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Abstract

Data collected in the Global COVID-19 Trends and Impact Surveys (UMD Global CTIS), and data
on variants sequencing from GISAID, are used to evaluate the impact of the Omicron variant (in South
Africa and other countries) on the prevalence of COVID-19 among unvaccinated and vaccinated population,
in general and discriminating by the number of doses. In South Africa, we observe that the prevalence of
COVID-19 in December (with strong presence of Omicron) among the unvaccinated population is comparable
to the prevalence during the previous wave (in August-September), in which Delta was the variant with the
largest presence. However, among vaccinated, the prevalence of COVID-19 in December is much higher
than in the previous wave. In fact, a significant reduction of the vaccine efficacy is observed from August-
September to December. For instance, the efficacy drops from 0.81 to 0.30 for those vaccinated with 2 doses,
and from 0.51 to 0.09 for those vaccinated with one dose. The study is then extended to other countries
in which Omicron has been detected, comparing the situation in October (before Omicron) with that of
December. While the reduction measured is smaller than in South Africa, we still found, for instance,
an average drop in vaccine efficacy from 0.53 to 0.45 among those vaccinated with two doses. Moreover,
we found a significant negative (Pearson) correlation of around −0.6 between the measured prevalence of
Omicron and the vaccine efficacy.

1 Introduction

The Omicron variant of SARS-CoV-2 has seen an expressive increase since its initial classification in November
2021 [Oo21]. In South Africa it appears to have out-competed the Delta variant [Hod21] and has rapidly spread
into Europe and other regions. Preliminary observations also indicate that it might spread faster and might have
higher immune evasiveness than previous variants [KK21]. While vaccination still provides a level of protection
against a serious disease [RHRM+21], recent results [PvSG+21, NKL+21, KST+21, LMD+21] point towards
a reduced level of protection against infection, especially from 15 weeks post the second dose [ASK+21], and
it is likely that the number of breakthrough infections (i.e., infections among vaccinated people) will rise with
the spread of Omicron. It is also possible that the rapid spread of Omicron is not only a consequence of high
transmissibility but also of immune evasiveness [LMD+21]. Some of the preliminary models [SLD+22] showed
that high transmissibility in combination with high immune evasiveness could lead to a concerning health system
overload [LRSC+21].

Since the spring of 2020, the University of Maryland in collaboration with Facebook has collected extensive
survey data on self-reported symptoms, infection, testing, behavior and, more recently, vaccination status (UMD
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Global CTIS) [FLS+20, The21b]. In mid December 2021, researchers used data from this survey concerning
the Gauteng province in South Africa to define different combinations of symptoms that are associated with
COVID-19 infection, and combined those with self-reported vaccination status to compare vaccine efficacy
changes from a Delta dominant period to the current Omicron dominant period [VRAB21]. Their findings
showed a measurable drop of efficacy towards infection for those vaccinated with two doses.

In this study we use self-reported confirmation of COVID-19 infection, from a subset of the UMD Global
CTIS survey responses, to derive an improved proxy for COVID-19 active cases (using a Random Forest clas-
sifier) that tracks more closely the evolution of confirmed cases. We use this improved proxy for analysing
prevalence and vaccine efficacy changes in South Africa as a whole, and in the Gauteng province, among those
unvaccinated, partially vaccinated, and fully vaccinated. We also compute results in other countries that are cur-
rently experiencing a rise of Omicron cases, which show a significant negative correlation between the prevalence
of Omicron and the vaccine efficacy.

The rest of the paper has three sections. In Section 2 the data used and the methodology applied is described.
In Section 3 we describe the results obtained when applying the methodology to the data. Finally, in Section 4
we have a discussion about the implications of the results obtained.

2 Methods

2.1 Self-reported Survey Data

Since Spring 2020, the U. of Maryland (UMD) has been running a COVID-19-related survey [FLS+20, The21b]
in most countries1, in collaboration with Facebook [Fac20, KBB+20, ATMC+21]. This survey, called the
University of Maryland Social Data Science Center Global COVID-19 Trends and Impact Survey in partnership
with Facebook (UMD Global CTIS), collects more than 100,000 responses daily across the world. It asks the
participants questions covering, among others aspects: symptoms, habits, testing, and vaccination status. All
the participants in the CTIS have declared to be at least 18 years of age.

In this work, we use the responses to the UMD Global CTIS, to which we have access by agreement with
UMD and Facebook (see Appendix D). We first curate the data by removing abnormal responses, following the
approach proposed by Alvarez et al. [ÁBC+21]: We remove responses that declare to have all symptoms or that
declare unusual values (greater than 100) in the quantitative questions of the survey (e.g., days of symptom
duration, number of symptomatic contacts, number of people staying at the same place, etc.).

After curating the responses, the next task we face is determining whether they correspond to active cases of
COVID-19. This is somewhat direct for the subset of responses that respond affirmatively to the survey question
“B7: Have you been tested for COVID-19 in the past 14 days?” and then respond positively or negatively to the
survey question “B8a: Did your most recent test find that you had COVID-19?” [The21a]. For this work, we
assume that a participant responding affirmatively to both questions is an active case of COVID-19 (i.e., it is a
positive case). Similarly, a participant responding affirmatively to Question B7 and negatively to Question B8a
is assumed not infected with COVID-19 (i.e., negative). This set of classified responses constitute a ground-truth
set, for which infection status (positive or negative) is available.

Unfortunately, this ground-truth set cannot be used directly to estimate the prevalence of COVID-19 in the
overall population, because the set is usually very small and is not produced via uniform random sampling:
People who have reason to believe they may be infected are more likely to be tested and therefore the ratio of
positives among those tested in the latest 14 days (i.e., the testing positive rate, abbreviated TPR) is higher
than the actual prevalence.

In order to classify the responses as positive or negative, several criteria have been proposed in the literature.
In particular, we consider the following symptom-based COVID-like illness classifiers (see Appendix A for the
list of symptoms collected in the survey):

• UMD CLI [FLS+20, ÁBC+21]: A response is considered to be positive if it declares fever (symptom
B1 1), along with cough (symptom B1 2), or shortness of breath / difficulty breathing (symptom B1 3).
Otherwise, it is negative.

• Stringent CLI [VRAB21]: A response is positive if it declares anosmia (symptom B1 10), combined with
fever (B1 1), muscle pain (B1 6), or cough (B1 2). Otherwise, it is negative.

• Classic CLI [VRAB21]: A response is positive if it declares cough (B1 2), combined with fever (B1 1),
muscle pain (B1 6), or anosmia (B1 10). Otherwise, it is negative.

• Broad CLI [VRAB21]: A response is positive if it declares muscle pain (B1 6), combined with fever (B1 1),
cough (B1 2), or anosmia (B1 10). Otherwise, it is negative.

