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Abstract 

Background and Purpose 

In stroke, timely treatment is vital for preserving neurologic function. However, decision-making 

in neurocritical care is hindered by limited accessibility of neuroimaging and radiological 

interpretation. We evaluated an artificial intelligence (AI) system for use in conjunction with 

bedside portable point-of-care (POC)-MRI to automatically measure midline shift (MLS), a 

quantitative biomarker of stroke severity.  

Materials and Methods  

POC-MRI (0.064 T) was acquired in a patient cohort (n=94) in the Neurosciences Intensive Care 

Unit (NICU) of an academic medical center in the follow-up window during treatment for 

ischemic stroke (IS) and hemorrhagic stroke (HS). A deep-learning architecture was applied to 

produce AI estimates of midline shift (MLS-AI). Neuroradiologist annotations for MLS were 

compared to MLS-AI using non-inferiority testing. Regression analysis was used to evaluate 

associations between MLS-AI and stroke severity (NIHSS) and functional disability (mRS) at 

imaging time and discharge, and the predictive value of MLS-AI versus clinical outcome was 

evaluated.  

Results 

MLS-AI was non-inferior to neuroradiologist estimates of MLS (p<1e-5). MLS-AI 

measurements were associated with stroke severity (NIHSS) near the time of imaging in all 

patients (p<0.005) and within the IS subgroup (p=0.005). In multivariate analysis, larger MLS-

AI at the time of imaging was associated with significantly worse outcome at the time of 

discharge in all patients and in the IS subgroup (p<0.05). POC-MRI with MLS-AI >1.5 mm was 

positively predictive of poor discharge outcome in all patients (PPV=70%) and specifically in 

patients with IS (PPV=77%).  
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Conclusion 

The integration of portable POC-MRI and AI provides automatic MLS measurements that were 

not inferior to time-consuming, manual measurements from expert neuroradiologists, potentially 

reducing neuroradiological burden for follow-up imaging in acute stroke.  

 

Keywords: Stroke, artificial intelligence, deep learning, midline shift, point-of-care MRI 

 

Abbreviations:  

AI: Artificial Intelligence; CI: Confidence Interval; DL: Deep Learning; HS: Hemorrhagic 

Stroke; IPH: Intraparenchymal Hemorrhage; IS: Ischemic Stroke; MLS: Midline Shift; mRS: 

Modified Rankin Scale; NIHSS: National Institutes of Health Stroke Scale; POC-MRI: Point-of-

care MRI; PPV: Positive Predictive Value; SAH: Subarachnoid Hemorrhage; TCD: Transcranial 

Doppler 
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1. Introduction 

Stroke continues to be a leading cause of death and disability in people of all ages worldwide 

(GBD 2015 Neurological Disorders Collaborator Group, 2017; Dewan et al., 2018). The 

monitoring of imaging biomarkers, such as midline shift (MLS), that signify neurological 

damage after stroke is one of the most prominent challenges in neurointensive care. 

Conventional imaging techniques used to monitor these biomarkers, such as computed 

tomography (CT) and magnetic resonance imaging (MRI), typically require transportation of 

patients from the intensive care unit to a different location within the hospital, which greatly 

increases the risk of complications (Jia et al., 2016; Parmentier-Decrucq et al., 2013; Smith et al., 

1990).  

Point-of-care (POC) versions of conventional imaging modalities, such as transcranial doppler 

(TCD) ultrasound (Blanco and Abdo-Cuza, 2018; Lau and Arntfield, 2017), computed 

tomography (POC-CT) (LaRovere et al., 2012; Peace et al., 2010), and low-field POC magnetic 

resonance imaging (POC-MRI) (Cooley et al., 2021; Sheth et al., 2020; Turpin et al., 2020), are 

emerging as potential solutions to increase the availability of imaging at the patient bedside, 

potentially revolutionizing neurocritical care workflows 1/22/22 4:18:00 PM. However, each of 

these modalities has its own limitations. TCD is operator-dependent and limited by the size and 

location of the acoustic windows – regions of where the skull is thin enough for ultrasound to 

penetrate (Naqvi et al., 2013). POC-CT has inherently low soft-tissue contrast and exposes 

patients to ionizing radiation (Rumboldt et al., 2009). While the image resolution and number of 

sequences available are currently limited in POC-MRI relative to conventional, high-field MRI, 

POC-MRI overcomes the limitations of TCD and POC-CT by offering whole-brain images with 

excellent soft-tissue contrast that are acquired without ionizing radiation and are not operator-

dependent. A preliminary study of neurointensive care patients with neurologic symptoms owing 

to severe COVID-19 and stroke pathology demonstrated the sensitivity of POC-MRI to 

neuropathophysiology (Sheth et al., 2020).  

