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Abstract 24 

The impact of genetic variation on overall disease burden has not been 25 

comprehensively evaluated. Here we introduce an approach to estimate the effect of 26 

different types of genetic risk factors on disease burden quantified through disability-27 

adjusted life years (DALYs, “lost healthy life years”). We use genetic information from 28 

735,748 individuals with registry-based follow-up of up to 48 years. At the individual 29 

level, rare variants had higher effects on DALYs than common variants, while common 30 

variants were more relevant for population-level disease burden. Among common 31 

variants, rs3798220 (LPA) had the strongest effect, with 1.18 DALYs attributable to 32 

carrying 1 vs 0 copies of the minor allele. Belonging to top 10% vs bottom 90% of a 33 

polygenic score for multisite chronic pain had an effect of 3.63 DALYs. Carrying a 34 

deleterious rare variant in LDLR, MYBPC3, or BRCA1/2 had an effect of around 4.1-35 

13.1 DALYs. The population-level disease burden attributable to some common variants 36 

is comparable to the burden from modifiable risk factors such as high sodium intake and 37 

low physical activity. Genetic risk factors can explain a sizeable number of healthy life 38 

years lost both at the individual and population level, highlighting the importance of 39 

incorporating genetic information into public health efforts. 40 

 41 

 42 

Results of the study can be explored at: https://dsge-lab.shinyapps.io/daly_genetics/ 43 
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Introduction 44 

Genome-wide association studies (GWAS) have identified thousands of variants 45 

associated with biological traits and diseases1. Overall, these results demonstrate 46 

widespread pleiotropy (i.e., genetic variants associated with more than one trait)2. 47 

Studies commonly quantify the impact of genetic variation on a single disease at a 48 

time3–5, or when considering multiple diseases6–8 do not use a single metric that can 49 

capture overall disease burden. It is therefore challenging to assess the impact of 50 

genetic variation on overall health and to compare the total impact of different variants.  51 

Past efforts in comparative risk assessment involve quantifying the effects of modifiable 52 

adverse exposures (e.g., sodium intake) on health outcomes to inform public health 53 

measures9. For genetic risk factors this type of assessment has not been systematically 54 

performed, perhaps owing to lack of interventions. However, advances in human 55 

genetics (e.g., polygenic scores, PGS) have generated increasing interest in using an 56 

individual’s genetic risk in prioritization of screening (e.g., for cancers) and primary 57 

prevention (e.g., for coronary artery disease)7,10–12, making information on genetic risk 58 

clinically actionable. Also, genetic risk factors are becoming modifiable as PGSes have 59 

been controversially evaluated for their potential in embryo selection13–15 and in vivo 60 

gene editing is progressing towards clinical application16–18. Thus, there is a need for a 61 

comparative risk assessment framework of genetic risk factors.   62 

One prominent metric for disease burden is the disability-adjusted life year (DALY). 63 

DALYs represent the loss of healthy life years through worsened quality of life and 64 

premature death attributable to a disease19. Combining both quality of life and mortality 65 

into a single metric, DALYs are used to monitor disease burden across hundreds of 66 
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countries in the Global Burden of Disease study (GBD)9,19. The GBD estimates the 67 

yearly amount of DALYs in each country attributable to a list of collectively exhaustive 68 

and mutually exclusive diseases and injuries19. DALYs are the sum of years lived with 69 

disability (YLDs, ”lowered quality of life”) and years of life lost (YLLs, ”premature death”) 70 

(Extended Data Fig. 1). Simplifying, the yearly YLDs are estimated by multiplying the 71 

prevalence of a disease by its disability weight, which represents the magnitude of 72 

health loss due to living with the disease scaled between 0 (perfect health) and 1 73 

(death). Yearly YLLs are estimated by multiplying the number of deaths attributable to a 74 

disease by the standard life expectancy at age of death19. 75 

We propose a new approach for combining genetic association results for 80 diseases 76 

from two biobank studies with DALY estimates from the 2019 GBD study19 to provide an 77 

overview of the impact of genetic variation on lost healthy life years both at individual 78 

and population level. We rank different genetic risk factors in terms of their total health 79 

impact and compare genetic risk factors with traditional modifiable risk factors, 80 

presenting a template for comparative risk assessment of genetic risk factors. 81 
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Results 82 

Estimating attributable DALYs 83 

Our method is similar to the GBD approach which estimates the disease burden 84 

attributable to modifiable risk factors/exposures9 except here we consider different 85 

classes of genetic risk factors: common variants, rare deleterious variants, HLA alleles, 86 

APOE haplotypes, and PGSes (Fig. 1), referred to as genetic exposures. An advantage 87 

over the GBD risk factors approach9 is that our genetic association results are 88 

estimated using individual-level data from two large population-based biobank studies: 89 

FinnGen (n=309,136) and UK Biobank (UKB, n=426,612) with registry-based follow-up 90 

of 48.7 and 22.4 years respectively. Also, with some important caveats, the estimates 91 

we present allow for a causal interpretation by virtue of genetic exposures having fewer 92 

possible confounders than modifiable risk factors. In total we considered 80 93 

noncommunicable diseases that account for 83.1% of the total DALYs out of all 94 

noncommunicable diseases in Finland 201919 see Supplementary Tables 2 and 3 95 

(ST2-ST3). 96 

For each genetic exposure-disease pair, we estimated the hazard ratio (HR) using a 97 

Cox proportional hazards model. Because a single genetic variant is expected to be 98 

associated with only a minority of the considered 80 diseases, we used a shrinkage 99 

approach with a spike-and-slab type prior distribution for the log-HRs of each genetic 100 

exposure for the 80 diseases (Methods). We discarded any genetic exposure-disease 101 

associations where the posterior probability of the null model was above 10%. 102 
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 103 

Fig. 1: Study overview. GBD, Global Burden of Disease study; MAF, minor allele frequency; HLA, 104 

human leukocyte antigen system; ACMG, American College of Medical Genetics; AFp, 105 

population attributable fraction; HR, hazard ratio. 106 

Overall, we estimated the HRs through 92,800 survival analyses (associations of 1044 107 

common variants, 9 rare variant burdens, 74 HLA alleles, and 30 PGSes with 80 108 

diseases) and, after shrinkage, retained 3,123 HRs for genetic exposure-disease pairs, 109 

most of which (67.1%) were genome-wide significant (P<5×10-8) and 99% had an 110 

association with P<7.3×10-4 (Extended Data Fig. 2). Using the HR estimates and 111 

frequencies of the genetic exposures, we estimated the population attributable fraction 112 

of disease cases for each genetic exposure (the proportion of disease cases that would 113 

be prevented if the exposure was removed). We combined these fractions with disease-114 
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specific population DALYs for Finland 2019 from the GBD19 (ST3) to obtain attributable 115 

DALY estimates (Methods). Finally, we summed attributable DALYs across the 80 116 

diseases to estimate the total impact of genetic exposures. The total individual 117 

attributable DALYs, our main measure of interest, can be interpreted as the expected 118 

loss of healthy life years for an individual attributable to having a certain genetic 119 

exposure at birth. Because we consider different types of genetic exposures the exact 120 

definition of attributable DALYs varies by exposure type. Because the disease 121 

definitions in GBD are not overlapping and the DALYs are comorbidity-corrected19, the 122 

final estimates take double-counting into account. 123 

Attributable DALYs for common variants 124 

For all variants, we defined the minor allele as the less common allele in FinnGen. We 125 

considered 1,044 independent common variants (minor allele frequency, MAF > 1%). 126 