1Except in the US, where the survey has been run by CMU [Del20, SRB+21].
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These methods for classifying cases as positive or negative have two main limitations. First, they do not
take into account diagnostic uncertainty, e.g., the same set of symptoms might be associated with some other
condition. Second, these criteria are not adaptive to possible changes in the symptoms experienced as conditions
change, e.g., as vaccination rates increase or new virus variants emerge. Thus, in this work, we introduce a new
machine-learning-based classifier (described in Section 2.2) where the responses of users in the ground-truth set
are used to train a model, which is then used to determine the status of users outside that set (users who do
not report test information). We use the random-forest technique to design this classifier and the corresponding
results are labeled Random Forest in what follows.

We refer to the values obtained with each of these five classifiers (namely, Random Forest, UMD CLI, Stringent
CLI, Classic CLI, and Broad CLI) as proxy estimates (or proxy for short). We compare each proxy estimate with
the estimate of active cases obtained from the official number of cases as described by Alvarez et al. [ÁBC+21],
where each new case is assumed to remain active for 10 days. These last estimates are called Confirmed. Both
Confirmed and the estimates using the various proxies lead to time series with one estimated value per day.

2.2 Machine Learning Classifier: Random Forest

Each response to the survey includes a large number of questions (obviously, not all participants answer all
questions). For training and inference of the Random Forest classifier, we use only questions with answers
holding discrete values. From these we remove questions B7 and B8, which are only used to create the ground-
truth set, as well as related questions, such as “B0: As far as you know, have you ever had coronavirus
(COVID-19)?” and “B15: Do any of the following reasons describe why you were tested for COVID-19 in the
past 14 days?”. Finally, we do not use the questions related to vaccination, since we do not want them to
influence the classification. The set of questions used can be found in Appendix B. The answers to this set of
questions are “dummified” before they are used, i.e., a question with k possible answers is replaced by k binary
attributes. The Random Forest model is generated with the randomForest function in R. No hyperparameter
tuning is done, and the standard options of the function are used, with the exception of limiting the model to
100 trees to reduce the training time.

Observe that the questions in Appendix B include all symptoms, but also have many more questions,
including behavioral or demographic aspects. Additionally, the Random Forest classifier can give different
weights to different symptoms, while previously proposed symptom based criteria are based on determining
only whether a symptom is present or not. Thus, overall the Random Forest classifier is much more versatile
than the symptom-based criteria described in the previous section. Additionally, there are other aspects that
make the Random Forest classifier(s) more adaptive:

• Firstly, we create different models for different countries. It is expected that different countries will have
local characteristics, thus training and using the classifier with data from one same country can capture
them.

• Secondly, we create not one but several models per country: one for each 3-month period. This allows
the model to capture and adapt to aspects that change over time, like the level of vaccination, the surge
of new variants, or the stringency measures imposed.

2.3 Evaluating the Classifiers

In order to verify whether the Random Forest classifier provides better proxy estimates than the symptoms-
based classifiers, we selected a set of countries and tested the performance of each classifier in the last two
quarters of 2021. To this end, we randomly divided the ground-truth set into a training and a testing set, with
70% and 30% of the responses of the ground-truth set in each subset, respectively. Table 1 shows the results
for three countries that have detected Omicron in December for the periods of July-September 2021 (2021-Q3)
and of October-December 2021 (2021-Q4). The classification performance metrics used are:

• Accuracy: Ratio of cases correctly classified over the size of the test set.

• Sensitivity / recall: Ratio of cases correctly classified as positive over the number of positive cases.

• Specificity: Ratio of cases correctly classified as negative over the number of negative cases.

• F-score: Harmonic mean of precision and recall, where the precision is the ratio of cases correctly classified
as positive over the number of all cases classified as positive.

As can be seen in Table 1, Random Forest almost always shows the highest performance (marked in bold) among
the classification methods used.

As another test, we then selected a set with the 20 countries that have the largest number of available
responses in the UMD Global CTIS dataset along with South Africa. For each of these countries, the first two
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Country Quarter Classifier Accuracy Sensitivity Specificity F-score
Random Forest 0.85 0.80 0.86 0.61
UMD CLI 0.78 0.74 0.79 0.25

Argentina 2021-Q3 Stringent CLI 0.82 0.85 0.82 0.44
Classic CLI 0.81 0.67 0.83 0.48
Broad CLI 0.80 0.64 0.82 0.45
Random Forest 0.95 0.81 0.96 0.51
UMD CLI 0.94 0.58 0.95 0.36

Japan 2021-Q3 Stringent CLI 0.95 0.77 0.95 0.39
Classic CLI 0.93 0.44 0.96 0.42
Broad CLI 0.91 0.29 0.95 0.29
Random Forest 0.83 0.81 0.83 0.71
UMD CLI 0.71 0.70 0.72 0.34

South Africa 2021-Q3 Stringent CLI 0.79 0.87 0.77 0.57
Classic CLI 0.77 0.71 0.80 0.61
Broad CLI 0.76 0.70 0.78 0.57
Random Forest 0.90 0.71 0.91 0.51
UMD CLI 0.88 0.63 0.89 0.35

Argentina 2021-Q4 Stringent CLI 0.88 0.70 0.89 0.37
Classic CLI 0.86 0.48 0.91 0.44
Broad CLI 0.86 0.47 0.90 0.42
Random Forest 0.97 0.69 0.97 0.31
UMD CLI 0.96 0.26 0.97 0.20

Japan 2021-Q4 Stringent CLI 0.97 0.59 0.97 0.30
Classic CLI 0.94 0.18 0.97 0.22
Broad CLI 0.93 0.11 0.97 0.14
Random Forest 0.83 0.69 0.85 0.55
UMD CLI 0.79 0.63 0.81 0.35

South Africa 2021-Q4 Stringent CLI 0.80 0.74 0.80 0.32
Classic CLI 0.80 0.58 0.84 0.48
Broad CLI 0.80 0.58 0.84 0.47

Table 1: Performance for three different countries in two different 3-month periods (2021-Q3: July-September
2021 and 2021-Q4: October-December 2021) of the different classifiers in the ground-truth set, when randomly
divided into training (70%) and testing (30%) subsets.
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Pearson correlation with Confirmed
OWID CTIS Random UMD Stringent Classic Broad