 One of the benefits of bringing imaging to the patient’s bedside in a neurocritical care unit is the 

speed with which images can be acquired; however, this benefit may be negated if the clinicians 

must wait for an official read or analysis of the imaging biomarkers from another department. 

For example, MLS measurements typically require manual definition of anatomical landmarks or 
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evaluation of images in separate software packages (Liao et al., 2018). Artificial intelligence (AI) 

provides a mean for capturing expert knowledge in an automated image assessment algorithm 

that has been trained using input from experts and can be incorporated directly into the image 

workflow. 

AI serves to augment decision making by automating the interpretation of data, thereby 

complementing or supplementing human evaluation (Hainc et al., 2017). Deep learning (DL)—a 

sub-type of AI— has been used in medical imaging for pathology detection and classification, as 

well as image filtering (Serag et al., 2019; Taghanaki et al., 2021; Vieira et al., 2017). In 

supervised DL, artificial neural network models are trained through minimizing the error of 

predicting ‘ground truth’ features of interest in training data (LeCun et al., 2015). The 

combination of POC-MRI and automated biomarker assessment holds great potential for 

improving the workflow in the neurocritical care setting. 

The primary aim of our study was to compare the performance of a supervised DL algorithm 

trained to automatically measure MLS to that of manual assessment by expert neuroradiologists 

from POC-MRI data acquired in a cohort of stroke patients in neurocritical care. Additionally, 

the relationship between the automated MLS measures and clinical outcomes for the patients was 

assessed. 

 

2. Materials and Methods 

2.1. Patients 

Our study was conducted under an institutional review board (IRB) protocol approved by the 

Yale Human Research Protection Program, and written informed consent was obtained from all 

participants or their legally authorized representatives prior to any research activities.  

Between July 2018 to March 2020, all patients who were admitted for stroke to the 

Neurosciences Intensive Care Unit (NICU) at the Yale New Haven Hospital and had visible 

brain pathology on conventional neuroimaging (CT or high-field MRI) were screened for the 

study. Inclusion criteria included age ≥ 18 years, admission to the NICU for stroke, and visible 

brain pathology on standard of care imaging. Exclusion criteria included code status (i.e., 
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patients that were not clinically stable), isolation requirements (e.g., due to MRSA, c. diff, or e. 

coli), or the presence of at least one of the following MRI contraindications: cardiac pacemakers 

or defibrillators, intravenous medication pumps, insulin pumps, deep brain stimulators, vagus 

nerve stimulators, cochlear implants, pregnancy, and cardiorespiratory instability. 

Patient age, primary diagnosis, stroke severity, and discharge outcomes were recorded, if 

available. Primary diagnoses were either ischemic stroke (IS) or hemorrhagic stroke (HS), and 

the HS group was subdivided into intraparenchymal hemorrhage (IPH) and subarachnoid 

hemorrhage (SAH). Stroke severity was measured by the NIH stroke scale (NIHSS, score: 0–42) 

and recorded at the time of POC-MRI imaging. Discharge outcomes were recorded at the time of 

discharge and at 90-day follow-up, if available, using the modified Rankin Scale (mRS; 0–6), 

which captures the degree of disability or dependence in daily activities of stroke patients or 

other causes of neurological disability, where an mRS score of 6 indicates expiry (Ostwaldt et 

al., 2018; Quinn et al., 2009; Ropper, 1986; Sulter et al., 1999). 

