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Abstract 

Simulation models of opioid use disorder (OUD) aim at evaluating the impact of different treatment 

strategies on population-level outcomes. Researching Effective Strategies to Prevent Opioid Death 

(RESPOND) is a dynamic population state-transition model that simulates Massachusetts (MA) 

OUD population synthesizing data from the MA Public Health Data Warehouse, published survey 

studies, and randomized trials. We implement an empirical calibration approach to fit RESPOND to 

multiple calibration targets, including yearly counts of fatal overdoses and detox admissions in 

2013-2015, and 2015 OUD population counts in MA. We used capture-recapture analysis to 

estimate the OUD population and to quantify uncertainty around calibration targets.1 The empirical 

calibration approach involves Latin hypercube sampling for a parameter search of the 

multidimensional space, comprising demographics of “arrivals”, overdose rates, treatment 

transition rates, and substance use transition probabilities. The algorithm accepts proposed 

parameter values when the respective model outputs are “close” to the observed calibration 

targets based on uncertainty ranges of targets. Calibration provided an excellent fit to the model 

calibration targets. The flexibility of the algorithm also allowed us to identify certain "questionable" 

parts of the model structure and explore the underlying relationships between the model 

parameters in an efficient manner. The calibrated model also provided a good fit to validation 

targets: non-overdose related deaths, percentage of active OUDs, and all types of overdose counts 

(fatal and non-fatal). In addition, the resulting set of values for the calibrated parameters will 

inform the priors of a more comprehensive Bayesian calibration. The calibrated RESPOND model 

will be employed to improve shared decision-making for OUD. 
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1. Introduction 

Opioid use disorder (OUD) is an epidemic in the U.S and opioid overdose is a growing public health 

emergency.2-5 In the context of this public health crisis, policymakers and public health officials 

seek effective strategies to address opioid use disorder and to reduce opioid death. 

Buprenorphine-naloxone, naltrexone, and methadone are all FDA-approved medications for OUD 

(MOUDs) that decrease opioid use, mortality, and criminal activity.6 These treatments are under-

utilized, however, fewer than 25% of people with OUD being on treatment.7 One of the key pillars 

of the U.S. response to the overdose crisis is increasing access to MOUD. Doing so, however, 

requires identifying and working in new venues and among new populations who are not currently 

engaged with treatment. The relative value of different venues, the budget impact of expanding 

MOUD, and the cost-effectiveness of various models of care are all essential knowledge for decision 

making, but they are not known.  

Simulation models provide a tool for evaluating the impact of different care delivery and treatment 

strategies on population-level outcomes. Simulation models integrate data from multiple sources 

to translate outcomes from clinical studies to policy-relevant data about population health and 

cost. A model that simulates a state-level population of people with OUD could be a useful tool to 

investigate delivery system innovations and project the impact on public health outcomes and cost 

and will be invaluable in the fight against OUD. However, due to the complicated nature of how the 

system operates, such a model consists of a complex structure to capture the real-world dynamics.  

In previous studies, simulation models have been used to investigate the health and economic 

effects of prevention, treatment, or harm reduction interventions targeting opioid misuse and/or 

overdose.8 For example, a system dynamic simulation model has been used to project effects of 

interventions to lower prescription opioid misuse on opioid overdose deaths in U.S.9, and agent-

based simulation has been productively employed to estimate the impact of evidence-based 

strategies for preventing opioid overdose deaths in a selected number of states.10  

In our work, with the goal of informing state-level innovation for low-barrier access to MOUDs, we 

developed a dynamic population, state-transition model to simulate the OUD population in 

Massachusetts (MA). We named the model the Researching Effective Strategies to Prevent Opioid 

Death (RESPOND) Model. RESPOND is built with a complex model structure that allows flexibility 

to study various interventions incorporating different treatments to prevent opioid overdoses. One 

essential challenge to modeling OUD and the overdose crisis, however, is the need to estimate 

parameter values for behaviors and events that are impossible to observe and/or are difficult to 

measure with bias-related to stigma and under-reporting of risk.  The structural complexity of 

RESPOND combined with the scarcity of available data for opioid modeling poses a challenge to 

calibrating and validating the model.11 

In this work, we present an empirical approach that was used to calibrate the RESPOND model and 

that could be useful to other researchers seeking to develop models focused on evaluating 

interventions for opioid use disorder.  
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2. Methods 

2.1 The RESPOND model 

We developed and calibrated the Researching Effective Strategies to Prevent Opioid Death 

(RESPOND) model, a dynamic, cohort-based, state-transition model that simulates the OUD 

population in Massachusetts. Figure 1 provides an overview of the RESPOND model structure. The 

model simulates the clinical progression of a cohort with opioid use disorder assuming five major 

health states: three related to treatment status, overdose, and death. Within each treatment state, 

there is a core simulation described with four distinct OUD states determined by injection status 

(active, non-active, and injection, non-injection). Fig 1 presents the set of possible transitions that 

RESPOND allows between the health and OUD states. 