Country TPR TPR Forest CLI CLI CLI CLI
Argentina 0.09 0.17 0.95 0.97 0.96 0.92 0.91
Australia 0.01 0.02 0.93 0.46 0.31 -0.10 0.03
Brazil – 0.19 0.98 0.03 0.82 0.36 0.46
Canada 0.03 0.04 0.94 0.85 0.66 0.73 0.71
France 0.03 0.05 0.92 0.69 0.80 0.57 0.61
Germany 0.09 0.01 0.96 0.88 0.91 0.82 0.81
Hungary 0.08 0.16 0.93 0.85 0.95 0.82 0.79
India 0.02 0.16 0.31 -0.38 -0.31 -0.71 -0.37
Italy 0.02 0.03 0.98 0.86 0.85 0.71 0.72
Japan 0.05 0.04 0.93 0.90 0.84 -0.17 0.67
Mexico 0.27 0.22 0.97 0.99 0.98 0.95 0.98
Poland 0.08 0.16 0.96 0.82 0.97 0.80 0.80
Romania 0.07 0.09 0.94 0.96 0.98 0.96 0.95
Russia 0.05 0.14 0.38 0.34 0.37 0.41 0.33
South Africa 0.16 0.24 0.93 0.92 0.84 0.97 0.98
Spain 0.07 0.09 0.93 0.82 0.79 0.48 0.52
Sweden 0.06 0.05 0.91 0.83 0.74 0.71 0.67
Thailand 0.20 0.07 0.85 0.83 0.92 0.84 0.77
Ukraine 0.20 0.16 0.97 0.87 0.95 0.91 0.89
United Kingdom 0.04 0.06 0.84 0.70 0.52 0.59 0.60
Vietnam 0.06 0.02 0.83 0.79 0.79 0.74 0.78

Table 2: Test-positivity rate (TPR) obtained from OWID and extracted from the UMD Global CTIS data for
the 20 countries with largest survey data and South Africa. Values of at most 0.1 are shown in bold. The
rest of columns show the Pearson correlation coefficient of each different proxy with the Confirmed time series.
Correlation values of at least 0.9 are shown in bold. The time period used is Jun 18th, 2021 to Dec 31st, 2021.
The estimates have been smoothed with a rolling average of 14 days.

columns of Table 2 show the official Test Positivity Rates obtained via Our World In Data [RMRG+20, Our21]
(OWID TPR) and the corresponding survey-based estimate from the UMD Global CTIS dataset (CTIS TPR).
The remaining columns show the Pearson correlation coefficient between the time series of Confirmed active
cases (computed based on data from Johns Hopkins University [Joh20] as described by Alvarez et al. [ÁBC+21])
and that of each of the candidate proxies in the period June 18th, 20212 to December 31st, 2021. All time series
have one value per day, which is the average of the latest 14 days.

We can make two observations from Table 2. First, Random Forest turns out to be the candidate proxy
that exhibits the highest correlation values in most countries. Second, 17 out of the 21 countries exhibit low
TPR (≤ 0.1) values in at least one of the first two columns (either official or survey-based TPR), and 11 out of
the 21 exhibit low values in both columns, with 7 having values no higher than 0.053. This suggests that such
countries tend to keep the case count relatively under control and report data somewhat correctly. We can thus
interpret the high correlation between the Random Forest proxy and the Confirmed time series as a sign that
this proxy constitutes the most promising option among the five proxies considered.

2.4 Prevalence and Efficacy Estimation

As mentioned, each classifier will be used to determine whether survey responses correspond to positive or
negative cases. Hence, the prevalence of COVID-19 estimated by a given classifier is the ratio between the
number of positive cases over the total number of responses. Then, we consider four subsets of responses:

• Unvaccinated: Participants that respond negatively to the question “V1: Have you had a COVID-19
vaccination?”

• Vaccinated: Participants that respond positively to Question V1.

• Vaccinated with 1 dose: Participants that respond positively to Question V1 and declare having received
1 dose in Question “V2: How many COVID-19 vaccinations have you received?”

2Start of the first period considered in [VRAB21].
3The WHO considers countries to have the epidemic under control when their TPR is below 0.05 [W+20].
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• Vaccinated with 2 doses: Participants that respond positively to Question V1 and declare having received
2 doses in Question V2.

Unfortunately, from the questions in the UMD Global CTIS it is not possible to know whether those with one
dose are fully vaccinated, i.e., they have received a one-dose vaccine, or they simply received only the first dose
of a two-dose vaccination. Similarly, it is not possible to know whether the participant received a booster shot.

For each of these subsets, the prevalence of COVID-19 is computed as the fraction of responses classified
as positive among the responses that report a given vaccination status. For each proxy we also estimate the
vaccine efficacy (VE) against illness as in [VRAB21], based on the estimates of prevalence among unvaccinated
(PU ) and vaccinated (PV ):

VE = 1− PV

PU
.

The confidence intervals of this metric are obtained using the Katz-log Method [AB15]. Since we have three
subsets of vaccinated participants, we compute the vaccine efficacy for the subsets Vaccinated, Vaccinated with
1 dose, and Vaccinated with 2 doses.

Date % Delta % Omicron # samples
2021-06-14 45.23 0.00 1101
2021-06-28 78.09 0.00 1661
2021-07-12 88.90 0.00 2226
2021-07-26 94.30 0.00 1667
2021-08-09 95.19 0.00 1601
2021-08-23 97.58 0.00 1242
2021-09-06 97.01 0.00 1269
2021-09-20 95.77 0.00 923
2021-10-04 93.57 0.00 513
2021-10-18 93.56 0.00 450
2021-11-01 95.67 0.48 208
2021-11-15 69.30 20.18 114
2021-11-29 13.08 85.00 780
2021-12-13 0.92 95.92 980
2021-12-27 0.00 93.85 65

Table 3: Percentage of sequenced virus samples belonging to Delta and Omicron in South Africa from June 1st
to December 31st of 2021. The third column presents the total number of samples reported on the corresponding
date.

2.5 Time Periods of Interest

2.5.1 South Africa

The main objective of this work is to evaluate the change in vaccine efficacy due to the Omicron variant. To
this end, we evaluate the decrease in vaccine efficacy in South Africa from mid-June 2021 until the end of 2021.
Moreover, to ensure that we have sufficient data for our estimates, we concentrate on three time periods in
2021, each lasting about a month, two dominated by the Delta variant: i) June 18 to July 18, 2021, which is
the period considered in [VRAB21], and ii) August 9 to September 6, 2021; and one dominated by Omicron:
December 1st to 31st, 20214 (see Table 3). In addition to considering South Africa as a whole, we also study
the Gauteng province, which is among the most affected by Omicron in the country.

2.5.2 World

Beyond South Africa, we study the 50 countries for which the UMD Global CTIS has the largest amount of
data. We compute for all of them the vaccine efficacy in two periods.

• Period 1: The month of October (in which Omicron was still not present).

• Period 2: The month of December (in which Omicron was present).

A computed efficacy value is only considered if it is non-negative, both prevalences PV and PU are at least 0.01,
and the number of samples used to compute them is at least 1000. We only consider further the countries with
at least one efficacy value in Period 2.

