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Abstract 

 

Background and Purpose: Current auto-segmentation models of brain structures,  UNets and nnUNets, have 

limitations, including the inability to segment images that are not represented during training and lack of 

computational efficiency. 3D capsule networks (CapsNets) have the potential to address these limitations. 

 

Methods: We used 3430 brain MRIs, acquired in a multi-institutional study, to train and validate our models. We 

compared our CapsNet with standard alternatives, UNets and nnUNets, based on segmentation efficacy (Dice 

scores), segmentation performance when the image is not well-represented in the training data, performance when 

the training data are limited, and computational efficiency including required memory and computational speed. 

 

Results: The CapsNet segmented the third ventricle, thalamus, and hippocampus with Dice scores of 95%, 94%, 

and 92%, respectively, which were within 1% of the Dice scores of UNets and nnUNets. The CapsNet 

significantly outperformed UNets in segmenting images that are not well-represented in the training data, with 

Dice scores 30% higher. The computational memory required for the CapsNet is less than a tenth of the memory 

required for UNets or nnUNets. The CapsNet is also more than 25% faster to train compared with UNet and 

nnUNet.  

 

Conclusion: We developed and validated a CapsNet that is effective in segmenting brain images, can segment 

images that are not well-represented in the training data, and are computationally efficient compared with 

alternatives. 

  



Abbreviations: 

• ADNI: Alzheimer’s disease neuroimaging initiative 

• CapsNet: capsule network 

• CPU: central processing unit 

• CT: computed tomography 

• GB: giga-byte 

• GPU: graphics processing unit 

• MRI: magnetic resonance imaging 

 

 

  



Introduction 

 

Neuroanatomical image segmentation is an important component in the management of various neurological 

disorders.1–3 Accurate segmentation of anatomical structures on brain magnetic resonance images (MRIs) is an 

essential step in a variety of neurosurgical and radiation therapy procedures.1,3–6 Manual segmentation is time-

consuming and is prone to intra- and inter-observer variability.7,8 With the advent of deep learning to automate 

various image analysis tasks,9,10 there has been increasing enthusiasm to use deep learning for brain image auto-

segmentation.11–14  

 

UNets are among the most popular and successful deep learning auto-segmentation algorithms.11,15,16 Despite the 

broad success of UNets in segmenting anatomical structures across various imaging modalities, they have well 

described limitations. UNets perform best on images that closely resemble the images used for training, but 

underperform on images that contain variant anatomy or pathologies that change the appearance of normal 

anatomy.8 Additionally, UNets have a large number of trainable parameters, hence training and deploying UNets 

for image segmentation often requires substantial computational resources that may not be scalable in all clinical 

settings.15 There is a need for fast, computationally efficient segmentation algorithms that can segment images not 

represented in the training data with high fidelity.  

 

Capsule networks (CapsNets) represent an alternative auto-segmentation method that can potentially overcome the 

limitations of UNets.17–19 CapsNets can encode and manipulate spatial information such as location, rotation, and 

size about structures within an image, and use this spatial information to produce accurate segmentations. Encoding 

spatial information allows CapsNets to generalize well on images that are not well-represented in the data used to 

train the algorithm.18,19 Moreover, CapsNets use a smarter paradigm for information encoding  which relies on fewer 

parameters leading to increased computational efficiency.17–19 

 



Capsule networks have shown promise on some biomedical imaging tasks,19 but have yet to be fully explored for 

segmenting anatomical structures on brain MRIs. In this study, we explore the utility of CapsNets for segmenting 

anatomical structures on brain MRIs using a multi-institutional dataset of more than 3,000 brain MRIs. We compare 

the segmentation efficacy and computational efficiency of CapsNets with popular UNet-based models. 

 

 

Methods 

 

Dataset 

 

The dataset for this study included 3,430 T1-weighted brain MRI images, belonging to 841 patients from 19 

institutions enrolled in Alzheimer’s Disease Neuroimaging Initiative (ADNI) study.20 The inclusion criteria of 

ADNI have been previously described.21 On average, each patient underwent four MRI acquisitions. Details of MRI 

acquisition parameters are provided in Appendix 1.20 We randomly split the patients into training (3,199 MRI, to 

93% of data), validation (117 MRI volumes, 3.5% of data), and test (114 MRI volumes, 3.5% of data) sets.  Data 

was divided at the patient level to assure that all images belonging to a patient were assigned either the training, 

validation, or test set. Patient demographics are provided in Table 1. This study was approved by the Institutional 

Review Board of Yale School of Medicine (IRB number 2000027592). 

 

Anatomic Segmentations 

 

We trained our models to segment three anatomical structures of the brain: third ventricle, thalamus, and 

hippocampus. These structures were chosen to represent structures with varying degrees of segmentation difficulty.  

Preliminary ground-truth segmentations were initially generated using FreeSurfer,22–24 and then manually corrected 

by a board-eligible radiologist with nine years of experience in neuroimaging research. 



 

Image Pre-Processing  

 

MRI preprocessing included correction for intensity inhomogeneities, including B1-field variations.25,26 The 3D 

brain volume was cropped after removing the skull, face, and neck tissues 27 To overcome memory limitations, 

segmentations were done on 64×64×64-voxel patches of the MRI volume that contained the segmentation target. 