We selected 564 of these based on having at least one P<5×10-8 association with any 127 

of the 80 diseases and having the highest probability of being causal within a SuSiE 128 

fine-mapped20 95% credible set in FinnGen. Additionally, we selected 155 common 129 

variants with at least one P<5×10-12 association with 6 traditional risk factor traits (BMI, 130 

HbA1c, HDL cholesterol, LDL cholesterol, systolic blood pressure, cigarettes per day) 131 

that had the highest probability of being causal within a within a SuSiE fine-mapped 132 

95% credible set in UKB21. Last, we included 325 coding variants having a P<5×10-8 133 

association with one of the diseases in FinnGen. Among the 1044 variants, 34.6% were 134 

annotated as missense (n=335) or putative loss-of-function (n=26, pLOF). The HRs for 135 

common variants were comparable between FinnGen and UKB (Extended Data Fig. 3) 136 

and we consequently meta-analyzed the results. All estimates are for the comparison of 137 
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1 vs 0 copies of the minor allele, so the individual attributable DALYs thus correspond to 138 

the expected loss of healthy life years if an individual with 0 copies of the minor allele 139 

had instead 1 copy at birth. 140 

Overall, carrying 1 vs 0 copies of the common variants we studied resulted in relatively 141 

small effects on lost healthy life years in terms of DALYs, with only 56 out of 1,044 142 

(5.4%) variants having over 0.25 attributable DALYs (ST11-ST12). Many of the top hits 143 

for attributable DALYs were in chromosome 6, both inside and outside of the HLA 144 

region (Fig. 2a). We imputed the 7 classical HLA genes at the two-field resolution level 145 

(i.e., unique protein sequence level) using a Finnish-specific reference panel22 and 146 

provide attributable DALYs for HLA alleles in (Extended Data Fig. 4, ST9). However, 147 

we caution about the interpretation of attributable DALYs in this context because, for 148 

multiallelic loci, the estimates are not straightforward to interpret. 149 

The variant with the highest number of attributable DALYs was rs3798220, a missense 150 

variant in the LPA gene, with 1.18 (95% confidence interval (CI) 1.03-1.32, P=1.3×10-58) 151 

attributable DALYs from carrying 1 vs 0 copies of the C allele (Fig. 2B). The effect was 152 

almost exclusively through ischemic heart disease (1.11 DALYs) and to a lesser extent 153 

through non-rheumatic valvular heart disease (0.046 DALYs) and lower extremity 154 

peripheral artery disease (0.016 DALYs) despite similar risk increases. This is because 155 

of the larger number of population DALYs attributed to ischemic heart disease by the 156 

GBD (e.g., 60-fold difference to lower extremity peripheral artery disease, ST3), 157 

illustrating the importance of using measures other than just relative risk. 158 
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 159 

Fig. 2: Effect of common variants on DALYs. a, Absolute effect on DALYs from carrying 1 vs 0 160 

copies of the minor allele for each common variant. We analyzed separately imputed alleles in 161 

the HLA region. Results for this region are provided in (Extended Data Fig. 4). b-e, For 3 162 

common variants and the APOE haplotypes (in bold in panel a) we reported attributable DALYs 163 

and HRs separately for each disease. Error bars denote 95% confidence intervals. COPD, chronic 164 

obstructive pulmonary disease; AMD, age-related macular degeneration. 165 

One interesting example is rs183373024, a non-coding variant near the POU5F1B 166 

gene23, with 0.54 (95% CI 0.48-0.60, P=1.1×10-74) attributable DALYs mainly through 167 

prostate cancer (Fig. 2c). Another example is rs8040868, a synonymous variant in the 168 

well-known CHRNA5/A3/B4 gene cluster associated with nicotine dependence24, with 169 

0.25 (95% CI 0.23-0.27, P=1.6×10-95) attributable DALYs (Fig. 2d), with effects through 170 
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lung cancer, COPD, aortic aneurysm, vascular intestinal disorders, and lower extremity 171 

peripheral artery disease (all consequences of smoking). 172 

Given the strong associations between APOE alleles and longevity25, we defined the 173 

three main APOE alleles determined by two SNPs rs429358 and rs7412. Carrying the 174 

most deleterious Apo-ε4/ε4 haplotype instead of the most common Apo-ε3/ε3 resulted 175 

in 2.48 (95% CI 2.28-2.68, P=1.0×10-128) attributable DALYs, mainly through increase in 176 

risk of Alzheimer’s disease and other dementias (HR=5.97, 95% CI 5.57-6.40, Figure 177 

2e, ST8). Overall, out of the top 10% common variants with the highest number of 178 

attributable DALYs, 49.4% were significantly associated (nominal P<0.05) with longevity 179 

in the largest GWAS on lifespan5 versus 18% in the bottom 10%. 180 

The full results for the common variant analysis can be explored at: https://dsge-181 

lab.shinyapps.io/daly_genetics/ 182 

Attributable DALYs for rare deleterious variants  183 

Rare deleterious coding variants (MAF<0.001) are often clinically relevant because of 184 

their large individual (not population) level effects. However, past studies quantifying the 185 

effect of rare variants have relied on highly selected clinical populations due to lack of 186 

population-based whole-exome/genome sequencing data. Recent whole-exome 187 

sequencing data from UKB (n=174,379) provides a unique opportunity to address this 188 

issue. 189 

The American College of Medical Genetics and Genomics (ACMG) recommend 190 

reporting incidental findings in clinical exome and genome sequencing for 73 genes26,27. 191 

We estimated the attributable DALYs for two types of burdens for these ACMG genes: 192 
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1) putative loss-of-function (pLOF) variant burden and 2) ”pathogenic” or ”likely 193 

pathogenic” Clinvar28 variant burden (for BRCA1/2 we used “pathogenic” ENIGMA29 194 

variants instead). We report results for genes with at least 35 individuals with a positive 195 

burden and at least one retained burden-disease association. Taking the pLOF burdens 196 

as an example, the estimated individual attributable DALYs correspond to the expected 197 

loss of healthy life years if an individual carrying no loss-of-function variants in the gene 198 

would be instead carrying at least one.  199 

The 5 genes most impactful in terms of DALYs (Fig. 3, ST15-16) were LDLR (ischemic 200 

heart disease), BRCA2 (breast, ovarian, liver, and prostate cancer, COPD), MYBPC3 201 

(cardiomyopathy and myocarditis), BRCA1 (breast and ovarian cancer), and MLH1 202 

(colon and rectum cancer). As an example, individuals carrying one pLOF in BRCA1 203 

lose on average 4.08 (95% CI 2.74-6.32, P=1.4×10-5) healthy life years through breast 204 

cancer (HR=7.01, 95% CI 4.94-9.94, DALYs=2.11, 95% CI 1.39-3.14) and ovarian 205 

cancer (HR=16.2, 95% CI 8.22-31.8, DALYs=1.97, 95% CI 0.95-3.93). 206 
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 207 

Fig. 3: DALYs attributable to carrying a deleterious rare variant in ACMG genes.  The ClinVar
28