4The information on variant presence is obtained from [Our21], which extracts it from [EBM17] via [Hod21].
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(a) Direct (b) Normalized

Figure 1: Prevalence in South Africa obtained with the different proxies, smoothed with a rolling average of 14
days from June 18th to December 31st, 2021. In the left plot we have the actual ratio (note that the y axis is in
logarithmic scale). On the right plot all curves are normalized so the smallest value is 0 and the largest value
is 1.

We have observed that the information on prevalence of Omicron is available [Our21] with a significant delay.
Hence, most countries do not report relevant presence of Omicron until the second half of December 2021. For
that reason, we consider the prevalence of Omicron reported in Period 3: from December 15th, 2021 to January
7th, 20225. Furthermore, among the countries mentioned above, in order to have a reasonable estimate of the
prevalence of the Omicron variant, we consider only countries whose data is based on sequencing at least 30
virus samples. We say that these are the countries with presence of Omicron and use their estimated Omicron
prevalence in Period 3 in some of our results.

For all countries with presence of Omicron, we compare the estimated vaccination efficacy using Random
Forest among all three vaccination groups and for both periods. For this, we adopt simple statistical methods,
such as correlation analysis.

3 Results

3.1 Prevalence and Vaccination Efficacy in South Africa

Figures 1a and 1b show the prevalence of COVID-19 in South Africa in the period June 18th to December 31st,
2021, with the different proxies. The direct approach of Figure 1a shows a gap from the estimate Confirmed
derived from the official number of cases to the other proxies. This gap can be explained by a combination of
under-detection in the official number of cases (in South Africa the test-positivity rate is above 15%, as seen in
Table 2) and the presence of a background of symptoms that never goes to zero. Figure 1b shows that if each
curve is independently normalized to the unit scale all proxies closely track the evolution of the official number
of cases Confirmed.

In Figures 2a, 2b, 2c and 2d we show the COVID-19 prevalence in South Africa among Vaccinated, Unvacci-
nated, Vaccinated with 1 dose and Vaccinated with 2 doses with the diffferent proxies. We can observe that the
UMD CLI and Stringent CLI proxies show a low infection prevalence in the period July-September and the month
of December when compared with the Random Forest proxy. This is possibly because UMD CLI and Stringent
CLI have a fixed combination of symptoms that did not capture well the new variants Delta and Omicron, while
the Random Forest classifier is trained on a 3-month period and can adapt to these changes. On the other hand,
Classic CLI and Broad CLI show a high prevalence in the period October-November, when the official data was
showing that the number of cases was very low, possibly because of existing symptoms in the population not
related to COVID-19.

Focusing on the Random Forest proxy, and in Vaccinated (2a) versus Unvaccinated (2b) prevalence, we can
observe that although in the unvaccinated population we see a similar magnitude across the two waves (August-
September and December) we see that in the Vaccinated group there is a much higher rate of prevalence in the

5Our World In Data [Our21] stopped sharing the variant data on January 10th, 2022, upon GISAID request.
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(a) Vaccinated (b) Unvaccinated

(c) Vaccinated with 1 dose (d) Vaccinated with 2 doses

Figure 2: Prevalence in South Africa among Vaccinated, Unvaccinated, Vaccinated with 1 dose, and Vaccinated
with 2 doses, with different proxies.
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(a) Prevalence (b) Vaccination efficacy

Figure 3: (a) Prevalence and (b) vaccination efficacy in South Africa among people with different levels of
vaccination, estimated with Random Forest.

Jun-Jul Aug-Sep Dec
Method Efficacy [95%CI] Efficacy [95%CI] Efficacy [95%CI]

Vaccinated
Random Forest 0.54 [0.48,0.59] 0.62 [0.58,0.65] 0.24 [0.17,0.30]
UMD CLI 0.60 [0.53,0.66] 0.66 [0.61,0.70] 0.46 [0.39,0.51]
Stringent CLI 0.69 [0.63,0.74] 0.70 [0.66,0.73] 0.48 [0.40,0.55]
Classic CLI 0.55 [0.50,0.59] 0.56 [0.52,0.59] 0.38 [0.33,0.43]
Broad CLI 0.50 [0.44,0.54] 0.49 [0.44,0.52] 0.36 [0.30,0.41]

Vaccinated with one dose
Random Forest 0.50 [0.44,0.56] 0.51 [0.46,0.55] 0.09 [0.00,0.18]
UMD CLI 0.61 [0.54,0.68] 0.56 [0.50,0.62] 0.21 [0.09,0.31]
Stringent CLI 0.67 [0.61,0.73] 0.60 [0.54,0.65] 0.23 [0.07,0.36]
Classic CLI 0.53 [0.47,0.57] 0.47 [0.42,0.51] 0.21 [0.13,0.28]
Broad CLI 0.46 [0.40,0.52] 0.39 [0.34,0.44] 0.18 [0.09,0.26]

Vaccinated with two doses
Random Forest 0.76 [0.64,0.84] 0.81 [0.78,0.84] 0.30 [0.23,0.36]
UMD CLI 0.75 [0.57,0.86] 0.85 [0.79,0.88] 0.56 [0.50,0.61]
Stringent CLI 0.82 [0.66,0.90] 0.88 [0.84,0.91] 0.59 [0.51,0.65]
Classic CLI 0.77 [0.66,0.84] 0.71 [0.67,0.75] 0.45 [0.40,0.49]
Broad CLI 0.75 [0.63,0.83] 0.66 [0.61,0.71] 0.43 [0.37,0.48]

Table 4: Vaccine efficacy in South Africa calculated for three time periods: June 18th to July 18th (Jun-Jul),
August 9th to September 6th (Aug-Sep), and December 1st to 31st (Dec).
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Jun-Jul Aug-Sep Dec
Method Efficacy [95%CI] Efficacy [95%CI] Efficacy [95%CI]

Vaccinated
Random Forest 0.43 [0.33,0.51] 0.62 [0.54,0.69] 0.30 [0.18,0.40]
UMD CLI 0.58 [0.44,0.68] 0.63 [0.51,0.73] 0.52 [0.41,0.61]
Stringent CLI 0.64 [0.53,0.72] 0.70 [0.61,0.78] 0.57 [0.43,0.67]
Classic CLI 0.50 [0.42,0.58] 0.51 [0.42,0.59] 0.48 [0.39,0.55]
Broad CLI 0.49 [0.39,0.57] 0.41 [0.31,0.50] 0.45 [0.35,0.53]