The patch was automatically placed over the expected location of the segmentation target using pre-defined 

coordinates referenced from the center of the image. The coordinates of each patch were computed during training 

and were fixed during testing, without any manual input and without using the ground-truth segmentations. Details 

of pre-processing are provided in Appendix 2. 

 

Capsule Networks 

 

CapsNets are composed of three main components: 1) capsules that each encode a structure together with the pose 

of that structure: the pose is an n-dimensional vector that learns to encode orientation, size, curvature, location, and 

other spatial information about the structure; 2) a supervised learning paradigm that learns how to transform the 

poses of the parts (e.g. head and tail of hippocampus) to the pose of the whole (e.g. the entire hippocampus); and 3) 

a clustering paradigm that detects a whole if the poses of all parts transform into matching poses of the whole. 

Further details regarding differences between CapsNets and other deep learning models are provided in Appendix 

3.  

 

2D CapsNets were previously introduced by LaLonde et al to segment one slice of the image at a time.19 We 

developed 3D CapsNets for volumetric segmentation of a 3D volume, with the architecture shown in Figure 1.A. 

The first layer, Conv1, performs 16 convolutions (5×5×5) on the input volume to generate 16 feature volumes, 

which are reshaped into 16D vectors at each voxel. The 16D vector at each voxel is reshaped into a pose that learns 

to encode spatial information at that voxel. The next layer, PrimaryCaps2, has two capsule channels that learn two 



16D-to-16D convolutional transforms (5×5×5) from the poses of the previous-layer parts to the poses of the next-

layer wholes. Likewise, all capsule layers (green layers in Figure 1.A) learn m-to-n-dimensional transforms from 

the poses of parts to the poses of wholes. Our CapsNet has downsampling and upsampling limbs. The downsampling 

limb learns what structure is present at each voxel, and the skip connections from downsampling to upsampling 

limbs preserve where each structure is on the image. Downsampling is done using 5×5×5 convolutional transforms 

with stride = 2. Layers in the deeper parts of CapsNet contain more capsule channels (up to 8) and poses with more 

components (up to 64) to be able to encode more complex structures, since each capsule in the deeper parts of the 

model should be able to detect complex concepts in the entire image. Upsampling is done using 4×4×4 transposed 

convolutional transforms with stride = 2 (turquoise layers in Figure 1A). The final layer, FinalCaps13, contains one 

capsule channel that learns to activate capsules within the segmentation target and deactivate them outside the 

target. Appendix 4 explains the options that we explored for developing our 3D CapsNets and how we chose the 

best design options. Appendix 5 explains how the final layer activations were converted into segmentations. Details 

about how the model finds agreeing poses of parts that vote for the pose of the whole are provided in Appendix 6. 

 

Comparisons: UNets and nnUNets 

 

Optimized 3D UNets and nnUNets were also trained on the same training data, 11–13,28 and their segmentation 

efficacy and computational efficiency were compared with our CapsNet using the same test data. UNets and 

nnUNets have shown strong auto-segmentation performance across a variety of different imaging modalities and 

anatomic structures and are among the most commonly used segmentation algorithms in biomedical imaging.11–

13,15,29,30 Figure 1.B shows the architecture of our UNet. The input image undergoes 64 convolutions (3×3×3) to 

generate 64 feature maps. These maps then undergo batch normalization and ReLU activation. Similar operations 

are carried out again, followed by downampling using max-pooling (2×2×2). The downsampling and upsampling 

limbs each include four units. Upsampling is done using 2×2×2 transposed convolutions with stride = 2. The final 

layer carries out a 1×1×1 convolution to aggregate all 64 channels, followed by soft thresholding using the sigmoid 

function. The model learns to output a number close to 1 for each voxel inside the segmentation target, and a number 



close to 0 for each voxel outside the target. We also trained self-configuring nnUNets that automatically learn the 

best architecture as well as the optimal training hyperparameters.16 Figure 1.C shows the architecture of the nnUNet 

resulting from the self-configuring nnUNet paradigm.  

 

Model Training  

 

The CapsNet and UNet models were trained for 50 epochs using Dice loss and the Adam optimizer.31 Initial learning 

rate was set at 0.002. We used dynamic paradigms for learning rate scheduling, with a minimal learning rate of 

0.0001. The hyperparameters for our UNet were chosen based on the best-performing model over the validation 

set. The hyperparameters for nnUNet were self-configured by the model.16 The training hyperparameters for 

CapsNet and UNet are detailed in Appendix 6. 

 

Model Performance 

 

The segmentation efficacy of the three models was measured using Dice scores. To compare the performance of 

each segmentation model when training data is limited, we also trained the models using subsets of the training data 

with 600, 240, 120, and 60 MRIs. We then compared the segmentation efficacy of the models using the test set.  

 

The relative computational efficiency of the models was measured by 1) the computational memory required to run 

the model (in megabytes), 2) the computational time required for training each model, and 3) the time that each 

model takes to segment one MRI volume.  

 

Out-of-Distribution Testing 

 

To evaluate the performance of CapsNet and UNet models on the images that were not represented during training, 

we trained the models using images of the right hemisphere of the brain that only contained the right thalamus and 



right hippocampus. Then, we evaluated the segmentation efficacy of the trained models on the images of the left 

hemisphere of the brain that contained the contralateral left thalamus and left hippocampus. Because the left-

hemisphere images in the test set are not represented in the right-hemisphere images in the training set, this 

experiment evaluates the out-of-distribution performance of the models. We intentionally did not use any data 

augmentation during training to assess out-of-distribution performance of the models. Given that nnUNet paradigm 

requires data augmentation, nnUNet was not included in this experiment.  