 

2.2. Portable POC-MRI imaging 

Patient imaging was performed during the follow-up period after initial treatment for acute 

stroke. Images were acquired at bedside in the Neuro ICU using an FDA-cleared, ultra-low 

magnetic field (64 mT) portable POC-MRI system (Swoop™, Mk 1.2 RC6.3–7.2 software; 

Hyperfine, Inc., Guilford, CT, USA) with an 8-channel head coil and a biplanar 3-axis gradient 

system with peak amplitudes of 26 mT/m (Z-axis) and 25 mT/m (X- and Y-axis). Patients were 

positioned in the head coil inside the imaging area of the portable POC-MRI while in standard 

hospital beds (Figure 1a). Ongoing standard of care treatment (i.e., ventilation, intravenous 

infusions, and telemetry) continued during the imaging exam, and radiofrequency interference 

cancellation was enabled on the POC-MRI system (Rearick et al., 2017). T2-weighted POC 

(T2WPOC) images were acquired: repetition time (TR) = 4000 ms; echo time (TE) = 228 ms; 

inversion time (TI) = 1400 ms; 1.5 × 1.5 × 5 mm3 resolution; 36 slices; and an approximately 5 

min scan duration.  
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All image data were deidentified as part of the IRB-approved protocol, and no personally 

identifiable information (PII) was accessible in this study. Imaging data were uploaded to a cloud 

picture archiving and communication system (PACS) for further analysis 

 

 

2.3. Additional data sets 

2.3.1. Training data sets 

Two additional data sets were used to train the MLS-AI models. First, high-field T2W (T2WHF) 

images publicly available from the Human Connectome Project (n=528) were adapted to match 

the T2WPOC image resolution and noise content (Van Essen et al., 2013). The T2WHF images 

were acquired at 3.0 T with the following parameters: TR = 3200 ms; TE = 565 ms; 0.7 × 0.7 × 

0.7 mm3 resolution, and a scan duration of 8 min 24 s. Second, low-field T2W (T2WLF) images 

from the Hyperfine image archival system (n=86) were used. These de-identified images were 

acquired using the POC-MRI system (Swoop, Mk 1.2 RC6.3–7.2 software; Hyperfine, Inc., 

Guilford, CT, USA) at a variety of sites and represent a variety of unknown pathologies. 

 

Figure 1: (a) Bedside imaging of a patient during treatment using the POC 64mT MRI 
system (Hyperfine, Inc. Swoop, Mk 1.2 RC6.3–7.2 software). (b) Example annotation of 
brain midline on an example 1.5 T dataset (collected separately) using anterior and posterior 
falx cerebri as endpoints (yellow) and septum pellucidum as the shift point (cyan cross). (c) 
After processing, POC-MRI images annotated by MLS-AI were viewable on the vendor-
provided cloud PACS. 

 

MLS-AI

POC-MRI Image Acquisition Cloud-based MLS-AI  
Training & Evaluation Hospital or Cloud PACS Viewer

✕

✕

✕

a b c
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2.3.2. Evaluation data set 

For use in model evaluation only, low-field T2W images from healthy controls (n=10; T2WLFHC) 

were extracted from the Hyperfine image archival system. These images were acquired under a 

protocol approved by the New England IRB, and written informed consent was obtained from 

each participant prior to imaging. Participants were adults, aged 18 years old or older, with a 

body habitus compatible for scanning inside the POC-MRI. Exclusion criteria included 

contraindications for MRI and pregnancy. Imaging was performed at Hyperfine, Inc. (Guilford, 

CT) with a POC-MRI system (Swoop, Mk 1.2 RC6.3–7.2 software; Hyperfine, Inc.; Guilford, 

CT, USA).  

 

2.4. Manual annotations and MLS estimation 

Three independent neuroradiologists (3-5 years of experience each) annotated each image 

volume included in this study (T2WPOC, T2WLF, T2WHF, and T2WLFHC) using ITK SNAP 

(Yushkevich et al., 2016) software provided by study investigators. Each annotator selected the 

voxel corresponding to each of the three neuroanatomical landmarks used to estimate MLS 

(Figure 1b): the anterior and posterior falx cerebri and the septum pellucidum at the location of 

the largest shift from the midline at the slice level. A probability map was generated by 

convolving the map of the annotation points with a 3-D Gaussian kernel (s=6 mm). The 

concatenation of the 3-D probability maps into a 4-D dataset from a single annotator comprised 

an annotation data set, resulting in three annotation data sets for each image volume.  