Vaccinated with one dose
Random Forest 0.40 [0.28,0.49] 0.54 [0.44,0.63] 0.14 [0.00,0.30]
UMD CLI 0.60 [0.46,0.71] 0.58 [0.42,0.70] 0.38 [0.18,0.53]
Stringent CLI 0.62 [0.49,0.71] 0.61 [0.47,0.71] 0.39 [0.13,0.57]
Classic CLI 0.47 [0.37,0.56] 0.47 [0.36,0.56] 0.35 [0.20,0.46]
Broad CLI 0.44 [0.33,0.53] 0.34 [0.20,0.45] 0.29 [0.14,0.42]

Vaccinated with two doses
Random Forest 0.62 [0.36,0.78] 0.77 [0.67,0.85] 0.36 [0.24,0.46]
UMD CLI 0.69 [0.27,0.87] 0.73 [0.54,0.84] 0.57 [0.45,0.66]
Stringent CLI 0.85 [0.55,0.95] 0.88 [0.76,0.94] 0.65 [0.51,0.74]
Classic CLI 0.79 [0.59,0.90] 0.58 [0.44,0.68] 0.53 [0.44,0.60]
Broad CLI 0.80 [0.59,0.91] 0.54 [0.39,0.65] 0.50 [0.41,0.58]

Table 5: Vaccine efficacy in the Gauteng province of South Africa calculated for three time periods: June 18th
to July 18th (Jun-Jul), August 9th to September 6th (Aug-Sep), and December 1st to 31st (Dec).

Figure 4: Evolution of the vaccination in South Africa as ratio of the population, estimated from the UMD
Global CTIS data. A small fraction of responses that declared being vaccinated without reporting the number
of doses are not presented for clarity. The values are from June 18th to December 31st, 2021, smoothed with a
rolling average of 14 days.
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Prevalence Vaccination efficacy
Vaccination status October December October December
Vaccinated 2 doses 0.02 [0.01,0.02] 0.03 [0.03,0.04] 0.53 [0.49,0.58] 0.45 [0.39,0.50]
Vaccinated 0.02 [0.01,0.03] 0.04 [0.03,0.04] 0.49 [0.45,0.52] 0.43 [0.37,0.48]
Vaccinated 1 dose 0.03 [0.02,0.04] 0.05 [0.04,0.06] 0.34 [0.22,0.45] 0.32 [0.23,0.41]
Unvaccinated 0.04 [0.03,0.05] 0.06 [0.05,0.07] – –

Table 6: Prevalence of COVID-19 and vaccine efficacy (with 95% confidence interval) in the countries with
presence of Omicron in the periods of October and December 2021.

Correlation
coefficient P-value

Prevalence omicron vs vaccination efficacy -0.680301 0.000354
Prevalence omicron vs vacc. efficacy 1 dose -0.564977 0.035274
Prevalence omicron vs vacc. efficacy 2 doses -0.628936 0.001306

Table 7: Relationship between prevalence of Omicron and vaccine efficacy in the countries with presence of
Omicron.

December wave. This hints at a decrease of vaccine efficacy towards infection with the introduction of Omicron,
as we will show next.

Figure 3a shows the prevalence in South Africa estimated with Random Forest across the reported vaccination
states. Here we confirm the observation that in the December wave there was a disproportionate increase of
infections in the vaccinated groups (Vaccinated, Vaccinated with 1 dose and Vaccinated with 2 doses). We also
observe that, as expected, subjects vaccinated with two doses show higher protection that those reporting only
one dose (with Vaccinated somewhere in between since it combines both groups).

As for vaccination efficacy, Figure 3b shows the estimates for South Africa, again with Random Forest. While
the data in October-November has lower quality due to the reduced number of cases in that country, we can
clearly observe the reduction of vaccine efficacy, towards infection, when contrasting the August-September
period to the December period when Omicron dominates. Table 4 quantifies the measurements of estimated
efficacy for the three periods of interest and for the five classifiers. We also provide a similar analysis in Table
5 with data restricted to the Gauteng province.

Figure 4 shows an area plot, estimated from the UMD Global CTIS data, of the proportion of vaccinated
with 1 dose, Vaccinated with 2 doses, and Unvaccinated from June 18th until December 31st, 2021. As can be
seen, the ratio of the population vaccinated is low at the beginning of this interval, especially with two doses.
Then, we can see a high increase in Vaccinated between July and October. We point out that in each time point
of this plot the proportions are provided by a different set of surveys respondents, and it still closely captures
the increase of vaccination.

3.2 Prevalence and Vaccination Efficacy in the World

From the analysis of the 50 countries with the largest amount of data in the CTIS plus presence of Omicron and
a calculated efficacy value, as defined in Section 2.5.2, we obtain a set of 24 countries. In Table 8 (in Appendix
C) we show, for reference, the level of vaccination in these countries6. The next two tables, Table 9 and 10,
present the estimates of virus prevalence in the same countries in the periods of October and December, and
also estimates of vaccination efficacy towards infection.

Both prevalence estimates and the derived efficacy estimates are obtained by the Random Forest classifier and
shown with 95% confidence intervals. When data is insufficient to meet the defined selection criteria (c.f. Section
2.5.2), it is omitted and replaced by “–”. Both tables are presented alphabetically by country name and also
share a column depicting the most recent data on Omicron prevalence among all virus samples. While Table 9
focuses on the data from individuals that declared their overall vaccination status (using groups Vaccinated,
Unvaccinated), Table 10 makes a more detailed characterization by considering the number of doses declared
(groups Vaccinated with 1 dose, Vaccinated with 2 doses, Unvaccinated). We also observe that there is less data on
individuals with only one dose, since this is a transient state in the vaccination sequence. The full information
on sample sizes can be consulted in Appendix C in Tables 11 and 12.

Figure 5a shows three pairs of box plots. Each pair allows comparing vaccine efficacy in October and
December when considering data from the selected countries. Table 6 presents the average corresponding to
each boxplot, with the 95% confidence interval. We observe that although results are inconclusive for Vaccinated
with 1 dose, there is a clear decrease of overall efficacy when considering Vaccinated and Vaccinated with 2 doses.

6Vaccination data is obtained from [Our21, MROO+21].
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(a) Vaccine Efficacy (VE) distributions (b) Vaccine efficacy in December

(c) Efficacy 1 dose in December (d) Efficacy 2 doses in December

Figure 5: Analysis of vaccine efficacy towards preventing infection: Sub-figure (a) shows distributions of efficacy
in October and December, for the countries with presence of Omicron (as defined in Section 2.5.2); Sub-
figures (b,c,d) show vaccination efficacy versus Omicron prevalence in the same set of countries, depending on
vaccination status. For each country the 95% confidence intervals of the two values are shown as black lines.
The blue line is the Loess curve fitting of the data.
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The next three figures, Figures 5b, 5c and 5d, allow us to see a clear trend when plotting efficacy against the
most recent relative level of Omicron presence in each selected country. For each case, we present a smoothed
line, in blue, depicting a clear decreasing trend. Table 7 presents estimates for the correlation coefficient (using
Pearson correlation) together with the corresponding p-value, which confirms its statistical significance for the
usual α = 5%.