 

Implementation 

 

Image pre-processing was done using Python (version 3.9) and FreeSurfer (version 7). PyTorch (version 1.11) was 

used for model development and testing. Training and testing of the models were run on GPU-equipped servers (4 

vCPUs, 61 GB RAM, 12 GB NVIDIA GK210 GPU with Tesla K80 Accelerators). Code used to train and test our 

models, our pre-trained models, and a sample MRI are available on our lab’s GitHub page: www.github.com/Aneja-

Lab-Yale/Aneja-Lab-Public-CapsNet. 

 

 

 

Results 

 

All three segmentation models showed high performance across all three neuroanatomical structures with Dice 

scores above 90% (Table 2). Performance was highest for the 3rd ventricle (95%-96%) followed by the thalamus 

(94%-95%) and hippocampus (92%-93%). Dice scores between the CapsNet and UNet-based models were within 

1% for all neuroanatomical structures.  

 



Segmentation performance for each model remained high across training datasets of varying sizes (Figure 4). When 

training on 120 brain MRIs, all three models maintained their segmentation accuracy within 1% when compared to 

models trained on 3,199 brain MRIs. Segmentation performance did decrease for all three models when trained on 

60 brain MRIs (83% CapsNet, 84% UNet, 88% nnUNet) 

 

Although both CapsNet and UNet had difficulty segmenting contralateral structures, the CapsNet significantly 

outperformed the UNet (Thalamus P-value < 0.001, Hippocampus P-value < 0.001) (Table 3). CapsNet models 

frequently identified the contralateral structure of interest but underestimated the size of the segmentation, resulting 

in Dice scores between 40% and 60%. In contrast, the UNet models frequently failed to identify the contralateral 

structure of interest, resulting in Dice scores lower than 20% (Figure 3). 

 

The CapsNet was more computationally efficient compared to UNet-based models (Figure 5). The CapsNet required 

228 MBs, compared to 1,364 MBs for UNet and 1,410 MBs for nnUNet. The CapsNet trained 25% faster than the 

UNet (1.5s v 2s per sample) and 100% faster than the nnUNet (1.5s vs 3s per sample). When we compared the 

deployment times of the fully-trained models, CapsNet and UNet could segment images equally fast (0.9s per 

sample) which was slightly faster than the nnUNet (1.1s per sample).  

 

 

Discussion 

 

Neuroanatomic segmentation of brain structures is an essential component in the treatment of various neurologic 

disorders. Deep-learning-based auto-segmentation methods have shown the ability to segment brain images with 

high fidelity, which was previously a time-intensive task.13,14 In this study, we compared the segmentation efficacy 

and computational efficiency of CapsNets with UNet-based auto-segmentation models. We found CapsNets to be 

reliable and computationally efficient, achieving segmentation accuracy comparable to commonly-used UNet-



based models. Moreover, we found CapsNets to have higher segmentation performance on out-of-distribution data, 

suggesting an ability to generalize beyond their training data.  

 

Our results corroborate previous studies demonstrating the ability of deep learning models to reliably segment 

anatomical structures on diagnostic images.11,12,14 UNet-based models have been shown to effectively segment 

normal anatomy across a variety of different imaging modalities including CT, MRI, and Xray images.15,29,30,32–34  

Moroever, Isensee et al showed the ability of nnUNets to generate reliable segmentations across 23 biomedical 

image segmentation tasks with automated hyperparameter optimization. We have extended prior work by 

demonstrating similar segmentation efficacy between CapsNets and UNet-based models with CapsNets being 

notably more computationally efficient. Our CapsNets require less than 10% the amount of memory required by 

UNet-based methods and trains 25% faster. 

 

Our findings are consistent with prior studies demonstrating the efficacy of CapsNets for image segmentation.19,35 

LaLonde et al previously demonstrated that 2D CapsNets can effectively segment lung tissues on CT images and 

muscle and fat tissues on thigh MR images. Their group similarly found that CapsNets can segment images with 

performance rivaling UNet-based models while requiring with less than 10% of the memory required by UNet-

based models. Our study builds upon prior studies by showing the efficacy of CapsNets for segmenting 

neuroanatomical substructures on brain MRIs. Additionally, compared to prior work, we have implemented 3D 

CapsNet architecture, which has not been previously described in the literature.   

 

Previous studies have suggested that CapsNets are able to generalize beyond their training data.18,19 Hinton et al 

demonstrated that CapsNets can learn spatial information about the objects in the image, and can then generalize 

this information beyond what is present in the training data, which gives CapsNet out-of-distribution generalization 

capability.18 The ability to segment out-of-distribution images was also shown by LaLonde et al for their 2D 

CapsNet model that segments images.19 We build upon previous studies by demonstrating out-of-distribution 

generalizability of 3D CapsNets for segmenting medical images.  



 

Although we found CapsNets to be effective in biomedical image segmentation, previous studies on biomedical 

imaging have shown mixed results.35 Survarachakan et al previously found 2D CapsNets to be effective for 

segmenting heart structures, but ineffective for segmenting hippocampus on brain images.35 Our more favorable 

results in segmenting hippocampus are likely because of the 3D structure of our CapsNet, which can use the 

contextual information in the volume of the image rather than just a slice of the image, to better segment the complex 

shape of the hippocampus.  