 208 

burden contains all variants annotated as “pathogenic” or “likely pathogenic”. *For BRCA1 and 209 

BRCA2 we only considered variants from ENIGMA
29

 annotated as “pathogenic”. The loss-of-210 

function burden contains all variants annotated as putative loss-of-function with high 211 

confidence in gnomAD
30

. Error bars denote 95% confidence intervals. 212 

  213 
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Attributable DALYs for polygenic scores 214 

We considered 30 PGSes covering major diseases, clinical risk factors, and 215 

psychobehavioral traits. We estimated the effect on DALYs attributable to belonging to 216 

the top 10% of a PGS versus the bottom 90%, which depict the expected loss of healthy 217 

life years if an individual in the bottom 90% of a PS was instead in the top 10% at birth. 218 

Overall, the attributable DALYs varied from 0.07 (inflammatory bowel disease31) to 3.81 219 

(shorter lifespan32) (Fig. 4a, ST13-ST14). Many of the PGSs exhibited significant 220 

pleiotropy, with a median of 16 (IQR 9-28) PGS-disease associations remaining after 221 

shrinkage. PGSes with the highest number of retained disease associations were 222 

multisite chronic pain33 (n=44), lower educational attainment34 (n=40), and shorter 223 

lifespan32 (n=40). 224 

A PGS predicting shorter lifespan8 had the highest impact. Individuals in the top 10% of 225 

the PGS are expected to lose 3.81 (95% CI 3.52-4.13, P=4.6×10-131) healthy life years 226 

compared to an individual in the bottom 90%. This PGS acts mainly through ischemic 227 

heart disease (1.2 DALYs) and to lesser extent through lung cancer, ischemic stroke, 228 

COPD, type 2 diabetes, substance use disorders and low back pain, each accounting 229 

between 0.21-0.26 DALYs (Fig. 4b). Interestingly, a PGS for multisite chronic pain33 230 

had the second highest impact at 3.63 (95% CI 3.33-3.93, P=5.0×10-124) DALYs, mainly 231 

through low back pain (0.48 DALYs), ischemic heart disease (0.47), substance use 232 

disorder (0.37), COPD (0.23), depression (0.22), and neck pain (0.21) (Fig. 4c). Results 233 

for the polygenic score analysis can be explored at: https://dsge-234 

lab.shinyapps.io/daly_genetics/  235 
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 236 

Fig. 4: Polygenic score impact on DALYs. a, DALYs attributable to belonging in the top 10% vs 237 

bottom 90% of each PGS. b, c, Top 25 diseases in terms of attributable DALYs and HRs for two 238 

PGSes (bold in panel a). Error bars denote 95% confidence intervals. ADHD, attention deficit 239 

hyperactivity disorder; HbA1c, glycated hemoglobin. 240 

  241 
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Sex-specific effects  242 

We repeated all analyses stratified by sex and present estimates for the main analyses 243 

(apart from rare variants) by sex in supplements (ST8-ST9, ST11-ST14). Significant sex 244 

differences in total DALYs at P<0.05 were observed for 474 (45%) of the common 245 

variants (Fig. 5a). Sex differences in attributable DALYs can result from differences in 246 

the effect of the genetic exposure on the disease (i.e., differences in HRs) or differences 247 

in DALYs attributed to men and women by the GBD19. rs738409 (PNPLA3-I148M), a 248 

missense variant in PNPLA3 linked to liver fat accumulation and steatohepatitis35, 249 

provides a clarifying example: Carrying 1 vs 0 copies of the minor allele resulted in 0.27 250 

(95% CI 0.24-0.30, P=1.6×10-71) attributable DALYs in males and 0.05 (95% CI 0.03-251 

0.07, P=2.5×10-7) DALYs in females (sex difference P=1.0×10-34). The sex difference is 252 

in part driven by differences in HR between men and women for chronic liver disease 253 

(1.32, 95% CI 1.28-1.37 in males vs 1.21, 95% CI 1.17-1.26 in females, P for sex 254 

difference = 3.6×10-4) and, in part, because DALYs for chronic liver disease are higher 255 

in men than women19 (431 vs 158 yearly DALYs per 100,000) (Fig. 5c). 256 

8 out of 30 PGSes had significant sex differences in attributable DALYs (Fig. 5b). Most 257 

of such differences were explained by different DALYs attributed to men and women 258 

rather than differences in underlying association estimates. For example, a PGS 259 

predicting weekly alcohol consumption had similar HRs between sexes across all 260 

diseases (Fig. 5d) but markedly different effect on DALYs for substance use disorders 261 

reflecting the higher disease burden disease for substance use disorders among men 262 

(1,500 yearly DALYS per 100,000) than women (497 yearly DALYs per 100,000) as 263 

estimated by the GBD19. 264 
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 265 

Fig. 5: Sex-specific impact of common variants and polygenic scores on DALYs. a, Absolute 266 

attributable DALYs from carrying 1 vs 0 copies of the minor allele separately for males and 267 

females. b, Polygenic scores (top 10% vs rest) with a significant sex difference in attributable 268 

DALYs. c, For rs738409 (PNPLA3) (in bold in panel a) we report the attributable DALYs and HRs 269 

for each disease by sex. d, Attributable DALYs and HRs by disease and sex for the PS predicting 270 

drinks per week (in bold in panel b). Error bars denote nominal 95% confidence intervals. 271 
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Population attributable DALYs for common variants 272 

So far, our results have been from an individual’s perspective. Next, for the Finnish 273 

population, we estimated the amount of attributable population DALYs per year per 274 

100,000 from all (heterozygous and homozygous) carriers of the minor allele: the 275 

expected amount of healthy life years per year per 100,000 individuals in the population 276 

that would be gained if the minor allele were completely removed. rs7859727 277 

(CDKN2B-CDKN2A) had the highest population attributable DALYs, with minor allele 278 

carriers accounting for 447 (95% CI 420-473, P=4.1×10-231) yearly population DALYs 279 

per 100,000 in Finland 2019 (Fig. 6a). The large population effect of this variant is 280 

explained by its effect on ischemic heart disease (HR=1.17, 95% CI 1.16-1.18) and high 281 

frequency in the Finnish population (MAF=41%). Comparing to population DALY 282 

estimates for classic risk factors from the GBD9 (Fig. 6a), the attributable population 283 

DALY estimates of several common variants are similar to the total impact of a diet high 284 

in sodium (300 yearly population DALYs per 100,000), low physical activity (415), and 285 

drug use (595), but substantially less impactful than the most important classic risk 286 

factors such as high systolic blood pressure (3666), smoking (2992), and high BMI 287 

(2506)9. 288 
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 289 

Fig. 6: Effect of common variants on population-level DALYs in the Finnish population. a, Bars 290 

represent yearly population-level DALYs attributable to top 10 ranking common variants. The 291 

vertical lines represent yearly population-level DALYs attributable to three selected classic risk 292 

factors as estimated by the GBD
9
 for Finland 2019. b, Top 10 HRs for ischemic heart disease of 293 

common variants and 4 HRs of conventional risk factors as estimated by the GBD (50-54 year 294 

age group)
9
.  295 

In other words, removing the risk allele rs7859727 from the Finnish population would 296 

have a comparable expected impact on increasing healthy life years as changing 297 

sodium consumption or physical activity to the theoretical minimum risk level, or 298 

completely removing drug use as a problem. To further expand on this concept, we 299 

compared the HRs for ischemic heart disease between 8 common variants and 4 300 

clinical risk factors (Fig. 6b). Clinically significant changes in traditional risk factors (e.g., 301 