4 Discussion

After its surge in South Africa, the Omicron variant is increasing in prevalence in other countries. Although it
is still unclear if this variant is associated to a milder disease [KBPC+21] several studies have raised concerns
over the decrease of vaccine effectiveness against infection [PvSG+21, NKL+21, KST+21, LMD+21] and this
can lead to a wider spread of the virus even in countries with a high vaccination uptake. While we have observed
that Omicron reduces the efficacy of vaccines, new studies show that T cells may remain effective with this new
variant [AQM22].

Daily participatory symptom surveillance, with widespread deployment in most world countries along the
last couple of years, has the potential to offer a new instrument for assessing both global and local trends in
health status. While limited in assessing the ground truth, due to the smaller control over the sample design and
the need to preserve anonymity, we believe that the vast number of daily survey responses can compensate some
of these factors. In this study, we developed a method to adapt and calibrate against the reported SARS-CoV-2
infection status the selection of symptoms, and other covariates from the survey, along different time periods
and locations. This was shown to provide a better proxy for assessing the trend in infections and more closely
track the official reported cases, in particular in those countries that had a strong surveillance and consistent
test positivity rates.

Using this improved classifier we complemented earlier results [VRAB21] that used traditional fixed combina-
tions of symptoms, and updated the analysis for South Africa showing the observed decrease in vaccine efficacy
when contrasting a Delta-dominated period (August-September 2021) with the recent Omicron-dominated pe-
riod (December 2021). We confirmed the presence of a measurable drop in vaccine efficacy from 0.62 (with
95% confidence interval [0.58, 0.65]) in the Delta period to 0.24 (95% CI [0.17, 0.30]) in the Omicron period
in the whole country (0.62[0.54, 0.69] to 0.30[0.18, 0.40] in the Gauteng province). In addition, we confirmed
that having two doses of vaccine confers better protection than one dose, both in Delta (0.81[0.78, 0.84] versus
0.51[0.46, 0.55]) and Omicron (0.30[0.23, 0.36] versus 0.09[0.00, 0.18]) dominated periods. However, we have no
data on the status of respondents with regard to a possible booster dose.

By January 7th, 2022, there were a limited number of candidate countries exhibiting both a high prevalence
of Omicron and a high level of sequencing data supporting it. Nevertheless, we extend the analysis to these
countries and show the observed changes in efficacy when comparing the months of October (pre-Omicron)
with December (with partial presence of Omicron). Although these results should be confirmed once the level
of Omicron becomes more dominant in many countries, we have observed a significant level of correlation of
around and beyond −0.6 between vaccine efficacy (with either one or two doses) and the prevalence of Omicron.
We must also keep clear that this reduction of efficacy is towards infection, and while it does have impact on
transmission it does not imply a reduction of vaccine efficacy in protection against serious disease, hospitalization
and death.

There are several assumptions that frame our analysis. We assume that UMD Global CTIS answers provide a
sample of the population that is interchangeable among the Delta and Omicron dominated periods. Additionally,
we did not take into account possible effects from waning immunity and vaccine boost shots, however by
considering several different countries we have a mix of different vaccination timings.
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A List of Symptoms

In the UMD Global CTIS the following question is asked: “B1 In the last 24 hours, have you had any of the
following?” [The21a]. The following is the list of possible answers (non exclusive):

• Fever (B1 1).

• Cough (B1 2).

• Difficulty breathing (B1 3).

• Fatigue (B1 4).

• Stuffy or runny nose (B1 5).

• Aches or muscle pain (B1 6).

• Sore throat (B1 7).

• Chest pain (B1 8).
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• Nausea (B1 9).

• Loss of smell or taste (B1 10).

• Headache (B1 12).

• Chills (B1 13).

B Questions Used for the Machine Learning Model

The following is the list of survey questions whose answers are used to create the Random Forest models, and to
classify with them the responses: B1 1, B1 2, B1 3, B1 4, B1 5, B1 6, B1 7, B1 8, B1 9, B1 10, B1 11, B1 12,
B1 13, B1 14, B1b x1, B1b x2, B1b x3, B1b x4, B1b x5, B1b x6, B1b x7, B1b x8, B1b x9, B1b x10, B1b x11,
B1b x12, B1b x13, B1b x14, B3, B5, B6, B9, B10, B11, B12 1, B12 2, B12 3, B12 4, B12 5, B12 6, B13 1,
B13 2, B13 3, B13 4, B13 5, B13 6, B13 7, B14 1, B14 2, B14 3, B14 4, B14 5, C0 1, C0 2, C0 3, C0 4, C0 5,
C0 6, C1 m, C2, C3, C5, C6, C7, C8, C9, C9a, C12, C13 1, C13 2, C13 3, C13 4, C13 5, C13 6, C14, D1, D2,
D3, D4, D5, D6 1, D6 2, D6 3, D7, D8, D9, D10, E2, E3, E4, E7, H1, H2, H3.

The questions removed are B0, B7, B8, B15, and all the questions related to vaccination (V-questions).

C Countries with Omicron Prevalence

Table 8 shows basic official vaccination data on December 31st, 2021, of these countries. Tables 9 and 10 show
the COVID-19 prevalence and the vaccine efficacy in October and December in the countries with presence of
Omicron as defined in Section 2.5.2.

% % pop % pop % pop Vacc
Country doses/pop vacc fully vacc booster start date
Argentina 167.98 83.76 71.61 12.22 2020-12-29
Belgium 186.28 76.65 75.70 37.59 2020-12-28
Brazil 154.81 77.66 67.03 12.42 2021-01-17
Colombia 126.19 74.81 55.25 6.49 2021-02-17
Denmark 208.57 82.65 78.43 48.30 2021-02-05
France 183.78 78.61 73.48 33.28 2020-12-27
Germany 178.84 73.62 70.61 38.87 2020-12-27
India 103.98 60.69 43.29 0.00 2021-01-16
Italy 184.28 80.14 74.11 32.52 2020-12-27
Mexico 114.24 62.89 55.87 0.00 2020-12-24
Netherlands 162.18 77.54 71.18 18.50 2021-01-09
Norway 178.68 78.41 71.76 28.52 2020-12-08
Poland 124.32 57.34 55.68 18.16 2020-12-28
Portugal 190.72 91.47 89.53 29.44 2020-12-27
Romania 82.86 28.64 40.87 0.00 2020-12-27
Russia 100.31 50.60 45.76 5.06 2020-12-15
Slovakia 111.09 50.13 47.61 16.33 2021-01-11
South Africa 46.47 31.49 26.37 0.00 2021-02-18
Spain 178.69 84.85 81.01 29.40 2021-01-04
Sweden 172.96 76.14 72.68 0.00 2021-01-03
Switzerland 158.90 68.56 66.88 24.99 2020-12-21
Turkey 154.80 66.92 60.68 27.19 2021-01-14
United Kingdom 195.45 75.93 69.54 49.98 2021-01-10
Vietnam 153.75 79.00 69.71 0.00 2021-03-08