 

Our study has several limitations which should be noted. Our models were only tested on three brain structures that 

are commonly segmented on brain MRIs, meaning that our findings may not generalize across other imaging 

modalities and anatomic structures. Nevertheless, our findings show the efficacy of CapsNets on brain structures 

with different levels of segmentation difficulty, suggesting potential utility for a variety of scenarios. Computational 

efficiency across models was measured using the same computing resources and GPU memory, and our findings 

may not translate to different computational settings. Future studies can further explore the relative computational 

efficiency of CapsNets compared to other auto-segmentation models across different computing environments. 

Lastly, we only compared the efficacy of CapsNets withUNet-based models. While there are multiple other auto-

segmentation models, UNet-based models are currently viewed as the most successful deep-learning models for 

segmenting biomedical images. Further studies comparing the CapsNet to other deep-learning models are an area 

of future research. 

 

Conclusion 

 

In this study, we showed that 3D CapsNets can accurately segment neuroanatomical structures on brain MR images 

with segmentation accuracy similar to UNet-based models. We also showed that CapsNets outperform UNet-based 

models in segmenting out-of-distribution data. CapsNets are also more computationally efficient compared to UNet-

based models, since they train faster and require less computation memory. 
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Figure 1: CapsNet (A), UNet (B), and self-configured nnUNet (C) architectures. All models process 3D images 

in all layers, with dimensions shown on the left side. D, H, and W respectively represent the depth, height, and width 

of the image in each layer. In (A), the number over the Conv1 layer represents the number of channels. The numbers 

over the capsule layers (ConvCaps, DeconvCaps, and FinalCaps) represent the number of pose components. The 

stacked layers represent capsule channels. In (B) and (C), the numbers over each layer represent the number of 

channels. In UNet and nnUNet, the convolutions have stride=1 and the transposed convolutions have stride = 2. 

Please note that the numbers over capsule layers show the number of pose components, while the numbers over 

non-capsule layers show the number of channels.  

 

  



 

 

  



Table 1: Study participants tabulated by the training, validation, and test sets.  

 

Data Partitions 

Number of 

MRI volumes 

Number of 

patients 

Age 

mean ± SD 

Gender† Diagnosis†† 

Training set 3199 841 76 ± 7 42% F, 58% M 29% CN, 54% MCI, 17% AD 

Validation set 117 30 75 ± 6 30% F, 70% M 21% CN, 59% MCI, 20% AD 

Test set 114 30 77 ± 7 33% F, 67% M 27% CN, 47% MCI, 26% AD 

 

† F: female; M: male. 

†† CN: cognitively normal; MCI: mild cognitive impairment; AD: Alzheimer’s disease. 

 

  



Figure 2: CapsNet, UNet, and nnUNet segmentation of brain structures that were represented in the training 

data. Segmentations for three structures are shown: 3rd ventricle, thalamus, and hippocampus. Target 

segmentations and model predictions are respectively shown in red and white. Dice scores are provided for the 

entire volume of the segmented structure in this patient (who was randomly chosen from the test set).   



 

 

 

 

  

Dice score: 92% 

CapsNet UNet 

Dice score: 92% 

Dice score: 95% Dice score: 97% 

CapsNet 

Dice score: 94% 

UNet 

CapsNet UNet 

Dice score: 94% 

3rd Ventricle 3rd Ventricle 

Thalamus Thalamus 

Hippocampus Hippocampus 

Dice score: 95% 

Dice score: 95% 

Dice score: 92% 



Table 2: Comparing the segmentation efficacy of CapsNets, UNets, and nnUNets in segmenting brain 

structures that were represented in the training data. The segmentation accuracy was quantified using Dice 

scores on the test (114 brain MRIs). The 3rd ventricle, thalamus, and hippocampus respectively represent easy, 

medium, and difficult structures to segment. 

 

Brain 

structure 

CapsNet Dice  

(95% CI) 

UNet Dice 

(95% CI) 

nnUNet Dice 

(95% CI) 

3rd ventricle 
95% 

(94 to 96) 

96 % 

(95 to 97) 

96% 

(95 to 97) 

Thalamus 
94% 

(93 to 95) 

95 % 

(94 to 96) 

94% 

(92 to 96) 

Hippocampus 
92 % 

(91 to 93) 

93 % 

(92 to 94) 

92% 

(91 to 93) 
 

 

 

 

 

 

  



Figure 3: CapsNets outperforms UNets in segmenting images that were not represented in the training data. 

Both models were trained to segment right brain structures, and were tested to segment contralateral left brain 

structures. Target segmentations and model predictions are respectively shown in red and white. Dice scores are 

provided for the entire volume of the segmented structure in this patient. The CapsNet partially segmented the 

contralateral thalamus and hippocampus, but the UNet poorly segmented the thalamus and entirely missed the 

hippocampus. 

 

  

CapsNet UNet 

Dice score: 45% Dice score: 0% 

Contralateral Hippocampus 

CapsNet 

Dice score: 56% 

Contralateral Thalamus 

Contralateral Hippocampus 

UNet 

Contralateral Thalamus 

Dice score: 3% 



Table 3: Comparing the efficacy of CapsNets and UNets in segmenting images that were not represented in 

the training data. Both models were trained to segment the right thalamus and hippocampus. Then, they were 

tested on segmenting the contralateral left thalamus and hippocampus. 