10 mmHg higher systolic blood pressure, 1 mmol/L higher fasting glucose) as estimated 302 

by the GBD lead to comparable increases in ischemic heart disease risk (HR=1.20 to 303 
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1.69)9 as having 1 vs 0 copies of the minor allele for the cardiovascular risk variants 304 

(HR=1.16 to 1.39).  305 

Additional population DALYs attributable to Finnish-enrichment 306 

Finland is a well-known example of an isolated population where multiple historical 307 

bottlenecks36 have contributed to the enrichment of several functional genetic 308 

variants36,37 otherwise rare in non-Finnish populations. It is therefore interesting to 309 

estimate the population attributable DALYs that are due to the enrichment in the Finnish 310 

population compared to non-Finnish-non-Swedish-non-Estonian European (NFSEE) 311 

populations. There were 56 Finnish-enriched variants that had at least 5-fold MAF 312 

enrichment in the Finnish ancestry compared to NFSEE ancestry (from gnomAd) where 313 

the NFSEE MAF was below 0.01. The largest impact on population attributable DALYs 314 

(Fig. 7) was observed for rs143473297 (TOMM40) contributing to 56.1 (95% CI 50.1-315 

62.0, P=6.3×10-76) yearly population DALYs per 100,000 individuals of Finnish ancestry 316 

through increased risk of dementia (HR=1.95, 0.57 individual DALYs, ST12). This 317 

variant had a 152-fold MAF enrichment in the Finnish population and a negligible effect 318 

in NFSEE ancestry. One remarkable example of a protective Finnish-enriched variant is 319 

rs191156695, an inframe insertion in MFGE838. The presence of the Finnish-enriched 320 

allele in the population contributes to preventing 39.1 (95% CI 32.0-45.8, P=4.6×10-29) 321 

yearly population DALYs per 100,000 individuals of Finnish ancestry (Fig. 7) solely 322 

through decreasing ischemic heart disease risk (HR=0.80, 95% CI 0.77-0.84). 323 
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 324 

Fig. 7: Impact of Finnish-enriched variants on population-level DALYs. Proportion of disease-325 

specific population DALYs accounted for by the 9 Finnish-enriched variants with the largest 326 

effects. The white part of the bars denotes the number of population DALYs attributable to the 327 

variant if the Finnish MAF were equal to the NFSEE MAF, the grey part is the additional 328 

population DALYs resulting from the enrichment in the Finnish population. Error bars denote 329 

nominal 95% confidence intervals. NFSEE, non-Finnish-non-Swedish-non-Estonian Europeans. 330 

For many variants the contribution in NFSEE is neglectable and white bar not visible. 331 
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Sensitivity analyses 332 

We performed three main sensitivity analyses. First, we explored whether the effect of 333 

the genetic exposures on the diseases was age dependent by performing age-stratified 334 

survival analyses. Perhaps unsurprisingly39, we observed age-varying HRs for genetic 335 

exposures (Extended Data Fig. 5). For example, for a coronary artery disease PGS40, 336 

the HRs were 2.50 (95% CI 2.31-2.70) for the 50-54 age group and 1.75 (95% CI 1.62-337 

1.87) for the 70-74 age group. 338 

Second, we examined if accounting for relatedness would result in different estimates 339 

for a subset of the survival analyses. For 2562 common variants-disease pairs we 340 

estimated the HRs using a survival model clustered by family indicator to generate 341 

robust standard errors. Compared to the main analysis estimates, robust standard 342 

errors were median 1.0128 (IQR: 1.0044–1.0205) times larger. Thus, accounting for 343 

relatedness would not meaningfully affect the confidence intervals and P-values. 344 

Third, we examined the performance of our shrinkage approach, showing that it is 345 

robust to the choice of different prior parameters (Extended Data Fig. 6) and can 346 

identify true causal variants in simulated GWAS data (Extended Data Fig. 7, ST7). We 347 

further compare our shrinkage approach with a conservative colocalization-based 348 

approach for 48 of the diseases (Supplementary Information). The colocalization 349 

approach identified 94 common variants for which two or more diseases co-localize. 350 

82.0% of these variants and the corresponding colocalizing diseases were identified by 351 

our shrinkage approach. Conversely, only 22.4% of pairs of diseases reported by our 352 

approach were also found in the colocalization analysis. This discrepancy arises from 353 

the fact that the colocalization approach only considers pairs of disease both associated 354 
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at P<5×10-8 with genetic variants in overlapping credible sets. Our approach allows 355 

associations not significant at P<5×10-8 to be retained (Extended Data Fig. 2). 356 

Discussion 357 

As genetic risk factors are becoming increasingly relevant to various fields of medicine, 358 

the ability to evaluate their impact on disease burden is crucial. In this study we take 359 

steps in this direction by presenting a new approach to quantify the effect of various 360 

genetic exposures in terms of DALYs (“lost healthy life years”) by combining genetic 361 

data with DALY estimates from the Global Burden of Disease study. The results of our 362 

main analyses can be freely explored at: https://dsge-lab.shinyapps.io/daly_genetics/. 363 

Overall, rare deleterious variants tended to have higher effects on DALYs than common 364 

variants at the individual level. We also found that genetic exposures increasing the risk 365 

of ischemic heart disease tended to be most impactful in terms of DALYs, since it 366 

accounts for the largest share of population DALYs in the GBD for Finland 2019 367 

(11.5%) (ST3). Also, we have shown that the population level impact of some common 368 

variants is comparable to important classic risk factors, such as low physical activity and 369 

diet high in sodium. Polygenic scores, especially those that capture multiple diseases 370 

(e.g., lifespan32 and multisite chronic pain33), have a sizable impact both at individual 371 

and population level (ST13). 372 

The largest effects on individual DALYs were observed for carriers of high penetrance 373 

deleterious rare variants in BRCA1 (breast and ovarian cancer), BRCA2 (breast, 374 

ovarian, liver and prostate cancer), MYBPC3 (cardiomyopathy and myocarditis), LDLR 375 

(ischemic heart disease) and MLH1 (colon and rectum cancer). However, due to the 376 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 28, 2022. ; https://doi.org/10.1101/2022.01.25.22269831doi: medRxiv preprint 

https://doi.org/10.1101/2022.01.25.22269831
http://creativecommons.org/licenses/by/4.0/


23 

 

rarity of these variants, the population impact was at most 21 yearly population DALYs 377 

per 100,000 for BRCA2 (ST15), which is substantially lower than for the top common 378 

variant rs7859727 (CDKN2B-CDKN2A) where minor allele carriers account for 447 379 

yearly population DALYs per 100,000. 380 

PGSes had a moderate to high impact both at the individual and population level. The 381 

examined PGSes tended to moderately increase the risk of many diseases, with median 382 

16 out of 80 diseases retained per PGS. Overall, the top PGSes exert their effect 383 

through cardiometabolic traits (e.g., through ischemic heart disease for shorter 384 

lifespan32, coronary artery disease40 and type 2 diabetes41 PGSes) or pain/addiction-385 

related traits (e.g., through low back pain, substance use disorders, lung cancer and 386 