Table 8: Information about vaccination on December 31st, 2021, in the countries with presence of Omicron (as
defined in Section 2.5.2).
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% Prevalence Prevalence Prevalence Vac efficacy Vac efficacy
Country Omicron Oct Dec Oct Dec
Argentina 0.83 [0.76,0.91] 0.02 [0.01,0.02] 0.03 [0.03,0.03] 0.48 [0.35,0.58] 0.28 [0.12,0.41]
Belgium 0.32 [0.29,0.34] 0.02 [0.02,0.02] 0.05 [0.05,0.05] 0.53 [0.39,0.64] 0.38 [0.26,0.48]
Brazil 0.58 [0.52,0.64] 0.03 [0.03,0.03] 0.03 [0.02,0.03] 0.43 [0.37,0.49] 0.29 [0.19,0.38]
Colombia 0.35 [0.26,0.44] 0.03 [0.03,0.03] 0.03 [0.03,0.03] 0.55 [0.49,0.61] 0.49 [0.39,0.56]
Denmark 0.47 [0.46,0.49] 0.01 [0.01,0.01] 0.05 [0.05,0.05] – 0.49 [0.39,0.57]
France 0.26 [0.24,0.27] 0.01 [0.01,0.01] 0.03 [0.03,0.03] – 0.44 [0.39,0.49]
Germany 0.13 [0.13,0.14] 0.01 [0.01,0.01] 0.02 [0.02,0.02] – 0.65 [0.62,0.68]
India 0.33 [0.29,0.38] 0.04 [0.04,0.04] 0.03 [0.03,0.03] 0.44 [0.35,0.52] 0.42 [0.28,0.53]
Italy 0.21 [0.19,0.22] 0.01 [0.01,0.01] 0.02 [0.02,0.02] – 0.61 [0.57,0.65]
Mexico 0.54 [0.49,0.58] 0.05 [0.05,0.05] 0.04 [0.04,0.04] 0.57 [0.54,0.59] 0.51 [0.46,0.55]
Netherlands 0.30 [0.27,0.33] 0.02 [0.02,0.02] 0.05 [0.04,0.05] 0.36 [0.20,0.49] 0.29 [0.18,0.38]
Norway 0.25 [0.15,0.36] 0.01 [0.01,0.01] 0.03 [0.02,0.03] – 0.35 [0.10,0.52]
Poland 0.03 [0.02,0.04] 0.03 [0.03,0.04] 0.07 [0.06,0.07] 0.50 [0.42,0.56] 0.57 [0.53,0.60]
Portugal 0.23 [0.19,0.27] 0.01 [0.01,0.01] 0.03 [0.03,0.03] – 0.32 [0.12,0.48]
Romania 0.04 [0.00,0.08] 0.06 [0.06,0.06] 0.02 [0.02,0.02] 0.59 [0.56,0.62] 0.65 [0.57,0.71]
Russia 0.29 [0.22,0.36] 0.04 [0.04,0.05] 0.03 [0.02,0.03] 0.45 [0.39,0.50] 0.43 [0.34,0.51]
Slovakia 0.10 [0.03,0.17] 0.03 [0.03,0.03] 0.06 [0.05,0.06] 0.47 [0.32,0.59] 0.54 [0.46,0.61]
South Africa 0.88 [0.81,0.96] 0.04 [0.04,0.04] 0.12 [0.12,0.13] 0.50 [0.41,0.57] 0.24 [0.17,0.30]
Spain 0.46 [0.43,0.50] 0.01 [0.01,0.02] 0.05 [0.05,0.06] 0.62 [0.50,0.70] 0.26 [0.15,0.36]
Sweden 0.34 [0.32,0.37] 0.01 [0.00,0.01] 0.02 [0.02,0.02] – 0.48 [0.36,0.57]
Switzerland 0.39 [0.36,0.41] 0.01 [0.01,0.01] 0.04 [0.04,0.04] – 0.52 [0.43,0.59]
Turkey 0.10 [0.08,0.11] 0.05 [0.05,0.06] 0.05 [0.05,0.05] 0.45 [0.38,0.51] 0.42 [0.33,0.51]
United Kingdom 0.66 [0.65,0.66] 0.03 [0.03,0.03] 0.05 [0.04,0.05] 0.34 [0.22,0.45] 0.20 [0.07,0.31]
Vietnam 0.02 [0.00,0.06] 0.01 [0.01,0.01] 0.03 [0.03,0.03] – –

Table 9: Prevalence of Omicron in COVID-19 and vaccination efficacy in the countries with presence of Omicron
(as defined in Section 2.5.2).

sity of Maryland (UMD) to access their data, specifically UMD project 1587016-3 entitled C-SPEC: Symptom
Survey: COVID-19 and CMU project STUDY2020 00000162 entitled ILI Community-Surveillance Study.