 

Brain 

structure 

CapsNet Dice  

(95% CI) 

UNet Dice 

(95% CI) 

CapsNet vs UNet 

P-value† 

Thalamus 
52%  

(46 to 58) 

16%  

(11 to 21) 
< 0.01 

Hippocampus 
43%  

(38 to 48) 

10%  

(6 to 14) 
< 0.01 

 

† Paired-samples t-test, degrees of freedom = 114 - 1 = 113 

 

  



Figure 4: Comparing CapsNets, UNets, and nnUNets when training data is limited. When the size of the 

training set was decreased from 3199 to 120 brain MRIs, hippocampus segmentation accuracy  (measured by Dice 

score) of all three models did not decrease more than 1%. Further decrease in the size of the training set down to 60 

MRIs led to worsened segmentation accuracy.  

  



Figure 5: Comparing the computational efficiency between CapsNets, UNets, and nnUNets, in terms of 

memory requirements (A) and computational speed (B). The bars in (A) represent the computational memory 

required to accommodate the total size of each model, including the parameters plus the cumulative size of the 

forward- and backward-pass feature volumes. CapsNet trains faster (B), given that its trainable parameters are one 

order of magnitude fewer than UNets or nnUNets. The training times represent the time that each model took to 

converge for segmenting hippocampus, divided by the number of training examples and the training epochs (to 

make training times comparable with test times). The test times represent how fast a fully-trained model can segment 

a brain image. 
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Appendix 1: MRI acquisition parameters 

 
 

Field strength = 3.0 tesla 

Coil = 8HR Brain 

 

Weighting = T1 

Flip angle=8.0 degree 

TR = 6.6 ms 

TE = 2.8 ms 

TI = 900.0 ms 

 

Acquisition type = 3D 

Acquisition plane = Sagittal 

Matrix size = 256×256×166 pixels (X×Y×Z) 

Pixel size = 1×1×1.2 mm (X×Y×Z) 

Pixel spacing: along X direction = 1 mm; along Y direction= 1 mm 

 
  



Appendix 2: Pre-Processing 
 

We corrected for intensity inhomogeneities including B1-field variations. Our pre-processing pipeline first registers the 

brain image to the MNI305 atlas. Then, pixel intensities are used to roughly segment the white matter. The variations in the 

pixel intensities in the white matter are then used to estimate the B1 field map Finally, B1 bias field correction is done by 

dividing the pixel intensities by the estimated bias field.1 

 

The next step is the removal of the skull, face, and neck, only leaving the brain. We used a hybrid method of skull stripping 

that combines a watershed algorithm and a deformable surface model.2 This method first roughly segments the white-matter 

based on pixel intensities. Then, watershed algorithms are used to find the gray-white matter junction and the brain surface. 

Next, a deformable surface model is used to model the brain surface. The curvature of the brain surface at each point is 

computed, and these curvatures are used to register the brain surface onto an atlas. The atlas is formed by computing the 

curvatures of the brain sulci and gyri in several subjects. The reconstructed brain surface, registered to the atlas, is then 

automatically corrected in case the curvatures in a particular region of the surface do not make sense. The resulting corrected 

brain surface model is used for skull stripping.2 

 

To overcome memory limitations, we cropped 64×64×64-voxel boxes of the MRI volume that contained each segmentation 

target. The box is automatically placed over the expected location of each segmentation target based on the expected 

coordinates of the segmentation target. The box is large enough to accommodate inter-subject variability in the expected 

location of each segmentation target.  

 

     

Skull 

stripping 

Intensity 

inhomogeneity 

correction 

Crop MRI volume 

around the brain 

64×64×64  

segmentation patch 

Figure S3: Pre-processing steps.

 



Appendix 3: Capsule Networks 
 

Capsule networks (CapsNets) can detect objects 

when their spatial features change.3 This is a 

fundamental property of CapsNets that enables 

them to perform well when a test example is not 

represented in the training data. (A) shows the 

sagittal T1-weighted brain MRI of a patient with 

a forward head tilt, and (B) shows the MRI of 

another patient with a backward head tilt. White 

arrows (connecting the posterior commissure to 

the anterior commissure) demonstrate the 

orientation of the brain. Let’s assume that we 

have a CapsNet that is trained to segment the 

entire brain. Let’s also assume that the training set only 

contains patients with forward head tilt (like in A). An 

ideal CapsNet should generalize to segment the brain in 

patients with a backward tilt (like in B). To achieve this 

goal, CapsNets encode the spatial features of each 

structure that they detect. The spatial features of the 

brain are encoded in a pose vector. The pose contains 

spatial features such as orientation, position, size, 

curvature, etc. Here, the orientation of the brain (one of 

the spatial features) is shown by the white arrow. Our 

goal is to illustrate how CapsNets detect a whole (the 

brain) when parts (frontal pole, corpus callosum, 

brainstem, cerebellum, occipital pole, etc.) all vote for 

the same spatial features of the whole.  

