landi, Victoria Stevens, Ying Wang, Demetrios Albanes, Neil Caporaso, Paul Brennan, Christopher I Amos, Sanjay Shete, Rayjean J Hung, Heike Bickeböller, Angela Risch, Richard Houlston, Stephen Lam, Adonina Tardon, Chu Chen, Stig E Bojesen, Mattias Johansson, H-Erich Wichmann, David Christiani, Gadi Rennert, Susanne Arnold, John K. Field, Loic Le Marchand, Olle Melander, Hans Brunnström, Geoffrey Liu, Angeline Andrew, Lambertus A Kiemeney, Hongbing Shen, Shan Zienolddiny, Kjell Grankvist, Mikael Johansson, M Dawn Teare, Yun-Chul Hong, Jian-
Min Yuan, Philip Lazarus, Matthew B Schabath, Melinda C Aldrich. Non-Hodgkin lymphoma data (phs000801) was accessed using dbGaP accession number 15258.