MLS measurements were obtained by drawing a line from the anterior and posterior attachments 

of the falx cerebri, drawing a second, perpendicular line to the septum pellucidum at the point of 

maximal deviation, and measuring in millimeters the length of the second line. 

 

2.5. Automated MLS estimation  

MLS-AI estimates were derived from each patient data set (i.e., T2WPOC) with a commercially 

available AI system (BrainInsight, Hyperfine Research Inc, Guilford CT) using an end-to-end 
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fully convolutional neural network (CNN) based on the 3-D ResUNet architecture (Supplemental 

Figure 2) (Ronneberger et al., 2015). 
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Figure 2: (a) Visualization of T2-weighted POC-MRI with probability density functions (i.e., 
heatmaps) for the target anatomical points of the corresponding landmarks. Red distributions 
correspond to ground truth locations (based on human annotation), green distributions are 
artificial intelligence-based MLS (MLS-AI) estimates of the target points, and yellow 
represents the overlap of the ground truth and estimated distributions. (b) MLS-AI estimates 
of stroke brain MLS graphically are overlaid on anatomical volumes in POC-MRI T2-
weighted images. 

8
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To produce models representative of the image quality of the acquired stroke data set, a two-fold 

cross-validation experiment, involving model training and evaluation, was performed using the 

T2WPOC, T2WLF, and T2WHF image volumes and their corresponding annotations. Each 

independent fold was composed of half of the T2WPOC data (randomly split) and all the T2WLF 

and T2WHF data sets. The images and annotations in each fold were augmented to further 

increase the variation present in the data set through random geometric distortions (see 

Supplemental Information) and then used to train an MLS-AI model. The data sets within each 

fold were further subdivided, with 80% used for model training and 20% for model validation. 

Training was conducted in steps using batches of training data, with each training step followed 

by a validation step. The validation step was used to determine if a model updated with a batch 

of training data was more predictive of ground truth in the independent validation data, in which 

case the model was updated, otherwise not.  (A detailed description of the MLS-AI model is 

provided in Supplemental Information.) The resulting model was then used to evaluate the 

T2WPOC images in the opposing fold.  

In evaluation, MLS-AI model inputs were the 3D T2W POC-MRI volumes (i.e., T2WPOC) and 

outputs were probability maps for the three anatomical landmarks used clinically to determine 

MLS (Figure 2a). The final MLS-AI estimate was computed from the voxels of peak probability 

for MLS landmarks, as the geometric displacement of the septum pellucidum to the brain mid-

line drawn between the anterior and posterior falx (Figure 2b). No image was used in both 

training and evaluation of the same model.  

To establish a background distribution of MLS-AI on POC-MRI from healthy controls, MLS-AI 

was also calculated using the T2WLFHC data as input and the average of the models generated 

above. 

2.6. Training accuracy of MLS-AI   

To estimate the accuracy of the trained MLS-AI model against MLS estimates from human 

annotators for each image volume, the absolute difference of the MLS-AI estimate from the 

average human MLS estimate of all three annotators was computed. To accommodate variations 

in brain size, the difference was then normalized to the length of the brain midline. This measure 

of accuracy was calculated during the validation phase of training and for the final evaluation of 

the POC data. 
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2.7. Intra-rater and inter-method annotation discrepancy 

Intra-rater landmark location discrepancy and the discrepancy between landmark locations 

defined by humans and MLS-AI were calculated as the mean absolute error (MAE) measured in 

millimeters between the landmark annotations and ground truth locations: MAEHuman and 

MAEMLS-AI, respectively. (See the Supplemental Information for additional details.) Since 

comparison to “true” values of radiologic measures is intractable, ground truth locations for each 

of the three landmarks were established on a relative basis. For the human annotations, ground 

truth was defined as the mean of the landmark locations from the other two annotators. For 

MLS-AI annotations (i.e., the locations of the peak probability), ground truth was defined as the 

mean of the landmark locations from three human annotators. 