 

CapsNets are composed of three main ingredients: 1) 

capsules that each encode a structure together with the 

pose of that structure; 2) a supervised learning paradigm 

that learns the transforms between the poses of the parts 

(e.g. corpus callosum, brainstem) and the pose of the 

whole (e.g. the entire brain); and 3) a clustering 

paradigm that detects a whole if the poses of all parts 

(after getting transformed) vote for matching poses of 

the whole. Therefore, any CapsNet needs to: 1) learn the 

transforms between the poses of parts and wholes; and 

2) cluster the votes of the parts to detect wholes.  

 

(C) shows a CapsNet that has already detected parts of 

the brain and has encoded their spatial features 

(demonstrated by the smaller white arrow over each 

part). The red curved arrows demonstrate the transforms 

between the poses of the part and the pose of the whole. 

After transformation, each part votes for a candidate pose of the whole. If all these votes match, the whole is present. Please 

note that we are only showing the orientations here for simplicity, but the pose vectors encode more complex spatial features. 

 

CapsNet 

C 



In (E), We want the CapsNet to detect the backward-tilted brain 

while the model is only trained on forward-tilted brain images (such 

as in C). We can imagine that (E) is just the rotated version of (C), 

as demonstrated in (D). The parts are all rotated clockwise 

(compared to the poses of the parts in C). However, the same 

transforms (red curved arrows) can still transform the poses of the 

parts into the candidate poses of the whole. The candidate poses of 

the whole still match, and therefore the whole is detected. This 

process does not need any data augmentation: an ideal CapsNet can 

detect objects when they are rotated or have undergone other spatial 

changes, without the need for any data augmentation. This is 

because the CapsNet can still use the same transforms between the 

parts and the wholes (red curved arrows) even though the input 

image has rotated. Therefore, a change in the poses of the parts will 

cause an equivalent change in the pose of the whole, while the 

relationship between the poses of the parts and the whole remains 

the same. This is a powerful capability that makes CapsNets 

equivariant to the changes in the inputs: spatial change in the inputs 

will cause an equivalent spatial change in the pose of the detected 

objects.3 Such CapsNets can still detect the changed objects and will 

encode these changes in the pose of the detected objects. As a result, 

a CapsNet that is trained on forward-tilted brains (such as in C) can 

detect backward-tilted brains (such as in E) without the need for any 

data augmentation.  

 

This approach is fundamentally different from other machine 

learning methods such as U-Nets (G), which do not have 

equivariance capabilities. Instead, the max-pooling layers in U-Nets 

try to kill information about the changes in the inputs to make the 

model invariant to the changed inputs. In essence, CapsNets use 

equivariance to encode and model the spatial changes in the inputs, 

making CapsNets more efficient in handling variations of the same 

object.3 On the other hand, U-Nets use information killing (in max-

pooling layers) to make the model invariant to the spatial changes 

in the inputs. Therefore, U-Nets cannot efficiently detect variations 

of the same object.  

 

(F) demonstrates why CapsNets are less susceptible to adversarial 

attacks compared to U-Nets (H). Here, this adversarial image 

contains all parts of the brain but with orientations that do not make 

sense, not making a whole. When the poses of the parts are 

transformed into the candidate poses of the whole (using the same 

transforms as in C), the candidate poses of the whole do not match. 

Therefore, the CapsNet would not detect a brain because of the mismatch between the candidate poses of the brain (F). On 

the other hand, a U-Net that is trained using augmented data may detect the parts. Such a U-Net has no mechanism to encode 

the orientation and other spatial features of each part. In the U-Net feature space, each part is either present or absent. Since 

all parts are present on this adversarial image, the U-Net can be fooled to detect the entire brain (H).  

 

CapsNet 

U-Net 

U-Net 

F 

G 

H 



We can indeed use data augmentation to train U-Nets to detect objects with changed spatial features. We can also use 

adversarial training to prevent U-Nets from detecting adversarial images. But these inefficiencies lead to the need for a 

larger U-Net model. On the other hand, CapsNets handle the changed spatial features in a smarter way. This allows 

CapsNets, which are one order of magnitude smaller compared to U-Nets, to achieve similar results.4 

  



Appendix 4: Decision Choices to Develop Capsule Networks 

 

 

To develop 3D CapsNets and make them work for volumetric brain MRI segmentation, we explored multiple architecture 

options, hyperparameters, loss functions, and implementation details to find optimal solutions. We used the validation set 

to explore these questions and select the best-performing model. We tested the best-performing model on the test set only 

once. Here are the design options that we explored and how we chose the winning options: 

 

1. Network architecture: we built on the previous work by LaLonde et all4 to develop a 3D capsule network architecture. 

While Figure 1.A in the paper shows the architecture that performed best on the validation set, we explored the following 

options to get to the final architecture:  

a. Kernel size: we explored 3×3×3 and 5×5×5 kernels; the latter performed better. 

b. Downsampling method: we explored max-pooling versus 5×5×5 convolutions with stride of 2; the latter 

performed better. 

c. Upsampling method: we explored tri-linear interpolation versus 4×4×4 transposed convolutions with stride of 

2; the latter performed better. 

d. Number of dynamic routing iterations to find agreeing pose vectors: we explored 1, 2, and 3 iternations for 

dynamic routing between capsule layers. As shown in Figure 1.A in the paper, the best-performing network 

uses 1 iteration for the first capsule layer, and 3 iterations for subsequent capsule layers. 

e. Number of capsule types in each layer: we tested up to 8 capsule types in the deepest part of the network, which 

performed best. Memory limitations did not let us increase the number of capsule types any further. 

f. Number of pose vector elements in each capsule: we tested up to 64 pose vector elements in the deepest part of 

the network, which performed best. Memory limitations did not allow us to further increase the number of pose 

vector elements. 