 

Core simulation of OUD 

The core simulation of opioid use disorder includes 4 mutually exclusive states by the status and 

type of opioid use, i.e.: 1) active, non-injection (ANI), 2) non-active, after non-injection (NANI), 3) 

active, injection (AI), and 4) non-active, after injection (NAI). Active use states are characterized by 

risk of overdose and elevated healthcare utilization, with active injection use having a higher risk 

than active oral use. Non-active use states carry no risk of overdose. Throughout the simulation, 

there is bidirectional movement between active and non-active use states, simulating the relapsing 

and remitting nature of opioid use.  

Simulation of treatment status 

The core simulation of opioid use is embedded in the simulations of treatment status. RESPOND 

models three medication-based treatments for OUD: (methadone, buprenorphine, and naltrexone) 

and acute detoxification services (detox). The population that is engaged with a medication-based 

treatment experiences a net movement out of active drug use and into nonactive use states 

(treatment initiation effect), but there is bidirectional movement between use states among those 

engaged with MOUD treatment. MOUD provide an independent effect on overdose risk beyond 

their benefits of reducing active use. 

The model simulates loss to follow-up from MOUD treatment by moving the population that 

disengages from MOUD treatment to the “post-treatment” health state, during which there is a 

high risk of relapse to active use states and consequently high risk of overdose. 

Mortality 

There are two components to mortality in RESPOND: 

1. Overdose mortality – overdose rates are a function of drug use status and treatment and 

are stratified by age and sex. Among those who overdose, there is a conditional risk of 

death from that overdose. 

2. Other cause mortality (Mortality attributable to drug use other than overdose death) – 
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includes deaths from conditions such as infectious endocarditis and sepsis, as well as 

medical comorbidities that accrue over a lifetime. The model employs standardized 

mortality ratios (SMR) that are stratified by sex and drug use status reflecting elevated 

mortality among drug users to age-sex stratified actuarial lifetables of the U.S.  

Cohort Initiation 

The RESPOND model has a weekly cycle. Every week, a new population “arrives” to the simulation 

(no-treatment state), with independent rates of entry stratified by age and sex. The rates of arrival 

represent the development of new OUD cases and emigration to the state of Massachusetts. The 

only exit from the simulation is mortality. The balance of arrivals and deaths results in the total 

population size of OUD in Massachusetts. 

The RESPOND model has been used in a simulation study aimed at evaluating MOUD approaches 

for decreasing the risk of opioid overdose.12 

2.2 Data  

The primary data source for RESPOND is the Massachusetts Public Health Data Repository (MA 

PHD). MA PHD is a longitudinally linked, administrative records database that includes service 

encounter data from over 16 agencies in the Commonwealth of Massachusetts. The database 

includes approximately 97% of the Massachusetts population, and data across agencies is linkable 

at the person-level. This database informed the calibration targets (Table 1) and several model 

input parameters (Table 2). We also use data from National Survey on Drug Use and Health 

(NSDUH), and US Census 2010 to inform population counts of the initial cohort and demographic 

proportions of new OUD arrivals. We used published studies of the natural history of OUD to 

estimate transitions between OUD states without treatment. National Institute on Drug Abuse 

(NIDA) Clinical Trials Network (CTN) studies that collected weekly urine toxicology data informs 

substance use transitions while in treatment. We use data from National Vital Statistics System and 

2010 US Census, combined with the MA PHD, to estimate non-overdose related death rates. The 

RESPOND model has been deemed non-human subjects research by the Boston University/Boston 

Medical Center Institutional Review Board (H-38867). 

 

2.3 Model calibration 

The model requires 52 different input parameters, that are stratified by age-sex, by route of 

administration (injection vs non-injection) and/or time-varying parameters (Table 2, Figure 1). For 

some of the model parameters we used valid estimates from the literature. We used data from 

NIDA CTN trials to estimate weekly substance use transition rates in treatment states of MOUDs 

using a multistate Markov model adjusting for age and sex. Massachusetts state-specific estimates 

of no-treatment OUD state transition rates are not observable, and we derived these from 

estimates provided in published studies that used data from different states: New York, California, 

and Maryland. Similarly, due to the non-availability of data, we assume post-treatments have the 
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same transition rates of no-treatment except for transitions c (NANI → ANI) and g (NAI → AI), 

for which we assume higher rates compared to no-treatment. Transition rates 𝑐  and 𝑔  in all 

post-treatment types were derived from estimates published in a study of opioid detoxification 

patients. Also, there were no data to inform annual new OUD arrival counts. Additionally, 

parameter estimates of overdose rates and fatal overdose proportions are derived from 

underreported overdose counts observed from MA PHD. We decided to calibrate unobservable or 

highly uncertain model parameters, and use fixed values for all the others, for which good data and 

validate estimates are available.  

Here, we calibrate a smaller set of uncertain model parameters informed by less reliable data 

sources that we found to have an impact on outcomes from preliminary model runs. In Table 2, we 

summarize the rationale for calibrating (or not) parameters. We calibrate the total number of new 

OUD arrivals in a week, multipliers on transition rates from no-treatment to detox, multipliers on 

all types of overdose rates in all heath states, fatal overdose proportions and age-stratified OUD 

state transition probabilities in no-treatment and post-treatment states (Table 3). The calibration 

process uses data from 2013 to 2015. 