 

2.8. Qualitative threshold for MLS 

To determine a threshold for dichotomizing MLS-AI to produce a qualitative marker for the 

presence or absence of MLS, values of MLS-AI at the minimum dimension of image resolution 

were evaluated for predictive value versus clinical outcome. A logistic regression was performed 

to evaluate associations between qualitatively worse outcome (mRS>3) and quantitative 

measurements of MLS-AI (Supplementary Figure 2). Values of 1.0 mm, 1.5 mm (the minimum 

image resolution), and 2.0 mm were evaluated for predictive value.  

2.9. Statistical analyses  

A paired-t-test was performed to compare MAEMLS-AI and MAEHuman. A two-tailed Student’s t-

test was used to compare between the means of distributions of MLS-AI across study groups. 

The Mann-Whitney U-test was performed to compare rank-sum differences in MLS-AI across 

study groups. A hypothesis test for non-inferiority of MLS-AI to human annotators was 

conducted (Walker and Nowacki, 2011). The test compared the MLS-AI model discrepancy 

(MAEMLS-AI) to the average annotator discrepancy (MAEHuman), as a fraction of average clinical 

annotator discrepancy, upper bounded by a clinically acceptable relative error, δ=0.2. Non-

inferiority was established by showing that MAEMLS-AI was significantly less than (1 + δ) 

MAEHuman at the α=0.05 significance level (see Supplemental Information for further details).  
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The relationship between MLS-AI estimates and stroke severity (NIHSS score) and disability at 

discharge (mRS score) was evaluated using linear regressions for all patients and in IS and HS, 

separately. A multivariate regression was performed controlling for patient age, as well. mRS 

was modeled as a dependent variable of MLS-AI. Additionally, we evaluated the qualitative 

effect of MLS-AI on patient outcome at discharge for IS and HS (binary logistic regression; 

mRS>3). In a sub-sample of patients with available follow-up clinical data, the relationship 

between MLS-AI mRS scores at 90 days post-discharge was examined with linear regression.  

Ordinary and logistic regression analyses were conducted using statsmodels in Python (Seabold 

and Perktold, 2010). Leave-one-out cross-validation was conducted to determine the 95% 

percentile CIs of the estimated effect size. Regression analysis produced the regression 

coefficient, posterior probability (p), and 95% confidence intervals (two-tailed) using leave-one-

out cross-validation. P-values less than 0.05 were considered statistically significant 

3. Results 

3.1. Patient demographics 

A total of 94 patients were scanned with POC-MRI. The average patient was 62 years old and 

exhibited moderate stroke severity at the time of imaging (mean NIHSS=5) and moderate 

disability at the time of discharge (mean mRS=3; able to walk independently) Patients with data 

on age, diagnosis, severity and disability data (n=71) were grouped by primary diagnosis and 

stroke category: IS (n=38) and HS (n=33 total) with IPH (n=18) and SAH (n=15). Patient age, 

diagnosis, and stroke severity and disability scores are summarized in Table 1. No adverse events 

related to POC-MRI were reported. 
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Table 1: Patient demographics. 

   

Patient age 

(years) 

 Stroke severity 

(NIHSS; 1–42) 

 Disability at 

discharge 

(mRS; 1–6) 

  n mean ± SD n mean ± SD n mean ± SD 

All patients  94 62 ± 16 92 6 ± 8 93 3 ± 2 

IS  38 65 ± 18 46 8 ± 9 45 3 ± 2 

HS  33 61 ± 13 38 4 ± 6 48 3 ± 2 

 IPH 18 62 ± 14 30 4 ± 5 31 3 ± 2 

 SAH 15 60 ± 13 8 2 ± 6 17 2 ± 2 

HS: hemorrhagic stroke, IS: ischemic stroke, IPH: intraparenchymal hemorrhage, SAH: 

subarachnoid hemorrhage, NIHSS: NIH stroke severity score (1–42), mRS: modified ranking 

score (i.e., six-point disability scale, where 6 = expiry). Data are expressed as mean ± standard 

deviation (SD). Note that age, mRS, and NIHSS were not available for all patients imaged.   