COPD for multisite chronic pain33, lower educational attainment34, major depressive 387 

disorder42, and smoking initiation43 PGSes). Note that the effect estimates for PGSes 388 

depend on the cutoff used. For the shorter lifespan PGS, if we instead used top 1% vs 389 

rest or top 50% vs rest cutoffs, the individual DALYs would have been 5.60 and 2.76 390 

respectively, instead of the reported 3.81 for top 10% vs rest. We also note that the 391 

effect of PGSes is in part a function of the predictive performance of each PGS, so their 392 

relative importance can change and effect on DALYs will likely increase as larger 393 

GWASes are used to construct them. 394 

Most common variants with the highest effect on DALYs affected ischemic heart 395 

disease risk (e.g., rs3798220, LPA; rs11591147, PCSK9; rs1537371, CDKN2B-396 

CDKN2A), and some affected risk of dementia (rs429358, APOE), prostate cancer 397 

(rs183373024, POU5F1B), or type 2 diabetes (rs117361510, JPH2). The number of 398 

DALYs for a disease in the GBD is driven by how common it is, how much premature 399 
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death it causes (years of life lost, YLL), and how much and for how long it lowers quality 400 

of life (years lived with disability, YLD). Common diseases that either lead to premature 401 

mortality (high YLLs e.g., ischemic heart disease) and/or long periods of living with 402 

disability (high YLDs, e.g., low back pain) account for a large number of population 403 

DALYs (ST3). Consequently, genetic exposures increasing the risk of high-DALY 404 

diseases predominated the results. Some variants might affect DALYs by modifying 405 

intermediate risk factors such as BMI and blood pressure and, in our analyses, we have 406 

included several variants that were associated with major risk factors. Nonetheless, we 407 

noticed that most of the highest-ranking variants in terms of DALYs are associated 408 

directly with the diseases rather than with intermediate modifiable risk factors 409 

(rs8040868 in CHRNA5/A3/B4 being a notable exception due its impact on smoking 410 

behavior). 411 

There are multiple strengths and limitations to our study. One key strength is that the 412 

genetic associations were estimated using individual-level data from two large biobank 413 

studies with long registry-based follow-up. We apply a shrinkage procedure to the 414 

associations, and thus obtain a conservative overview of the pleiotropic effect of genetic 415 

exposures on 80 major disease accounting for 83.1% of the total DALYs in Finland 416 

through all noncommunicable diseases in 201919. In quantifying the disease burden we 417 

combine the association results with population DALYs from the GBD19 which reports 418 

perhaps most accurate and unbiased estimates of population-level disease burden. This 419 

is important for many outcomes for which defining the absolute disease burden (e.g., 420 

incidence) through registry data is biased downwards. For example, quantifying the 421 

number of individuals suffering from migraine using hospital episode statistics would 422 
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lead to a serious underestimate (Extended Data Fig. 8). One important aspect of the 423 

DALY estimates from the GBD is that the disease definitions are not overlapping and 424 

the DALYs are comorbidity-corrected (see Supplementary Appendix Section 4.9 of GBD 425 

201919). Thus, double counting DALYs due to comorbidity is avoided. Finally, compared 426 

to similar studies that consider modifiable/environmental risk factors, genetic exposures 427 

are less likely to be impacted by confounding and other biases and thus more readily 428 

allow for a causal interpretation. 429 

In ST10 we provide an overview of the study limitations, some of which can be 430 

overcome in future iterations of this work. Here we discuss perhaps the most important 431 

ones. First, we take it as given that the DALYs estimated by the GBD19 are accurate 432 

and that DALYs are a meaningful measure of disease burden (which has been 433 

debated44). Second, the DALYs for individuals with a disease is assumed to be the 434 

same among those with and without the genetic exposures (e.g., individuals with and 435 

without a damaging BRCA1 mutation that develop breast cancer accumulate DALYs 436 

similarly). Third, we used DALYs estimated for Finland 2019 and estimated genetic 437 

associations using data between 1972 and 2020 in Finland and United Kingdom, so the 438 

estimated effects on lifetime individual DALYs for someone born today can change as 439 

the disease incidence, medical care, and mediating factors (e.g., smoking) change. 440 

Also, we currently do not model gene-environment effects or account for age-varying 441 

effects. Fourth, although we suggest a causal interpretation to the attributable DALYs, 442 

there are important caveats to be made. Despite rigorous statistical fine-mapping, the 443 

reported variants with the highest posterior probability might tag underlying causal 444 

genetic variation. For example, the rs3798220 (LPA) variant is known to tag copy 445 
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number variation of the Kringle IV like domain 2 in the LPA locus, which is the probable 446 

mechanism behind the association of rs3798220 with ischemic heart disease45. Another 447 

caveat lies in the possibility that a reported variant does not tag one causal variant, but 448 

multiple causal variants in LD. However, using eQTL data, previous work on quantitative 449 

lipid traits has shown that a minority of pleiotropic effects at a given locus are explained 450 

by this configuration46. Finally, note that we mainly present attributable DALYs for both 451 

sexes in aggregate, which might be misleading for exposures with sex-specific effects. 452 

For example, rs183373024 (POU5F1B) affected DALYs only through prostate cancer 453 

and benign prostatic hyperplasia (0.54 DALYs in aggregate, 1.06 DALYs in males, 454 

ST11). 455 

The presented framework can be applied to other countries and ancestries under 456 

certain assumptions. First, the effect sizes of the genetic exposures need to be 457 

generalizable to the target population. There is increasing evidence that many causal 458 

variants have similar effects across continental ancestry groups47–51, but this does not 459 

apply to polygenic scores52. Assuming effect sizes are consistent, one needs to know 460 

the frequency of the genetic exposures in the target population, which is particularly 461 

challenging in countries with a heterogeneous ancestry composition. In the absence of 462 

representative genetic surveys, it might be possible to use self-reported ancestry 463 

information combined with frequency datasets such as gnomAD53. 464 

In conclusion, we have proposed an approach to combine genetic association results 465 

from large biobank studies with disease burden estimates from the GBD and provided 466 

an overview of the impact of genetic exposures on lost healthy life years (DALYs). We 467 

have shown that some common variants account for as many healthy life years as 468 
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some well-established modifiable risk factors. We emphasize that beyond estimating the 469 

direct impact of genetic exposures on DALYs, genetic results can be used to better 470 

estimate the causal effect of modifiable risk factors on disease burden using techniques 471 

such as Mendelian randomization54. While genetic risk factors are not yet modifiable in 472 

practice, novel approaches based on in vivo gene editing are being developed16 and 473 

some have been tested in clinical trials17,18. Estimating the total impact of genetic risk 474 

factors on disease burden might help prioritize these types of interventions. 475 
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Methods 616 

General statistical methods 617 

All analyses were performed using R version 4.0.3. All P-values are nominal. Error bars 618 

represent 95% confidence intervals. Confidence intervals for the disease-specific 619 

DALYs were generated using the delta method. Confidence intervals for total DALYs for 620 

each exposure were estimated by repeating 10,000 times the computation of total 621 

DALYs while resampling the log-HR estimates from a multivariate normal distribution 622 

corresponding to the approximate sampling distribution of log-HRs, and by taking the 623 