Calibration targets. Based on their importance for shared decision making of OUD, we selected 

three sets of calibration targets: yearly counts of total OUDs (total of both alive and dead) in the 

state, admissions to detox facilities in the state and fatal overdoses from 2013-2015 (Table 1). Since 

total OUD counts cannot be observed directly from data, we obtained estimates using a capture-

recapture analysis.1 Both detox admissions and fatal overdose count targets were directly observed 

from MA PHD. When calibrating to the yearly total OUD, we use the 2015 total OUD counts and 

constrain our calibration to select parameters that result in an increasing trend in OUD from 2013 

to 2015. This is because the 2013 and 2014 total OUD counts from capture-recapture are not 

directly comparable to the 2015 estimates because they are based on slightly different data. Details 

of calibration targets are summarized in Table 1 and a detailed explanation of how these targets 

are derived is provided in the supplementary materials. 

Calibration approach. We calibrate the model using an empirical approach. More specifically, we 

use Latin Hypercube Sampling to efficiently search the multidimensional input parameter space. 

The algorithm accepts proposed parameter values when the respective model outputs are “close” 

to the observed calibration targets where “closeness” is measured by pre-specified uncertainty 

ranges around each target. For the 2015 estimated total OUD count target we use 95% confidence 

intervals (CI) from the capture-recapture analysis, and for detox admissions and fatal overdose 

counts, we use a range of within 10% of the observed count (Table 1). We accept proposed input 

samples that result in model outcomes within the uncertainty ranges of every target. As an 

additional step to accept/reject input samples, we reject proposed samples that resulted in a larger 

total OUD count for 2013 than 2014, or a larger OUD count for 2014 than 2015. Following are the 

steps in our empirical calibration algorithm. 

Step 1: Define plausible ranges and marginal distributions for each calibration parameter (Table 3). 

These ranges can be obtained from available data sources. If no data is available, ranges can be 
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defined according to expert knowledge or arbitrary and learned through the calibration process. 

Step 2: From marginal distributions defined in step 1, generate 𝑁 sets of random values from the 

multidimensional parameter space using Latin hypercube (LH) sampling. 

Step 3: Run model simulations with proposed input parameter values from step 2 and summarize 

model outputs to compare with pre-specified calibration targets. 

Step 4: Accept parameter values resulted in model outcomes within the uncertainty ranges of 

targets in the following order: 2015 total OUD → admissions to detox → Fatal overdoses. Finally, 

only accept the parameters that resulted in 2013 total OUD counts < 2014 total OUD counts, and 

2014 total OUD counts < 2015 total OUD counts. 

Step 5: If enough samples were accepted in step 4: 

Investigate the marginal distributions/ranges of accepted samples to see if the values are 

concentrated at the lower or upper bounds of their pre-defined ranges. When this happens, shift, 

or expand the ranges within a plausible set of values and repeat the calibration process until a full 

distribution is observed.  

If no/few sets of parameters accepted:   

• Increase 𝑁 and start over the calibration process from step 2.  

• If no improvement is observed after increasing 𝑁 , it might be a sign of using invalid 

plausible ranges for single/multiple parameters or structural issues in the model.  

- Find the problematic model outcome(s) unable to match the corresponding target. 

- Find the most influential parameter(s) for the problematic outcome(s) through a 

sensitivity analysis or according to expert knowledge. 

- Experiment with expanding or shifting the ranges of the most influential 

parameter(s) and/or change the model structure and re-run the calibration 

process. 

Our empirical calibration selects multiple sets of input parameter values giving us a way to quantify 

both parameter uncertainty and the uncertainty around model outcomes. Plausible ranges and 

marginal distributions used for each calibration parameter are shown in Table 3. For detailed 

information on how the ranges and distributions were obtained we refer the reader to 

supplementary material (Appendix S2). To ensure that a sufficient number of input samples were 

accepted from the calibration process, one needs to repeat the calibration process increasing 𝑁 

to achieve a higher grid resolution of the multidimensional parameter space until no significant 

change is observed in the resulting distributions of the calibration parameters. Given that repeating 

the calibration process with increasing 𝑁 is computationally demanding, we perform a sensitivity 

analysis using the set of accepted input parameter samples from the calibration. In this sensitivity 

analysis, we draw random subsamples from the set of accepted input samples. We investigate if 

the resulting model outcomes stabilize as we increase the size of the random subsample of inputs, 

thereby ensuring we have accepted enough input samples. 
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Model validation. We validate the calibrated RESPOND model to evaluate its accuracy in making 

the projections that are most important for the shared decision-making of OUD. There are multiple 

types of model validation including face validity, internal validity, cross validity, external validity, 

and predictive validity.13 To validate the RESPOND model, we use three types of validation: internal, 

external and face validity.  

We perform internal validation of the model to verify the accuracy and the consistency of the 

mathematical equations and programming codes by performing a series of robustness checks and 

extreme value analysis.  

To validate externally, we compare model outcomes to data obtained directly from data sources or 

published studies that were not used in the model calibration process. Our first validation point is 

the number of deaths due to competing risks during the calibration period. Other deaths observed 

from MA PHD are not precise counts, and multiple studies have reported that other deaths are 

usually 2.4-4.1 times the size of overdose deaths.14-16 Therefore, we compare the number of other 

deaths calculated in the model to the number of other deaths obtained by applying the multipliers 

in the range 2.4-4.1 on fatal overdose count targets. Therefore, these adjusted other death counts 

are appropriate targets to investigate the model’s validity externally. 