 

3.2. Training accuracy of MLS-AI   

For each fold, the included image data sets were split 80%/20% for training/validation, 

respectively: T2WPOC (38/9), T2WLF (66/20), and T2WHF adapted to POC-MRI resolution and 

noise content (470/58). The accuracy of the MLS-AI estimates was 20.7 ± 9.5% in validation 

during training and 19.3 ± 9.2% in evaluation.  

3.3. Annotation discrepancy and non-inferiority hypothesis testing 

There was no significant difference between MAEMLS-AI and MAEHuman (0.80±0.76 mm and 

0.82±0.88 mm respectively; p=0.79). The disagreement of MLS-AI with the average human 

expert annotation of individual landmarks was 1.15 mm, while the average discrepancy of the 

individual human annotators amongst each other was 1.39 mm (annotator discrepancies were 

1.32, 1.44, and 1.41 mm for annotators 1, 2, and 3, respectively).  

The ratio of discrepancy of MLS-AI with human annotators was 0.83 (bootstrapped confidence 

interval at α=10–5 was 0.75, 0.92). Based on noninferiority hypothesis testing, the discrepancy of 
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MLS-AI estimates was not significantly different (i.e., noninferior) from that of human 

annotators (p<10–5; Figure 3).  

 

 

3.4. Estimates of MLS-AI in the stroke and healthy control cohorts 

The mean MLS-AI estimate was 1.37±0.14 mm in all stroke patients. The mean MLS-AI 

estimates for IS and HS, including IPH and SAH, were not significantly different (1.33±0.18 mm 

and 1.42±0.18 mm, respectively; p=0.73). See Figure 4. The mean MLS-AI estimate for the ten 

healthy controls was 1.01±0.41 mm, which was not significantly different from patients 

(p=0.07). The largest MLS-AI estimates observed in patients and in healthy subjects were 5.50 

and 1.96 mm, respectively.  

 

Figure 3: Discrepancy of MLS estimates (mm) is shown between individual human 
annotators and each other (cyan), between the average annotator and the individual annotators 
(pink), and between MLS-AI annotator (green) and the average human annotator.  

Human 1 
vs. 2 & 3

Human 2 
vs. 1 & 3

Human 3  
vs. 1 & 2 

Mean Discrepancy  
in Human MLS

Mean Discrepancy 
of MLS-AI
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3.5. Relationships between MLS-AI estimates and clinical measures 

MLS-AI was significantly associated with NIHSS in all patients (p<0.005) and in the IS 

subgroup (p=0.005) but not in the HS subgroup (p=0.13) (Figure 5b). Patient age was found to 

be significantly associated with NIHSS (p<0.005). In a multivariate analysis controlling for 

patient age, NIHSS was associated with MLS-AI in all patients and in IS (both p<0.05) but not in 

HS (p=0.23) (statistical summary in Supplementary Table 1).  

 

Figure 4: MLS-AI annotation on POC-MRI of (left) left hemisphere ischemic stroke due to 
occlusion in left middle cerebral artery (proximal M1 segment) and (right) right hemisphere 
intraparenchymal hemorrhage. Brain midline (blue) shown with midline displacement 
(green). 
 

Left M1 Occlusion (IS)
Midline Shift: 3.98 mm

Right Intraparenchymal Hemorrhage (HS)
Midline Shift: 4.92 mm
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In the univariate analysis, mRS was significantly correlated with MLS-AI in all patients and in 

the IS subgroup (both p<0.05; Figure 6) but not in HS (p=0.84). Patient age was not significantly 

associated with mRS, and in a multiple regression model factoring age, MLS-AI remained a 

significant predictor of mRS in all patients (p=0.04). For the subset of patients with follow-up 

data (n=26; IS:9, HS:15), a significant association of MLS-AI with 90-day mRS was observed 

(p<0.05: β=0.687, CI: [0.083, 1.292]).  

Larger MLS-AI measurements were significantly associated with worse outcome at discharge in 

all patients (p<0.05; OR=1.66 [CI: 1.01, 2.72]). Patient sub-groups did not show significant 

associations between MLS-AI and discharge outcome, with or without correcting for patient age 

(see Supplemental Table 1 for statistical values).  