2.5th and 97.5th percentiles as the bounds for the 95% confidence intervals 624 

(Supplementary Information). The sex-specific results were generated through 625 

estimating the HRs stratified by sex and using sex-specific population DALYs reported 626 

by the GBD19. For all error estimates we assumed there was no uncertainty in 627 

frequencies of the exposures (e.g., allele frequencies) or DALYs reported by the GBD, 628 

so we only consider variation from HR estimation in the error estimates. 629 

Participants 630 

FinnGen and UK Biobank55 are large-scale population-based prospective cohort studies 631 

from Finland and the United Kingdom, both with phenotypic data ascertained from 632 

registries (Fig. 1). In FinnGen, we used participants from the Finnish ancestry in data 633 

freeze 7 with n=309,136 (56.2% female) with median (IQR) age at start of follow-up of 634 

15.1 (0-26.3) and at end of follow-up 62.2 (47.1-72.9). The median (IQR) follow-up 635 

length was 47.3 (41.6-47.7) years (ST1). Follow-up for FinnGen started on January 1st, 636 

1972 and ended on August 31st, 2020. For UKB we used participants of European 637 

ancestry n=426,612 (54.1% female) with median (IQR) age at start of follow-up of 47.2 638 
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(39.5-52.4) and at end of follow-up 69.1 (61.7-74.2). The median (IQR) follow-up length 639 

was 22.3 (22.3-22.3) years (ST1). Follow-up for UKB started on January 1st, 1998 and 640 

ended on April 30th, 2020. 641 

Disability-adjusted life years 642 

As a measure of disease burden we used the disability-adjusted life years (DALYs) from 643 

the 2019 Global Burden of Disease study (GBD)19 with data publicly available at 644 

http://ghdx.healthdata.org/. DALYs are a metric for measuring population-level disease 645 

burden that combines a measure of premature mortality called years of life lost (YLL) 646 

and a measure of healthy life years lost due to lowered quality of life called years lived 647 

with disability (YLD), so DALYs are the sum of YLDs and YLLs (Extended Data Fig. 1). 648 

The GBD is a longitudinal study which estimates incidence, prevalence, mortality, YLLs, 649 

YLDs and DALYs due to various collectively exhaustive and mutually exclusive 650 

diseases and injuries (369 in 2019) for hundreds of countries (204 in 2019)19. GBD 651 

strives to model unbiased estimates using various sources of information, including 652 

census data, household surveys, civil registration and vital statistics, disease registries, 653 

health service use data, and more. The estimation process for DALYs is complex and 654 

varies from disease to disease, see the 2019 GBD publication19 and its Supplementary 655 

Appendix 1 for a detailed description of the methods. Because all of our genetic 656 

exposures, except rare variants, were measured in FinnGen, we used the 2019 GBD 657 

metrics for Finland and present all estimates for Finland, although the estimates could 658 

be calculated for any country in the GBD given some assumptions. See ST3 for a list of 659 

DALYs, YLLs and YLDs for the included diseases. 660 
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Disease phenotypes 662 

To define the disease phenotypes, we manually mapped 89 mutually exclusive 663 

noncommunicable diseases from the 2019 GBD to FinnGen clinical endpoints (ST2), of 664 

which we retained 80 based on requiring at least 500 individuals to have the disease in 665 

FinnGen. These 80 diseases account for 83.1% of population DALYs from 666 

noncommunicable diseases in Finland 2019 (ST3). We did not map diseases from the 667 

GBD that were too rare, not well enough captured by the registries, or include too 668 

heterogenous a set of diseases (e.g., “other cardiovascular and circulatory diseases”). 669 

Phenotyping in FinnGen relied on information on diagnoses starting from 1972 in the 670 

hospital discharge registry56, the causes of death registry, and the cancer registry. The 671 

drug purchases registry was additionally used starting from 1995 for selected diseases 672 

(e.g., migraine). We completely excluded diseases with less than 500 cases in FinnGen. 673 

Phenotyping in UKB was performed via groups of ICD-10 codes mapped from the 674 

FinnGen endpoints (ST2), relying on ICD-10 diagnosis codes from the hospital episode 675 

statistics, cancer registry, and causes of death registry data starting from 1998. The 676 

cumulative incidence of the diseases varied from 14.93% (cataract) to 0.16% (acute 677 

glomerulonephritis) in FinnGen. We analyzed the following diseases only in FinnGen as 678 

in UKB there were less than 500 cases: Hemoglobinopathies and hemolytic anemias 679 

(n=480 in UKB), Hodgkin Lymphoma (n=464), autism spectrum disorders (n=164), 680 

eating disorders (n=163), acne vulgaris (n=106), acute glomerulonephritis (n=58), 681 

attention-deficit hyperactivity disorder (n=26), and conduct disorder (n=13). As both 682 

FinnGen and UKB rely mainly on diagnosis codes recorded at hospitals, conditions that 683 
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are usually managed in the primary or outpatient care setting are under-ascertained, for 684 

examples see Extended Data Fig. 8. 685 

Common variants 686 

We provide information on genotyping, imputation, quality control, fine-mapping, and LD 687 

clumping in Supplementary Information. For each variant, we defined the minor allele 688 

to be the allele less common in FinnGen. Due to symmetry in attributable DALY 689 

estimation, going from 1 to 0 copies vs 0 to 1 copies of an allele only changes the sign 690 

of the individual attributable DALYs estimates. After fine-mapping, LD clumping, and 691 

shrinkage, we included a total 1044 common variants (FinnGen MAF>0.01) for the 692 

analysis (Fig. 1). FinnGen SuSiE fine-mapping20 results for all FinnGen endpoints used 693 

to define the 80 diseases (ST2) were used to select, for each credible set, the genome-694 

wide significant variant (P<5×10-8) with the highest posterior inclusion probability, 695 

resulting in 564 variants. Additionally, we included all FinnGen coding variants with a 696 

P<5×10-8 association with any FinnGen endpoint (n=325). We used UKB fine-mapping 697 

results21 for continuous risk factor traits (BMI, systolic blood pressure, cigarettes per 698 

day, HLD-C, LDL-C, and HbA1c) and selected, for each credible set, variants with 699 

P<5×10-12 and the highest posterior inclusion probability, which resulted in inclusion of 700 

155 additional variants. We labeled common variants as Finnish-enriched if they had 701 

FinnGen MAF enrichment at least 5-fold compared to the non-Finnish-non-Swedish-702 

non-Estonian European (NFSEE) ancestry MAF and the NFSEE MAF was over 0.01. In 703 

ST5 we report all common variants included in the analysis. We separately imputed22 74 704 

alleles in 7 HLA genes (ST9, Supplementary Information) for the HLA region 705 
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(chr6:29691116 to chr6:3054976 in GRCh38) and determined 6 haplotypes (ST8) for 706 

APOE. 707 

Rare deleterious variants 708 

To analyze the effects of rare deleterious variants on DALYs, we used whole exome-709 

sequencing data from a subset of participants in UKB (n=174,379) from the December 710 