 

2. Optimizer hyperparameters: we used Adam optimizer with dynamic scheduling of the learning rate. We explored the 

following ranges of hyperparameters to select the best-performing model over the validation set. Since the best-

performing hyperparameters are detailed in Appendix 7, we are not listing them here again: 

a. Initial learning rate: we explored values ranging from 0.02 down to 0.001. 

b. Minimal learning rate: we explored values ranging from 0.001 down to 0.0001. 

c. Dynamic learning rate scheduling patience: if the model performance does not improve over a number of 

training epochs (in our case, mini-epochs), the learning rate scheduler decreases the learning rate by a factor. 

The number of epochs that the learning rate scheduler “waits” before decreases the learning rate, tolerating no 

improvement in performance over the validation set, is determined by the learning rate scheduler's patience. 

We explored patience values ranging from 5 to 10. 

d. Learning rate decrement factor: when the model performance does not improve (over the validation set) after a 

number of epochs (determined by patience), the learning rate scheduler divides the learning rate by a number. 

We explored values ranging from 2 to 10. 

 

3. Loss functions: we explored the following loss functions and found out that Dice loss perform best for our task: 

a. Dice loss 

b. Weighted average of Dice loss and cross-entropy loss 

c. Intersection over union loss 

d. Weighted average of intersections over union loss and cross-entropy loss 

e. Soft dice loss 

Our implementation of these loss functions is available at:  

https://github.com/Aneja-Lab-Yale/Aneja-Lab-Public-CapsNet/blob/main/loss_functions.py 

 

4. Other design options: 

https://github.com/Aneja-Lab-Yale/Aneja-Lab-Public-CapsNet/blob/main/loss_functions.py


a. Batch size: we explored batch sizes ranging from 2 to 8. The batch size of 4 performed best over the validartion 

set. 

b. Patch size: we explored patch sizes ranging from 32×32×32 up to 128×128×128. While the larger patch size of 

128×128×128 allows the network to use more contextual information in the image to segment each structure, 

larger patch sizes use more computational memory, forcing us to change other memory-intensive design options 

in the networks such as decreasing the number of capsule types in each layer or decreasing the number of pose 

elements in each capsule. Our experiments showed that a patch size of 64×64×64 led to the best-performing 

model over the validation set. 

c. Converting the activations in the final capsule layer into segmentations: we introduced a forgiving paradigm to 

convert final-layer activations into segmentations. This forgiving paradigm accelerated CapsNet training and 

made the training process stable. Appendix 5 details this paradigm. 

  



Appendix 5: Converting Final Layer Activations into Segmentations 

 
 

The final layer of the 3D CapsNet is composed of one capsule channel that learns to activate capsules within the 

segmentation target and deactivate them outside the target. Activation of a capsule is determined by the length of its pose 

vector, which is a number between 0 and 1. The ground truth segmentations are coded similarly: pixels outside and inside 

the segmentation target are respectively coded by 0 and 1.  

 

During testing, the length of the final layer’s pose vectors is thresholded at 𝑇: 

 

𝑓𝑡𝑒𝑠𝑡(𝑥𝑖,𝑗,𝑘) = {
0, ‖𝒗𝑖,𝑗,𝑘‖ < 𝑇

1, ‖𝒗𝑖,𝑗,𝑘‖ ≥ 𝑇
 

 

where 𝑓(𝑥𝑖,𝑗,𝑘) is the prediction of the CapsNet for the input voxel 𝑥𝑖,𝑗,𝑘 and ‖𝒗𝑖,𝑗,𝑘‖ is the length of the final layer’s pose 

vector 𝒗𝑖,𝑗,𝑘 at the location (i,j,k) of the MRI volume (please note that 𝒗𝑖,𝑗,𝑘 is itself a function of 𝑥𝑖,𝑗,𝑘, the function being 

the entire CapsNet that takes 𝑥𝑖,𝑗,𝑘 as the input and gives 𝒗𝑖,𝑗,𝑘 as the output).  

 

During training, the length of the final layer’s pose vector and each location (i,j,k) undergo a piecewise linear transform as 

follows: 

 

𝑓𝑡𝑟𝑎𝑖𝑛(𝑥𝑖,𝑗,𝑘) =

{
 
 

 
 
 0                       ,                 ‖𝒗𝑖,𝑗,𝑘‖ < 𝑇1

‖𝒗𝑖,𝑗,𝑘‖ − 𝑇1
𝑇2 − 𝑇1

  ,       𝑇1 ≤ ‖𝒗𝑖,𝑗,𝑘‖ < 𝑇2

  1                       ,                 ‖𝒗𝑖,𝑗,𝑘‖ ≥ 𝑇2

 

 

If we  set 𝑇 = 0.5  𝑇1 = 0.1 and 𝑇2 = 0.9, we get the following diagrams for 𝑓𝑡𝑒𝑠𝑡(𝑥𝑖,𝑗,𝑘) and 𝑓𝑡𝑟𝑎𝑖𝑛(𝑥𝑖,𝑗,𝑘) as functions of 