One of the key features of the RESPOND is it produces age-gender stratified model outcomes. Since 

we only used 2015 total OUD as a calibration target, we validate stratified counts by comparing 

model outcomes to 2015 age-gender stratified total OUD counts estimated from the capture-

recapture analysis (see Figure S4).1 Similarly, we validate model outcomes for stratified overdose 

counts (both all types and fatal overdoses) by comparing to the corresponding age-gender 

observed counts from MA PHD (see Figure S5). 

We also externally validated model-generated year-end all types of overdose counts (fatal and non-

fatal overdoses) by comparing to observed overdose counts from MA PHD during 2013-2015. Since 

all types of overdose counts are usually underreported, our external validation ensured that the 

calibrated model produces overdose counts higher than the observed counts from MA PHD. 

The percentage of active users in different health states of the model is non-observable. However, 

according to clinical and epidemiological experts of OUD, about 90% in no-treatment should be 

active users. Similarly, the percentage of active users should be lower in treatments and higher in 

post-treatment episodes. Therefore, we also assess the face validity of these active OUD 

percentages coming out from the RESPOND model.  

With the proposed empirical approach, we can further investigate and resolve the issues that may 

arise from the model validation process. The flexibility of the calibration process makes it easy to 

identify possible reasons for model validation failure. When the calibrated model is unable to hit a 

validation target, we re-do the calibration excluding the targets one by one from the last to first 

i.e., in the order: Fatal overdoses, admission to detox, 2015 total OUD. With each calibration target 

excluded, we investigate whether the model can hit the validation target or not. If the model can 

hit the validation target after removing a calibration target from the calibration process, we then 
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investigate discrepancies between the accepted input samples to rejected samples from the 

calibration that included the removed target. Having different (non-overlapping ranges) rejected 

parameter values from the accepted ones implies that the model requires exploration of these 

rejected parameter values, suggesting that we should bring more flexibility to the model structure 

or change the model parametrization such that the model can explore all possible parameter 

combinations to hit both calibration targets as well as validation targets. 

 

3. Results 

3.1 Model Calibration 

We generated 5 million (𝑁=5 million) input parameter sets (grid size: 5 million model runs × 102 

model parameters) using LH sampling. Of these 5 million sets, 740 sets were accepted in the 

calibration algorithm. As a result of the way the calibration process is defined, all model outcomes 

of 2015 total OUD counts, admissions to detox counts and fatal overdoses resulted within their 

respective uncertainty ranges (Figure 2, Table S1). Even though the model slightly underestimated 

the total OUD count of 2013-14 estimated from capture-recapture analysis on average, the model 

was able to produce results that closely match the estimated total OUD count of 2015 (Figure 2(A)).  

We performed a sensitivity analysis to demonstrate that we generated enough LH samples to 

obtain accurate model outcomes. When we increase the number of samples in the subset above 

500, the mean or median values of the model outcomes remain stable (Figure S1), indicating that 

our final sample size of 740 is sufficient to capture the parameter space. 

From the calibration process, we obtained an empirical joint distribution of the calibration 

parameters (Figure 3). The calibration process substantially changed the marginal distributions of 

several parameters with non-informative uniform marginal distributions. These are 2014-15 total 

new OUD arrivals, detox rate transition multipliers, and no-treatment overdose rate multiplier. 

Prior to calibration, we derived informative marginal distributions from data for overdose rate 

multipliers in treatments, fatal overdose proportions and OUD transition probabilities in no-

treatment and post-treatments prior to the calibration. The calibration process did not change 

these already informative marginal distributions (see Figure 3 and Figure S2) implying that 

parameter ranges were already well-defined.  

Calibration failed to identify a more specific marginal distribution than the prespecified uniform 

distribution for 2013 total new OUD arrivals, post-treatment overdose rate multiplier and initiation 

effects in post-treatment states. We did not incorporate a direct estimate for total OUD count in 

2013 and 2014 in the calibration process likely leading to a dearth of information for new OUD 

arrivals of these two years although the last filtering step of selecting larger arrivals for 2014 

compared to 2013 shifted the prior of 2014 arrivals towards the right end of its range. Similarly, we 

do not have health state-specific targets to calibrate post-treatment parameters. An overwhelming 

proportion of OUD was in no-treatment leaving only a small proportion in post-treatments (see 

Table S2). Correspondingly, overdose counts from no-treatment were significantly higher in no-
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treatment compared to post-treatments due to a higher percentage of active users (see Table S3). 

In the current model structure, we calculate yearly fatal overdose counts conditioned on overall all 

types of overdoses counts, not on overdose counts specific to different health states. As a result, a 

higher proportion of fatal overdoses occur in no-treatment compared to post-treatment. Since 

fatal overdose counts are a target, the calibration was dominated by the fatal overdoses of no-

treatment leading to an accurate calibration of no-treatment overdose rate multiplier and 

uninformative calibration of post-treatment overdose rate multiplier. 