2020 release. We processed the data using Hail version 0.2.59-63cf625e29e5. We 711 

directly processed the quality controlled PLINK57 files provided by UKB. We annotated 712 

the data using the Ensembl Variant Effect Predictor30 using the same approach used in 713 

gnomAD and specifically the function gnomadvep.vep_or_lookup_vep. VEP annotations 714 

were processed using the function gnomadvep.process_consequences, consistently 715 

with the gnomAD definition of pLOF, missense and synonymous variants, using the 716 

canonical transcript. We also extracted ClinVar28 annotated variants (accessed in 717 

November 2020) and germline variants in BRCA1 and BRCA2 (accessed in November 718 

2020) annotated by the ENIGMA consortium29. From ClinVar we considered 719 

"pathogenic" and "likely-pathogenic" variants (no filtering on star status or number of 720 

submitters) and from ENIGMA we considered “pathogenic” variants. Variants with 721 

frequency greater than 0.001 were excluded because they are less likely to be 722 

deleterious. We considered all genes part of the the American College of Medical 723 

Genetics and Genomics (ACMG) recommendations for reporting of incidental findings in 724 

clinical exome and genome sequencing studies27. We formed two types of rare variant 725 

burdens for individuals for each gene: 1) the pLOF burden was set as positive if there 726 

was at least 1 variant annotated as pLOF and 2) the ClinVar/ENIGMA burden was set 727 

as positive if there was at least 1 variant annotated as “pathogenic” in ENIGMA29 for 728 
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BRCA1 and BRCA2 and for other genes “likely pathogenic” or “pathogenic” in ClinVar. 729 

Due to statistical power considerations, we restricted our analysis so that at least 35 730 

individuals had a positive burden, resulting in 9 genes for both burden types (ST4). 731 

Polygenic scores 732 

In FinnGen, we included 30 genome-wide polygenic scores (PGS) for traits of interest 733 

constructed from publicly available summary statistics, see ST6 for references. We 734 

selected PGSes for psychobehavioral traits (e.g. cognitive ability, neuroticism), major 735 

chronic diseases (e.g. coronary artery disease, depression), and major risk factors (e.g. 736 

LDL-C, blood pressure) to cover traits of interest with high quality summary statistics 737 

available. PGSes were only analyzed in FinnGen, since many of the original summary 738 

statistics included UK Biobank. We used PRS-CS58 for generating the PGSes using 739 

external LD reference panel (1000 Genomes Europeans). We used the PRS-CS-auto 740 

algorithm, which learns the model’s global scaling parameter � from the data and 741 

performs well with large datasets. Default PRS-CS parameters were used and only 742 

HapMap 3 SNPs were considered (see https://github.com/FINNGEN/CS-PRS-pipeline 743 

for code). Scores for lifespan, educational attainment, cognitive performance, and 744 

intelligence were reversed before analysis to make all scores on net deleterious in 745 

terms of DALYs. For defining the exposure for survival models, we coded individuals for 746 

each PGS as 1 if they were in the top 10% of the score distribution and 0 if not. 747 

Consequently, the individual DALYs can be interpreted as the effect on lifetime DALYs if 748 

the average individual in top 10% of the PGS were to have their PGS be that of the 749 

average in the bottom 90% of the PS. 750 

  751 
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Survival models 752 

To estimate the HRs between all genetic exposure-disease pairs we used Cox 753 

proportional hazards regression via the coxph function in the survival package version 754 

3.2-11. The model was additive for allele counts. Sex and first 10 principal components 755 

of population structure were included as covariates. We used calendar age as the time-756 

scale and age at first record of the disease in the registries as time-to-event. Individuals 757 

were censored at death, emigration, or end of registry-based follow-up (August 31st 758 

2020 in FinnGen, April 30th 2020 in UKB). For the common variants, the HRs were 759 

estimated both in FinnGen and UKBB separately and combined using fixed effects 760 

inverse-variance weighted meta-analysis. A comparison of effect sizes between 761 

FinnGen and UK biobank is provided in Extended Data Fig. 3. We did not account for 762 

left censoring, nor did we account for relatedness of the subjects due to computational 763 

limitations. For the rare variant burden analysis in UKB, we used Cox regression with 764 

Firth’s Penalized Likelihood59 via coxphf package version 1.13.1 and included sex and 765 

the 4 first genetic principal components as covariates. 766 

For the sensitivity analysis in FinnGen accounting for relatedness in estimating standard 767 

errors for the log-HRs, we generated a family indicator from genotype data using 768 

KING60 version 2.2 only including HapMap 3 variants. Individuals up to 3rd degree of 769 

relatedness were included in the same family. The robust standard errors were 770 

estimated using a family indicator to compute robust standard errors by including 771 

cluster(family_id) as a covariate in coxph. 772 
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Shrinkage 774 

We use prior information to apply a shrinkage procedure to the HRs for exposure-775 

disease pairs to reduce the effect of sampling variation on our results. Denote by ��,� 776 

the log-HR of genetic exposure e on disease d=1,..,80. One genetic exposure at a time, 777 

we set the prior distribution of ��,�, to be a mixture distribution between the point mass 778 

at 0 and a 50:50 mixture of two normal distributions with means at -0.3 and 0.3, 779 

respectively, and with a standard deviation of 0.1. We denote the mixture weight of the 780 

non-zero component by pe, which can be interpreted as the exposure-specific proportion 781 

of non-zero effects across the 80 diseases. We set the prior distribution of pe to a 782 

Beta�� � 1, � � 19
 distribution, that has an expected value of 0.05. The full probability 783 

model is 784 

�� ~ Beta��, �
,   ��,�  ~ Bernoulli�0.5
, 

��,�  ~ Bernoulli���
��1 � ��,���� , !�
 " ��,���� , !�
#, 

where � � 1, � � 19,  � 0.3 and ! � 0.1. 

This model implies that, before seeing the data, for each genetic exposure, we expect a 785 

non-zero effect for 4 (= 0.05 x 80) diseases and the direction of the non-zero effects are 786 

equally likely to be risk increasing (centered around HR = 1.35) as protective (centered 787 

around HR = 0.74). In practice, which effects are shrunk to zero and which are retained 788 

as non-zero, does not vary considerably when these prior parameters are varied 789 

(Extended Data Fig. 6). For each genetic exposure e at a time, we use a Markov Chain 790 

Monte Carlo procedure with 10,000 iterations (Supplementary Code) to estimate the 791 

posterior probabilities of the log-HRs (be,d) for diseases d=1,2,…,80 coming from the 792 
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null model (point mass at zero). We discard any log-HRs where the null probability is 793 

over 10%, and, for the remaining log-HRs, we use the maximum partial likelihood 794 

estimates from the Cox proportional hazards model in the downstream analyses. 795 

Attributable disability-adjusted life years 796 

Similarly to the GBD9, we use the HRs and frequencies of the exposures to estimate 797 

attributable DALYs one disease at a time. We use the multilevel exposure formula61 for 798 

the population attributable fraction (i.e., the fraction of cases of disease d caused by the 799 

exposure levels in the population deviating from counterfactual levels): 800 

Population attributable fraction � AFp� �
∑ P�HR�,�� � ∑ P�

�HR�,��

∑ P�HR�,��

 

where HR�,� is the hazard ratio for disease d at exposure level i (e.g., 1 copy) relative to 801 

reference (e.g., 0 copies) and P� is the fraction of the population at exposure level i and 802 