‖𝒗𝑖,𝑗,𝑘‖ :  

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

During training, the piecewise conversion (formula 2) enables a forgiving paradigm for the length of the final layer’s pose 

vectors: if the length of the vector is more than 0.9 for a voxel inside the segmentation target, the loss for that voxel would 

be zero. Intuitively, a pose vector with a length more than 0.9 for a voxel inside the segmentation target is considered “good 

enough”, so the training algorithm should not try to perfect the length of this vector to 1. Similarly, a pose vector with a 
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𝑘
) 

‖𝒗𝑖,𝑗,𝑘‖ ‖𝒗𝑖,𝑗,𝑘‖ 

(1) 

(2) 



length less than 0.1 is considered good enough for a voxel outside the segmentation target, so the training algorithm should 

not try to perfect the length of this vector to 0. This forgiving training paradigm makes the training of CapsNet stable because 

this paradigm does not try to perfect the length of the pose vectors of the final layer to 0’s and 1’s. In contrast, if a training 

paradigm tries to perfect the length of the pose vectors to 0’s and 1’s, that training paradigm becomes unstable because the 

pose vectors can assume a length close to 0 or 1, but not exactly 0 or 1. Remember that the pose vectors are generated by 

the squash function,5 which cannot generate vectors with a length equal to 0 or 1: 

 

𝒗𝑖,𝑗,𝑘 = 𝑠𝑞𝑢𝑎𝑠ℎ(𝒔𝑖,𝑗,𝑘) =
𝒔𝑖,𝑗,𝑘

‖𝒔𝑖,𝑗,𝑘‖
.
‖𝒔𝑖,𝑗,𝑘‖

2

1 + ‖𝒔𝑖,𝑗,𝑘‖
2 

 

where 𝒔𝑖,𝑗,𝑘 is the total input to the final layer capsule at the location (i,j,k), and 𝒗𝑖,𝑗,𝑘 is the pose vector of the final layer 

capsule at that location.  

 

Our experiments show that training with the forgiving paradigm is more stable and leads to faster convergence. When we 

did not convert the length of the pose vector ‖𝒗𝑖,𝑗,𝑘‖ using the conversion function (formula 2), CapsNet training became 

unstable. Here we show the evolution of the training set and the validation set losses during 10 epochs of training, with and 

without the forgiving paradigm:  

 

 

 

We additionally searched for the optimal conversion functions. The piecewise linear function led to the most stable training 

and fastest convergence. Here we describe other functions that we studied (together with their plots) so that other groups 

would be aware of these conversion functions that we think are suboptimal for this task:  

 

𝑓𝑡𝑟𝑎𝑖𝑛(𝑥𝑖,𝑗,𝑘) = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝑞. (‖𝒗𝑖,𝑗,𝑘‖ − 𝑇)) =
1

1 + 𝑒−𝑞.(‖𝒗𝑖,𝑗,𝑘‖−𝑇)
 

  

Training with the forgiving paradigm (with conversion) 

(3) 

(4) 

Training without the forgiving paradigm (without conversion) 



We set 𝑇 = 0.5 and tried different values for 𝑞 (10, 15, and 20): 

 

 

 

We also examined the piecewise conversion function (formula 2) with values for 𝑇1 and 𝑇2 other than 0.1 and 0.9: 

 

 

 

 

 

 

 

 

 

 

 

 

 

None of these conversion functions was as effective as the piecewise function with 𝑇1 = 0.1 and 𝑇2 = 0.9 in improving the 

stability and convergence of CapsNet training. 
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Appendix 6: Findings Agreeing Pose Vectors 
 

Let’s assume the previous capsule layers has six capsule channels, each outputting the vote vector of a part (v1 to v6). To 

find the vote vectors that agree, we first compute the vector summation of all vote vectors (v): 

𝑣 =∑𝑣𝑖
𝑖

 

Then, we compute the inner products between each vote vector vi and the sum v, yielding weights for each vote vector wi: 

𝑤𝑖 = 𝑣𝑖 . 𝑣 

 

Please note that each wi is a scalar. Next, we re-compute the vector sum v using the weighted average of the vote vectors 

using weights wi computed in the previous step : 

𝑣 =∑𝑤𝑖
𝑖

𝑣𝑖 

This process is often repeated for three iterations. The number of iterations is a hyperparameter that should be set between 

capsule layers. This whole process increases the weights of the vectors that align with the sum (v1, v2, and v6 in this 

example) and decreases the weights of the vectors that do not align with the sum (v3, v4, and v5 in this example).  

 

 
  



Appendix 7: Training hyperparameters 
 

 

 

Training set size (MRI volumes):   3199 

Validation set size (MRI volumes):   117 

Test set size (MRI volumes):   114 

 

 

Training batch size (MRI volumes):   4 

Training mini-epoch size: 30 batches: during training, the validation set loss was computed after 

each mini-epoch 

 

Training epochs:     50 

Optimizer:     Adam 

Optimizer hyperparameters:    𝛽1 = 0.9, 𝛽2 = 0.999, 𝜖 = 10−8 

 

 

Initial learning rate:    0.002 

Minimal learning rate:    0.0001 

Learning rate scheduling:   Dynamic (via monitoring the validation set loss during training): 

Learning rate was decreased by half if the validation set loss did not 

improve over 10 mini-epochs 
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