We did not observe a significant correlation (higher than 0.6 in absolute value) among the 

parameters except for new OUD arrival counts. We observed a strong negative correlation (r=-0.89) 

between new OUD arrival counts of 2013 and 2015, with a much weaker correlation between 2014 

and 2015 and 2013 and 2014 (r=-0.41 and r-0.005, respectively).  

 

3.2 Model Validation 

With 740 accepted model input sets, we computed year-end all types of overdose counts for 2013-

15 from the model. Figure 4 shows the distribution of all types of overdose model outcomes 

compared to observed counts from MA PHD. Since overdose counts are usually underreported, we 

expect the model to result in higher overdose counts compared to what is observed. However, as 

shown in Figure 4, the model only overestimated the overdose counts in 2013, and for both 2014-

15, the model underestimated the overdose counts on average. 

To investigate this unexpected result, we excluded the fatal overdose targets (of all three years) 

from the calibration process and found that the model produced more variable overdose counts 

that aligned more closely with the observed counts (see Figure S3A). Adding only the 2013 fatal 

overdose counts target led to an underestimation of the overdose counts of 2014 and 2015 (see 

Figure S3B). When using only the 2013 fatal overdose target, we found that accepted samples of 

no-treatment overdose multiplier had non-overlapping ranges to rejected samples (see Figure S3 

(C)). Our model uses only one multiplier for no-treatment overdose rates from 2013-15, but this 

finding suggests that we require time-varying multipliers to produce higher overdose counts for 

2014 and 2015. 

To validate background death rates, we obtained data from studies reporting overdose death rates 

and multiplied these by 2.4-4.1 to obtain an estimated external target ranges for background 

deaths.14-16 2014 and 2015 background death model outcomes were within these target ranges 

(Figure 5).  

From the calibrated model, the median percentage of people who were actively using opioids was 

72% (CI: [68%, 77%]) by the end of the year 2013. This median active OUD percentage then 

declined to 66% (CI: [61%, 75%]) in both 2014 and 2015 (Figure 6A). The median active percentage 

in no treatment declined from 81% in 2013 to 72% in 2015 but remained stable at 27% and 74% 

for all treatments and post-treatment episodes in the same time period (Table S4). Even though 

the model estimated an active percentage in no-treatment lower than expert opinion (90%), the 
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model was able to predict a reasonably higher active OUD percentage (always above 64% from all 

accepted samples) (Figure 6B). Additionally, the model projects a lower percentage of active OUDs 

in treatments and a higher percentage in post-treatments meeting face validity criteria. 

4. Discussion 

We have provided the details of the calibration and validation process of a dynamic state transition 

model that simulates the OUD population in Massachusetts. We utilized an empirical calibration 

approach to fit the model to multiple calibration targets that involved Latin Hypercube sampling to 

search within the multidimensional input parameter space. The proposed algorithm accepts 

multiple samples for each parameter providing us a way to quantify the parameter uncertainty 

simultaneously. From the empirical calibration, we identified precise plausible ranges for model 

input parameters, and further discovered a set of non-identifiable parameters such as post-

treatment parameters due to the model’s structural constraints and lack of available target data. 

The calibrated model provided a good fit for calibration targets. The model also provided a good 

fit to a set of validation targets determined to be of the greatest importance such as all types of 

overdose counts, non-overdose related other death counts and percentages of active users within 

states. Particularly, the model provided an excellent fit to total OUD counts, fatal overdose counts 

and background deaths of the year 2015. Therefore, the model outcome of alive OUD counts of 

2015 is an accurate prediction of actual alive OUDs in 2015 which can be calculated by subtracting 

fatal overdose count and background deaths from the total OUD count.  

Calibrating complex population models with many parameters is challenging especially when 

calibration target data is limited. In this paper, we have proposed an empirical calibration approach 

to calibrate such complex simulation models. In particular, the flexibility of the proposed algorithm 

allows us to better understand the model structure, identify structural issues and explore 

underlying relationships between the model parameters. Therefore, utilizing the proposed 

approach, we gain more insight into the areas where we can simplify the model structurally and/or 

introduce more target data to improve the model fit. 

The proposed empirical calibration algorithm has some limitations. The algorithm can only accept 

parameter values within the pre-specified range of a marginal distribution and cannot shift the 

distribution outside of its initial range to fit calibration targets. Therefore, if we create an 

informative prior distribution for a parameter with a very narrow plausible range it is possible that 

the calibration will not hit calibration targets. In this case, we suggest expanding the range of the 

prior and re-running the algorithm. This is distinct from a Bayesian approach, or a mixed type 

directed search optimization method combined with LH sampling which shifts parameter ranges 

within a single calibration run by design. However, with such methods, it is usually difficult to 

achieve convergence for a complex model like RESPOND. The proposed empirical approach informs 

relevant structural simplifications and produces more informative prior input values to later 

conduct a more mathematically rigorous calibration exercise. 

Further, the proposed empirical approach is a grid-based approach that requires generating a huge 

amount of LH samples to capture plausible values of input parameter space, as the current filtering 
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approach accepts samples within the uncertainty intervals of each calibration target sequentially. 