P�
� represents the fraction of the population at exposure level i in the counterfactual 803 

scenario (e.g., if all with 1 copy instead had 0: P	
� � 0, P


� � P
 " P	, and P�
� � P�). 804 

As an example, for individuals carrying 0, 1, and 2 alleles with respective population 805 

frequencies of P
 � 0.7, P	 � 0.2, and P� � 0.1, and HRs for disease d of HR�,
 � 1.00, 806 

HR�,	 � 1.35, and HR�,� � 1.82. For calculating attributable DALYs from individuals 807 

carrying 1 vs 0 copies of the allele, define the counterfactual frequencies as P

� � 0.9, 808 

P	
� � 0.0, and P�

� � 0.1 (i.e., making all with 1 copy have 0 copies instead). Plugging 809 

these numbers into the AFp� formula produces the population attributable fraction of 810 

disease cases from those carrying 1 vs 0 copies of the allele (the fraction of cases that 811 

would be prevented if all with 1 allele had instead 0), which is 0.061 in this case, so 812 
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approximately 6.1% of disease cases would be prevented if all with 1 copy had instead 813 

0 copies at birth. 814 

We then assume that the estimated population attributable fraction of disease cases 815 

can be interpreted as the population attributable fraction of DALYs, which is true if all 816 

disease cases contribute on average the same amount of DALYs independent of 817 

whether they have the genetic exposure or not. This assumption does not hold if, for 818 

example, deleterious BRCA1 mutation carriers develop breast cancer earlier and 819 

consequently accumulate more DALYs per case. Then, multiplying the population 820 

attributable fraction of DALYs (AFp�) by the population DALYs per year per 100,000 821 

reported by the GBD (DALY�
 gives the population attributable DALYs, interpreted in our 822 

example as the expected loss of healthy life years per year per 100,000 if the population 823 

frequencies of the exposure were P�
� instead of P� (in our example, all with 1 copy had 824 

instead 0 copies). 825 

Population attributable DALYs� � AFp� 9 DALY� 

We further estimate individual attributable DALYs for binary counterfactuals (e.g., 826 

having 1 vs 0 copies, being in top 10% of a PS vs bottom 90%) by dividing the 827 

population attributable DALYs per 100,000 by the number of individuals with the 828 

exposure out of 100,000 (100,000 9 P�) and multiplying by life-expectancy at birth (L): 829 

Individual attributable DALYs� �
AFp� 9 DALY�

100,000 9 P�

�
Population attributable DALYs�

No. individuals exposed per 100,000 
 

where DALY�  represents the population DALYs per year per 100,000 through disease d 830 

from GBD, P� is the fraction of population for which the exposure is changed (e.g., 831 

fraction of those with 1 copy), and L represents the life-expectancy at birth (which is 832 
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included to convert yearly DALYs into lifetime estimates). These individual DALYs are 833 

interpreted as the expected loss of healthy life years for an individual caused by having 834 

the genetic exposure at birth. Finally, both population attributable DALYs and individual 835 

DALYs can be summed up across the 80 diseases to arrive at the total impact of the 836 

genetic exposure. See Witte et al.62 for discussion on how population attributable 837 

fractions relate to other measures of genetic contribution. 838 
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Data availability 860 

We present all attributable DALY results in ST8, ST9, and ST11-ST16. Results for 861 

common variants, HLA alleles, PGSes can be explored through plots at https://dsge-862 

lab.shinyapps.io/daly_genetics/  863 

Code for central parts of analyses can be found at 864 

https://github.com/dsgelab/dalys_code 865 
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Extended Data Figures 894 

 895 
 896 

Extended Data Fig. 1: Schematic representation of how disability-adjusted life years (DALYs) 897 

are constructed from years lived with disability (YLD), and years of life lost (YLL). DALYs are a 898 

metric for measuring population-level disease burden that combines a measure of premature 899 

mortality called years of life lost (YLL) and a measure of healthy life years lost due to lowered 900 

quality of life called years lived with disability (YLD), so DALYs are the sum of YLDs and YLLs. 901 

 902 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 28, 2022. ; https://doi.org/10.1101/2022.01.25.22269831doi: medRxiv preprint 

https://doi.org/10.1101/2022.01.25.22269831
http://creativecommons.org/licenses/by/4.0/


49 

 

 903 
Extended Data Fig. 2: Cumulative distribution plot of log10 P-values for all reported HRs 904 

between genetic exposures and diseases (n=3,123). 67.1% of the associations were genome-905 

wide significant (P<5×10-8) and 99% had an association with P<7.3×10-4 906 
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 907 
Extended Data Fig. 3: Comparison of effect sizes (log-HR Z-score) for common variant-disease 908 

associations (n=68,616) estimated both in FinnGen and UK Biobank. Axes are truncated at 909 

±20, leaving out 36 points.  910 
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 911 
Extended Data Fig. 4: Effect of HLA alleles on DALYs by HLA gene. Note that each gene is 912 

multiallelic, so the comparison of “1 vs 0 copies” is more precisely the effect for having “1 copy 913 

of the allele in question and 1 average copy of other allele” vs “having 0 copies of the allele in 914 

question and 2 average copies other alleles”. See ST9 and Supplementary Information for 915 

details. Error bars denote 95% confidence intervals. 916 
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 917 

Extended Data Fig. 5: Hazard ratios by age group in FinnGen. For each age group we estimated 918 

the HRs via a Cox proportional hazards model including individuals whose follow-up started 919 

prior to beginning of the age interval that did not have a previous record of the disease. The 920 

figure demonstrates age-varying HRs especially for ischemic heart disease, Alzheimer’s disease 921 

and other dementias, and low back pain (a,b,c,d). For breast cancer and prostate cancer, the 922 

HRs were approximately constant across age groups (e,f).  923 
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 924 
Extended Data Fig. 6: Histogram of the number of retained disease associations after 925 

shrinkage using different prior parameters. In this plot we only consider common variants. 926 

“mean” and “sd” correspond to the   and ! prior parameters,“a” and “b” correspond to the � 927 

and � prior parameters (Methods). Overall, the distribution of retained association is not 928 

sensitive to the choice of prior parameters.  929 

  930 
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931 
Extended data Fig. 7: Receiver operating characteristic curves using our shrinkage method as932 

a classifier to identify true causal variants in simulated data. Using Hail, we simulated GWAS933 

summary statistics for 80 binary phenotypes with heritability sampled uniformly between 0.1934 

and 0.6. We repeated this for four scenarios where the probability of a variant being causal (pi)935 

is 0.001, 0.002, 0.005, and 0.01 (Supplementary Information). We then applied our shrinkage936 

procedure and classified those variants with posterior probability of being from the null mode937 

of <10% as being causal (colored dots on lines represent this threshold). See ST7 for details on938 

classification performance.  939 
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 940 
Extended data Fig. 8: 5-year incidence estimates of COPD, migraine, prostate cancer, and 941 

schizophrenia in FinnGen and UK Biobank (UKBB) compared to the population incidence 942 

estimates from the Global Burden of Disease Study 2019 for Finland 2019 (GBD). Number of 943 

new cases per 100,000 was calculated as number of new cases per 100,000 during each age 944 

interval divided by person-years contributed by individuals that were not cases in the earlier 945 

age intervals. The incidence of some diseases like prostate cancer is well captured in UKB and 946 

FinnGen, while other disease, such as migraine, as severely under-estimated. 947 
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