 

Figure 5: (a) Violin plots showing distributions of MLS-AI by diagnostic group: ischemic 
stroke (0.44 mm and 1.80 mm at first and third quartiles, respectively; n=38) and hemorrhagic 
stroke (0.59 mm and 1.86 mm at first and third quartiles, respectively; n=33). A two-tailed t-test 
indicated no significant difference in MLS-AI between patient groups (p=0.73). Horizontal lines 
represent individual sample points. (b) Scatterplot of MLS-AI versus stroke severity (NIHSS, 1–
42) with linear trends by study subgroup: IS (orange, β=3.093, p(β)=0.005, CI: 0.703, 3.495), 
HS (blue, β=0.1.137, p(β)=0.135, CI: –0.368, 2.641). The linear trend over all patients yielded 
parameters β=2.099, p(r)=0.004, CI: 0.703, 3.495). 

 

ba
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3.6. Qualitative threshold for MLS 

Qualitatively worse disability was significantly associated with MLS-AI >1.5 mm (Mann-

Whitney U-test, p<0.05). The positive predictive value (PPV) of significant disability at 

discharge (mRS>3; MLS-AI>1.5 mm) was 70% for the entire sample and 77% in IS. The 

negative predictive value (MLS-AI<1.5 mm) was marginal in both samples (51 and 46%, 

respectively). 

4. Discussion  

The results of our study demonstrated that MLS-AI estimates are not inferior to manual MLS 

measurements made by expert neuroradiologists. In addition, MLS-AI was associated with 

neurologic status (NIHSS) at the time of imaging and disability at discharge (mRS), before and 

 

Figure 6. Scatterplot of morbidity at discharge according to the modified Rankin Scale (mRS; 
0–6 [no disability–expiry]) versus MLS-AI with linear regression analysis in: all patients 
(β=0.385, p(β)=0.019, CI: 0.066, 0.704), ischemic stroke (IS) only (β=0.481, p(β)=0.040, CI: 
0.023, 0.943), and hemorrhagic stroke (HS) only (β=0.062,  p(β)=0.835, CI: –0.552, 0.676).  
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after controlling for patient age. Furthermore, in a sub-sample of patients with follow-up data, 

MLS-AI was predictive of disability at 90-days post-discharge.  

In practice, the Hyperfine POC-MRI transmits images to the cloud for processing, where MLS-

AI models automatically evaluate new images and produce MLS-AI estimates. This approach 

makes MLS-AI measurement available wherever an internet connection is available, including in 

the developing world. The noninferiority of the MLS-AI estimates compared to expert 

neuroradiologist measurements suggests that clinical workflows using MLS-AI estimates could 

expedite evaluation of POC-MRI. Thus, the integration of AI and POC-MRI could not only save 

minutes to hours from image acquisition to initial interpretation, but it could also decrease 

healthcare costs associated with stroke, as well as increase the accessibility and utility of brain 

imaging.  

The association of MLS-AI with outcome was observed in all patients, and specifically in IS, 

where swelling or edema resulting from neuronal death causes lateral shifts of midline brain 

structures, leading to functional disability (Adams et al., 1999; Yoo et al., 2013). Both IS and HS 

groups exhibited comparable distributions of MLS-AI, indicating that IS-specific associations of 

MLS-AI were not biased by an interaction of diagnosis and MLS-AI effect size. Importantly, no 

clinical outcome data was used in DL model training, suggesting that the association with 

outcomes were unbiased. IS accounts for approximately 87% of stroke occurrences (Ballarin and 

Tymianski, 2018; Beal, 2010). The stronger association of MLS-AI with IS outcomes suggested 

the sensitivity of this approach to brain edema. Our findings confirm that the training strategy 

used here rendered a model that was robust to the conditions of bedside imaging in a 

neurointensive care setting, suggesting a role for POC-MRI and AI in detecting stroke 

pathophysiology in a general stroke patient group, and in IS specifically.  