This becomes particularly challenging when extending the calibration time period to incorporate 

targets of years after 2015 or when calibrating to age-sex stratified targets. Filtering through target 

ranges one after the other decreases the number of accepted input samples at each filtering step 

and with many targets we may end up with very few samples or no samples accepted from the 

calibration process forcing us to increase the size of the LH grid. In a directed search algorithm or 

a Bayesian calibration, one has to define a single Goodness of Fit measure (GOF) measure like the 

sum of squared errors or a likelihood to accept/reject samples, and model outcomes from the 

current calibration can be utilized to define and evaluate a single GOF measure for such a 

calibration exercise. 

The calibration exercise presented here produced a set of non-identifiable parameters, particularly 

in post-treatments. This is because we lack health state-specific target data and the model 

structure. The resulting samples of these non-identifiable parameters are still valid as they produce 

accurate predictions for the model outcomes of interest in this study. However, the model is not 

well calibrated for applications that primarily focus on post-treatment-specific model outcomes. 

Further, we did not have good information on prior OUD transition probabilities by age group and 

our calibration failed to provide age-specific parameter ranges for these probabilities (Figure S2). 

One implication of this is that we may not need as many age categories since there is not sufficient 

data to parameterize and calibrate. 

One of the limitations in the RESPOND model parametrization is that we assume constant time 

variability throughout a year for certain parameters such as new OUD arrivals, and overdose rates 

(both all types and fatal). Even though this framework still allows us to carry out a cost-effective 

analysis comparing different strategies by projecting future outcomes with the assumption that 

epidemiological trends observed at the end of the calibration time continue throughout the rest 

of the simulation, it prevents us from making realistic forecasts from the model such as model 

projection of OUD population size after 2015. Utilizing data for more years, the parametrization of 

the RESPOND model can be improved by incorporating time series modeling approaches to model 

time-dependent parameters. 

In the current analysis, even though RESPOND models four types of treatments for OUD, we have 

incorporated only admission to detox counts as a calibration target. This is because we did not have 

access to MA PHD to obtain admission counts of other MOUDs at the time of this analysis. Once 

available, admission to MOUD counts can be used as external targets to validate admission counts 

resulting from the calibrated model (Figure S6). Incorporating these admission counts as additional 

targets in our future calibration work should help us to calibrate treatment transition rates in the 

RESPOND model. 

One of the greatest strengths of the RESPOND model is its ability to produce age-gender stratified 

model outcomes. Depending on the use case of the model, we may require calibrating the model 

to stratified targets. Current calibration did not consider stratified target counts and as a result, the 

model failed to produce accurate counts for certain outcomes (see Figure S4 and S5). In a more 
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rigorous Bayesian calibration, we can easily incorporate age-gender stratified targets to derive a 

log-likelihood enabling the model to produce accurate predictions. 

We provided a comprehensive description for the calibration and validation of a complex dynamic 

population simulation model for OUD. The resulting set of parameter values from the proposed 

empirical approach will inform the priors of a more comprehensive Bayesian calibration. The 

calibrated RESPOND model will be employed to improve shared decision-making for OUD. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted February 1, 2022. ; https://doi.org/10.1101/2022.01.24.22269191doi: medRxiv preprint 

https://doi.org/10.1101/2022.01.24.22269191


Table 1. Calibration Targets 

 

Year Total OUD Count*,& (95% 

CI) 

Number of Fatal 

Overdoses** 

Number of 

Admissions to 

Detox** 

2013 ---*** 900 39635 

2014 ---*** 1294 41229 

2015 275070 (272707, 277402) 1562 38329 

* Total OUD Count = Alive OUD + Fatal Overdoses + Other Deaths 

** These are observed counts from MA PHD with no known uncertainty around the values. 

Therefore, we use within 10% of the values as the uncertainty interval for the empirical calibration 

*** Estimates for these years were not used due to missing an important data piece in MA PHD 

& Estimated from capture-recapture analysis.1 
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Table 2. Model parameters 

 

Parameter Description Data Source Fixed vs Calibrated parameter 

(Reason) 

N0 
Number of people in no-treatment at the start of 

the simulation* 
MA PHD, NSDUH and 

US Census 2010& 

Fixed (High quality data) T0 
Number of people in treatments at the start of 

the simulation* 

P0 = 0 
Number of people in post-treatments at the start 

of the simulation* 
 

𝛼𝑗,𝑘(t) 

𝑗: age stratum 

𝑘: sex stratum 

t = 2013, 2014, 2015** 

Age-sex stratified weekly new OUD arrivals 

calculated as 

𝛼𝑗,𝑘(t) = 𝐀(𝐭) × 𝑝𝑗,𝑘(t)  

  

𝐀(𝐭): weekly non-stratified total arrivals b MA PHD, Barocas et 

al& 

Calibrated (Uncertain parameter 

with no direct estimates of 

uncertainty around derived point 

estimates and was found to be 

sensitive to model outcomes in 

preliminary analysis prior to 

calibration) 

𝑝𝑗,𝑘(t): yearly time varying demographic 

proportions 

NSDUH MRB 

Statistical Inference 

Report 

Fixed (High quality data) 

𝜆𝑁𝑇(𝑡) 

𝑁 = no-treatment 

𝑇 = buprenorphine, 

naltrexone, methadone, 

detox 

t = 2013, 2014, 2015** 

Transition rate*** from no-treatment to 

treatments 

  

𝜆𝑁𝐵: age-sex stratified rates from 𝑁 to 

buprenorphine 

 