E Data Availability

The data presented in this paper and some of the programs used to process it are openly accessible at https:
//github.com/GCGImdea/coronasurveys/tree/master/papers/omicron_efficacy_paper_medRxiv.
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% Prevalence Vac 1 dose Vac 1 dose Vac 2 doses Vac 2 doses
Country Omicron efficacy Oct efficacy Dec efficacy Oct efficacy Dec
Argentina 0.83 [0.76,0.91] 0.03 [0.00,0.27] – 0.53 [0.41,0.62] 0.31 [0.15,0.43]
Belgium 0.32 [0.29,0.34] – – 0.55 [0.41,0.65] 0.38 [0.26,0.48]
Brazil 0.58 [0.52,0.64] 0.20 [0.11,0.28] – 0.50 [0.44,0.55] 0.33 [0.23,0.41]
Colombia 0.35 [0.26,0.44] 0.44 [0.35,0.53] 0.36 [0.22,0.47] 0.61 [0.55,0.67] 0.53 [0.45,0.61]
Denmark 0.47 [0.46,0.49] – – – 0.48 [0.38,0.57]
France 0.26 [0.24,0.27] – 0.46 [0.35,0.55] – 0.44 [0.39,0.49]
Germany 0.13 [0.13,0.14] – 0.44 [0.34,0.53] – 0.66 [0.63,0.69]
India 0.33 [0.29,0.38] 0.19 [0.05,0.31] 0.07 [0.00,0.26] 0.54 [0.47,0.61] 0.49 [0.37,0.58]
Italy 0.21 [0.19,0.22] – 0.66 [0.57,0.72] – 0.61 [0.56,0.65]
Mexico 0.54 [0.49,0.58] 0.36 [0.32,0.40] 0.22 [0.14,0.30] 0.66 [0.63,0.68] 0.56 [0.52,0.60]
Netherlands 0.30 [0.27,0.33] – 0.16 [0.00,0.33] 0.41 [0.26,0.53] 0.30 [0.19,0.39]
Norway 0.25 [0.15,0.36] – – – 0.35 [0.11,0.53]
Poland 0.03 [0.02,0.04] 0.31 [0.13,0.45] 0.44 [0.34,0.52] 0.52 [0.45,0.58] 0.58 [0.55,0.62]
Portugal 0.23 [0.19,0.27] – 0.23 [0.00,0.44] – 0.33 [0.13,0.49]
Romania 0.04 [0.00,0.08] 0.65 [0.59,0.70] 0.52 [0.33,0.65] 0.58 [0.55,0.61] 0.68 [0.60,0.74]
Russia 0.29 [0.22,0.36] 0.55 [0.43,0.64] 0.30 [0.09,0.46] 0.44 [0.38,0.50] 0.46 [0.37,0.53]
Slovakia 0.10 [0.03,0.17] – – 0.50 [0.35,0.61] 0.55 [0.47,0.62]
South Africa 0.88 [0.81,0.96] 0.29 [0.15,0.40] 0.09 [0.00,0.18] 0.64 [0.56,0.70] 0.30 [0.23,0.36]
Spain 0.46 [0.43,0.50] 0.34 [0.09,0.52] 0.30 [0.15,0.43] 0.66 [0.55,0.74] 0.26 [0.14,0.36]
Sweden 0.34 [0.32,0.37] – – – 0.48 [0.36,0.57]
Switzerland 0.39 [0.36,0.41] – – – 0.51 [0.42,0.59]
Turkey 0.10 [0.08,0.11] – – 0.49 [0.42,0.55] 0.44 [0.34,0.52]
United Kingdom 0.66 [0.65,0.66] – – 0.36 [0.24,0.46] 0.21 [0.08,0.32]
Vietnam 0.02 [0.00,0.06] – 0.25 [0.00,0.50] – –

Table 10: Prevalence of Omicron and vaccination efficacy with one and two doses in the countries with presence
of Omicron (as defined in Section 2.5.2). The prevalence of Omicron is replicated from Table 9 for easy reference.

Total Total Unvac Unvac Vac Vac Vac 1D Vac 1D Vac 2D Vac 2D
Country Oct Dec Oct Dec Oct Dec Oct Dec Oct Dec
Argentina 44509 48807 3077 2778 40276 44590 3704 1884 36115 41783
Belgium 16448 18373 1687 1718 14266 16004 747 463 13327 15269
Brazil 198423 162402 9428 6552 183859 151114 38885 8680 142594 139517
Colombia 34859 33883 5437 2734 28457 30197 9979 7514 18034 22137
Denmark 19591 27284 917 1206 18279 25472 212 217 17781 24684
France 82767 111041 10234 11593 67393 95663 6369 4708 60218 89139
Germany 89348 110359 12601 11868 71980 95530 6655 5490 64611 88548
India 76675 68155 4076 2631 63803 60076 16798 7344 45967 51622
Italy 98712 112754 7023 6095 89120 103305 9066 5108 78852 96124
Mexico 139967 118861 12063 6472 119471 109330 35960 17776 82321 90162
Netherlands 27505 30803 3804 3380 23001 26621 2175 2025 20397 24087
Norway 16746 21862 935 1010 15536 20404 389 304 14980 19724
Poland 30295 38001 5318 6105 23924 30578 2327 2499 21236 27603
Portugal 22758 29352 1299 1368 21017 27340 3470 3172 17180 23631
Romania 45123 24638 11038 4917 32558 19022 4477 2451 27594 16192
Russia 35186 30037 12301 9001 21680 19884 2845 2819 18573 16779
Slovakia 9567 11323 1987 2208 7382 8841 306 487 6989 8215
South Africa 18308 19492 4149 4006 12805 14753 5009 4138 7624 10423
Spain 33455 51568 2035 2625 30652 47444 3814 3574 26453 43223
Sweden 53564 57823 3001 3200 49564 53544 699 443 48380 52348
Switzerland 14863 16755 2906 2617 11585 13742 886 676 10541 12824
Turkey 27159 22854 3238 2307 23033 19844 1473 729 21015 18561
United Kingdom 41812 47072 3080 3174 37421 42421 925 770 36109 41122
Vietnam 48955 39105 8043 1116 37073 36097 17325 3241 19233 32246

Table 11: Number of survey responses used in each period from the countries with presence of Omicron (as
defined in Section 2.5.2), for each level of vaccination.
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Pos Pos Unvac Unvac Vac Vac Vac 1D Vac 1D Vac 2D Vac 2D
Country Oct Dec Oct Dec Oct Dec Oct Dec Oct Dec
Argentina 715 1302 87 99 594 1143 102 90 484 1034
Belgium 364 912 69 130 274 751 25 31 248 713
Brazil 5111 4066 405 224 4486 3648 1334 355 3072 3194
Colombia 1013 1103 285 158 666 897 291 280 364 596
Denmark 232 1405 24 116 196 1256 5 16 186 1228
France 703 3452 149 596 486 2733 102 130 377 2566
Germany 619 2253 155 580 428 1616 52 149 373 1453
India 2899 2231 186 93 1629 1235 623 242 958 939
Italy 558 2610 120 329 394 2158 67 95 322 2035
Mexico 6881 4747 1201 485 5167 4047 2287 1038 2808 2956
Netherlands 487 1441 95 210 367 1179 60 106 299 1046
Norway 147 569 15 39 127 516 10 17 116 495
Poland 1039 2504 298 749 676 1614 90 173 572 1416
Portugal 170 821 17 55 142 742 28 98 112 632
Romania 2579 448 1109 175 1335 239 158 42 1158 186
Russia 1550 775 752 318 727 401 79 70 633 323
Slovakia 276 635 89 216 174 397 14 36 157 360
South Africa 695 2348 249 599 388 1672 214 564 167 1093
Spain 468 2776 65 186 375 2479 80 177 290 2277
Sweden 297 1037 48 103 234 899 8 16 225 878
Switzerland 170 639 61 175 102 445 10 21 90 418
Turkey 1479 1143 288 181 1125 897 136 57 962 818
United Kingdom 1321 2168 141 180 1124 1926 53 59 1060 1851
Vietnam 364 1271 58 35 251 1141 95 76 152 1043

Table 12: Number of survey responses classified as positive by Random Forest in each period from the countries
with presence of Omicron (as defined in Section 2.5.2), for each level of vaccination.
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