Larger MLS is known to be associated with neurological deterioration and early mortality in 

ischemic stroke (Pullicino et al., 1997; Qureshi et al., 2009; Sandoval and Witt, 2008; Sheth et 

al., 2020; Wijdicks et al., 2014; Yoo et al., 2013). While the qualitative determination of 

significant MLS from CT and MRI has been cited as the displacement of midline structures by as 

much as 12 mm, shifts as small as 2 mm are associated with functional deficits (Ropper, 1986). 

Although the inclusion of additional predictors (e.g., gender, ethnicity, NIHSS) in models for 

functional outcome has been shown in stroke with larger volumes of infarction (i.e., MLS=8–22 
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mm), previous studies have mainly used univariate models when associating smaller MLS with 

functional outcomes (Battey et al., 2014; Ropper, 1986). We found that POC-MRI measures of 

MLS-AI greater than 1.5 mm—the voxel (i.e., volumetric pixel) size of the T2W imaging 

sequence used in this study—were predictive of functional outcomes. As patients in the present 

study were clinically stable and scanned with POC-MRI as follow up to initial treatment with 

appropriate intervention (i.e., thrombolytics in IS), MLS was smaller than would be observed in 

a typical acute stroke population. We hypothesize that MLS-AI may also be sensitive in larger 

strokes and when used immediately after injury.  

Our study did have limitations. Motion and other artifacts corrupted 24% of the images acquired 

according to the clinical protocol, associated with the inclusion of lower quality images from 

early iterations of the POC-MRI software. Improvements in image quality and model 

performance are expected to improve sensitivity to MLS, and thus the prediction of outcomes. 

Furthermore, the predictive value for outcomes based on MLS-AI of 1.5 mm may be biased by 

factors such as partial volume effects, which require further study. Lastly, studying patients with 

more severe pathologies (i.e., larger MLS) is needed for the further validation of this approach 

(Battey et al., 2014). Future studies could include more patient follow-up data to demonstrate the 

relationship between MLS-AI and long-term outcomes and evaluate MLS as a dynamic process 

through serial imaging using POC-MRI.  

Deep learning models used in brain imaging tasks such as segmentation and noise reduction 

include deep CNNs, generative adversarial networks, and autoencoders such as U-Net (Çiçek et 

al., 2016; Ronneberger et al., 2015). ResUNet — an evolution from U-Net and Res-Net 

architectures (He et al., 2016; Ronneberger et al., 2015) — leverages U-net design and has been 

shown to be effective in a variety of 3D image evaluation tasks (Fu et al., 2020; Wolny et al., 

2020). Like all MRI, POC-MRI is susceptible to artifacts from motion and interference, where 

image quality can affect detection tasks. However, our results showed that ResUNet was 

effective in detecting anatomical landmarks in POC-MRI images while accommodating variance 

due to errors related to imaging in the open environment. Additionally, the MLS-AI localization 

accuracy metrics indicated that the MLS-AI model was not overfit and would be able to 

accurately identify MLS landmarks in novel data.  
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Limitations of two-fold cross-validation include susceptibility to selection bias and the need for 

data selection from the same population, in terms of subjects and data quality. These effects were 

controlled in this study by producing a set of different models trained with random reshuffling of 

data folds, and final MLS-AI estimates produced as an average of the estimates of the individual 

models.  Using this approach, independent MLS-AI models provided unbiased MLS-AI 

estimates for each POC-MRI image acquired in this study.  

 

 

5. Conclusion 

Our study used an integrated approach to diagnostic brain imaging by combining portable point-

of-care MRI with AI. We demonstrated the feasibility of using a POC-MRI exam to derive an 

automated imaging measure reflective of cerebral edema, MLS-AI, with validation against 

standard scores for clinical outcome, including neurologic status (NIHSS) and discharge 

functional outcome (mRS). The detection of MLS using POC-MRI acquired at the bedside 

represents a new opportunity to safely inform treatment planning throughout the progression of 

stroke using automated imaging methods. Further study may lead to the integration of AI and 

other POC-MRI-based automated imaging measures into new neurocritical care workflows to 

improve patient outcomes by decreasing time to treatment and increasing the accessibility of life-

saving brain imaging techniques, not only in stroke, but also in other critical brain injuries.  
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