 

MA PHD & 

 

 

Fixed (High quality data) 
𝜆𝑁𝑋: age-sex stratified rates from 𝑁 to 

naltrexone 

𝜆𝑁𝑀: age-sex stratified rates from 𝑁 to 

methadone 

𝜆𝑁𝐷(𝑡) =  λ̃𝑁𝐷 ×  𝜼(𝒕) where 𝜆𝑁𝐷(𝑡) denotes 

age-sex stratified rates from 𝑁 to detox 
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λ̃𝑁𝐷: approximate transition rates from 𝑁 to 

detox (age-sex stratified) 

MA PHD & Fixed (High quality data) 

𝜼(𝒕): time varying detox transition rate 

multipliers b 

Range assumed (see 

Table 3) 

Calibrated (Rates had to be 

increased to hit admissions to detox 

targets) 

𝜆𝑇𝑃 

𝑇 = buprenorphine, 

naltrexone, methadone, 

detox 

𝑃 = post-

buprenorphine, post-

naltrexone, post-

methadone, post-detox 

Transition rate*** from treatment to post-

treatment 

Derived from 

estimates of 

published studies& 7, 

17 

Fixed (Well informed by reliable 

data) 

𝜆𝑃𝑁 Transition rate*** from post-treatment to no-

treatment calculated as 

𝜆𝑃𝑁  =  𝑙𝑛(1 − 0.25)  ≈ 0.29. 

 Fixed (Model assumes a constant 

rate for outflow from post-

treatment) 

𝛾𝑇  

𝑇 = buprenorphine, 

naltrexone, methadone, 

detox 

Treatment Initiation effect a: the probability of 

keeping the current OUD state immediately after 

transitioning to a treatment (stratified by the 

route of administration: injection vs non-

injection) 

derived from CTN 

trial data& 

Fixed (High quality data) 

𝜸𝑷 

𝑃 = post-

buprenorphine, post-

naltrexone, post-

methadone, post-detox 

Post-treatment initiation effect a, b: probability of 

keeping the current OUD state immediately after 

transitioning to post-treatment (stratified by the 

route of administration: injection vs non-

injection) 

Range assumed (see 

Table 3) 

Calibrated (No available data to 

derive post-treatment specific 

effects) 

𝝆𝑵 OUD state transition probabilities within the core 

simulation of no-treatment b 

Different published 

studies& 

Calibrated (No available data to 

derive estimates for the state of 

Massachusetts) 

𝜌𝑇  

𝑇 = buprenorphine, 

naltrexone, methadone 

(Model assumes 

everyone is non-

OUD state transition probabilities within the core 

simulation of treatments 

Estimated from 

multi-state models 

using CTN trial data& 

Fixed (High quality data) 
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active in detox) 

𝝆𝑷 

𝑃 = post-

buprenorphine, post-

naltrexone, post-

methadone, post-detox 

OUD state transition probabilities within the core 

simulation of post-treatments b 

Derived from 

estimates of 

published studies& 

Calibrated (No available data to 

derive post-treatment specific 

estimates for the state of 

Massachusetts) 

𝜈𝑁(t) Weekly overdose rates in no-treatment 

calculated as 𝜈𝑁(t) =  ο(t) × 𝐦𝐍 

  

ο(t): age-sex stratified weekly overall overdose 

(fatal and non-fatal) rate for the whole 

population at time t 

MA PHD & Fixed (High quality data) 

𝐦𝐍: no-treatment overdose rate multiplier b and 

𝐦𝐍  ∈  ℝ+ 

Range assumed (see 

Table 3) 

Calibrated (No available data to 

inform the rates of no-treatment) 

𝜈𝑇(t) 

𝑇 = buprenorphine, 

naltrexone, methadone 

(Model assumes no 

overdoses occur in 

detox) 

Weekly overdose rates in treatments calculated 

as 𝜈𝑇(t) =  𝜈𝑁(t) × 𝐦𝐓 

  

𝐦𝐓: treatment overdose rate multiplier b and 

𝐦𝐓 ∈  (0, 1) 

Range assumed (see 

Table 3) 

Calibrated (No available data to 

inform the treatment specific rates) 

𝜈𝑃(t) 

𝑃 = post-

buprenorphine, post-

naltrexone, post-

methadone, post-detox 

Weekly overdose rates in post-treatments 

calculated as 𝜈𝑃(t) =  𝜈𝑁(t) ×  𝐦𝐏  

  

𝐦𝐏: post-treatment overdose rate multiplier b 

and 𝐦𝐏  >  1 

Range assumed (see 

Table 3) 

Calibrated (No available data to 

inform the post-treatment specific 

rates) 

𝐟(𝐭) 

t = 2013, 2014, 2015** 

Weekly fatal overdose proportions b MA PHD & Calibrated (estimated from observed 

overdoses (both fatal and non-fatal) 

reported in MA PHD and uncertain 

due to under reporting) 

𝛽𝑁  Non-overdose related other cause mortality 

rates in no-treatment estimated using standard 

mortality ratios (SMR) &. 

National Vital 

Statistics System, 

2010 Census and MA 

PHD & 

Fixed (not believed to have a 

significant impact on important 

model outcomes according to expert 

opinion) 
𝛽𝑇  Non-overdose related cause mortality rates in 

treatments estimated using SMR &. 
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𝛽𝑃 Non-overdose related cause mortality rates in 

post-treatment estimated using SMR &. 

 

* Start of the simulation is beginning of year 2013. 

** Time variability is in years not by weekly cycles. 

*** Note that our model is a state transition model. Therefore, we convert all the rate parameters to probabilities using the formula 𝑝 = 1 − 𝑒−𝑟𝑡. 

a Substance use transition parameter within the core simulation. Upon transitioning to a health state there is an initiation effect specific to the health state 

which is then followed by transitions between OUD states within the core simulation. 

b A calibration parameter. 

& See RESPOND technical appendix. 
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Table 3. Calibration parameters 

 

* See supplementary materials. 

 

Calibrated Parameters Marginal Distribution Source 

Weekly non-stratified total arrival counts 𝐀(𝐭)   

 

MA PHD * 

 

t=2013 Uniform (6, 406) * 

Uniform (7, 307) * 

Uniform (356, 1356) * 

t=2014 

t=2015 

Detox transition rate multiplier 𝜼(𝒕)  Arbitrary 

selected range 

learnt through 

calibration 

process 

t=2013 Uniform (1, 2) 

Uniform (1.25, 2.5) 

Uniform (1, 2) 

t=2014 

t=2015 

Post-treatment initiation effects 𝜸𝑷 Uniform (0, 1) Arbitrary 

selected range 

for probabilities 

OUD state transition probabilities in no-

treatment (𝝆𝑵) and post-treatments (𝝆𝑷) 

Beta* * 

Overdose rate multipliers   

𝐦𝐍 Uniform (0.75, 1.75)  

𝐦𝐏 Uniform (1, 4)  

𝐦𝐓   

T=Buprenorphine  

Beta* 

18 

T=Naltrexone 18 

T=Methadone 18, 19* 

Weekly fatal overdose proportions 𝐟(𝐭)  MA PHD * 

t=2013  

Beta* 

 

t=2014  

t=2015  
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Figure 1. Model Structure of the RESPOND Model. (A) Overall model structure consists of three 

main health states: No-treatment, Treatment and Post-treatment denoted by N, T and P 

respectively. Both T and P are stratified by four treatment types: buprenorphine, naltrexone, 

methadone, and detox. 𝐀(𝐭) denotes yearly time varying total new arrivals, and 𝜆 denotes the 

transition rates between health states N, T and P. 𝜈(𝑡) denotes yearly time varying overdose 

rates parameter in health states, and 𝐟(𝐭) denotes yearly time varying fatal overdose proportion 

applied on total overdoses (both fatal and non-fatal) resulted from all health states. β denotes 

non-overdose related other cause mortality rates in health states N, T and P represented by 

dashed arrows. (B) Core simulation of substance use state transitions within each health state. 

Eight different transition probabilities in the core simulation are denoted by a, b, c, d, e, f, g and 

h. 

Figure 2. Comparison of calibration targets and ranges to pre and post calibration model 

outcomes: (A) total OUD counts (B) Admissions to detox counts, and (C) Fatal overdose counts. 

Figure 3. Pre and post calibration comparison of marginal distributions of selected set of 

calibration parameters. 

Figure 4. Comparison of year-end all types of overdose counts (both non-fatal and fatal) model 

outcomes to observed overdose count targets. 

Figure 5. Background/other deaths model outcomes in comparison to target death counts that are 

corrected to be between 2.4-4.1 times the size of overdose deaths. 

Figure 6. Active vs non-active OUD percentages resulted from the calibrated model. (A) Overall 

active vs non-active percentages across all health states each year. (B) Yearly percentages of active 

vs non-active users in different health states 
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Figure 1. Overview of the RESPOND model 
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Figure 2: Comparison of Accepted Model Outcomes to Calibration Targets and Ranges 

A                                                    B                                                                             
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Figure 3: Pre-calibration Marginal Distributions vs Post-calibration Marginal Distributions of 

Calibration Parameters* 

 Weekly non-stratified total arrival counts 𝐀(𝐭) 

 

Detox transition rate multiplier 𝜼(𝒕) 

 

Overdose rate multipliers 𝐦𝐍 and 𝐦𝐏 

 

Overdose rate multipliers 𝐦𝐓 

 

Weekly fatal overdose proportions 𝐟(𝐭) 

 

* Marginal distributions of substance use transitions parameters: 𝜸𝑷, 𝝆𝑵 and 𝝆𝑷 are shown in Figure S2 
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Figure 4: Model External Validity for Total Overdose Counts 
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Year Target Median 95% CI

2013 7337 7685 (7057, 8270)

2014 10554 9816 (9161, 10692)

2015 11911 11204 (10405, 12196)

1

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted February 1, 2022. ; https://doi.org/10.1101/2022.01.24.22269191doi: medRxiv preprint 

https://doi.org/10.1101/2022.01.24.22269191


Figure 5: Model External Validity for Other Deaths 
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Figure 6: Model Face Validity for Active OUD Percentages 

 

A: Overall Active Percentage 

 

B: Percentage of Active vs Non-active OUD Counts in Different Health States 
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