
3D Capsule Networks for Brain Image Segmentation

Authors

Arman Avesta, MD,1,2,3 Yongfeng Hui, BS, MPH,2,3 Mariam Aboian, MD, PhD,1 James Duncan, PhD,1,4,5 Harlan

M. Krumholz, MD, MS,3,6 Sanjay Aneja, MD.2,3,5

1 Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06510

2 Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06510

3 Center for Outcomes Research and Evaluation, Yale School of Medicine, New Haven, CT 06510

4 Department of Statistics and Data Science, Yale University, New Haven, CT 06510

5 Department of Biomedical Engineering, Yale University, New Haven, CT 06510

6 Division of Cardiovascular Medicine, Yale School of Medicine, New Haven, CT 06510

Corresponding author:

Sanjay Aneja, MD

Assistant Professor, Department of Therapeutic Radiology

Yale School of Medicine

Center for Outcomes Research and Evaluation

195 Church St 6th Floor

New Haven, CT 06510

Email: sanjay.aneja@yale.edu

Tel: Tel: 203-200-2100

Fax: 203-737-1467

Word counts:

• Abstract: 222 words

• Manuscript: 2622 words

mailto:sanjay.aneja@yale.edu

Abstract

Background and Purpose: Current auto-segmentation models of brain structures, UNets and nnUNets, have

limitations, including the inability to segment images that are not represented during training and lack of

computational efficiency. 3D capsule networks (CapsNets) have the potential to address these limitations.

Methods: We used 3430 brain MRIs, acquired in a multi-institutional study, to train and validate our models. We

compared our CapsNet with standard alternatives, UNets and nnUNets, based on segmentation efficacy (Dice

scores), segmentation performance when the image is not well-represented in the training data, performance when

the training data are limited, and computational efficiency including required memory and computational speed.

Results: The CapsNet segmented the third ventricle, thalamus, and hippocampus with Dice scores of 95%, 94%,

and 92%, respectively, which were within 1% of the Dice scores of UNets and nnUNets. The CapsNet

significantly outperformed UNets in segmenting images that are not well-represented in the training data, with

Dice scores 30% higher. The computational memory required for the CapsNet is less than a tenth of the memory

required for UNets or nnUNets. The CapsNet is also more than 25% faster to train compared with UNet and

nnUNet.

Conclusion: We developed and validated a CapsNet that is effective in segmenting brain images, can segment

images that are not well-represented in the training data, and are computationally efficient compared with

alternatives.

Abbreviations:

• ADNI: Alzheimer’s disease neuroimaging initiative

• CapsNet: capsule network

• CPU: central processing unit

• CT: computed tomography

• GB: giga-byte

• GPU: graphics processing unit

• MRI: magnetic resonance imaging

Introduction

Neuroanatomical image segmentation is an important component in the management of various neurological

disorders.1–3 Accurate segmentation of anatomical structures on brain magnetic resonance images (MRIs) is an

essential step in a variety of neurosurgical and radiation therapy procedures.1,3–6 Manual segmentation is time-

consuming and is prone to intra- and inter-observer variability.7,8 With the advent of deep learning to automate

various image analysis tasks,9,10 there has been increasing enthusiasm to use deep learning for brain image auto-

segmentation.11–14

UNets are among the most popular and successful deep learning auto-segmentation algorithms.11,15,16 Despite the

broad success of UNets in segmenting anatomical structures across various imaging modalities, they have well

described limitations. UNets perform best on images that closely resemble the images used for training, but

underperform on images that contain variant anatomy or pathologies that change the appearance of normal

anatomy.8 Additionally, UNets have a large number of trainable parameters, hence training and deploying UNets

for image segmentation often requires substantial computational resources that may not be scalable in all clinical

settings.15 There is a need for fast, computationally efficient segmentation algorithms that can segment images not

represented in the training data with high fidelity.

Capsule networks (CapsNets) represent an alternative auto-segmentation method that can potentially overcome the

limitations of UNets.17–19 CapsNets can encode and manipulate spatial information such as location, rotation, and

size about structures within an image, and use this spatial information to produce accurate segmentations. Encoding

spatial information allows CapsNets to generalize well on images that are not well-represented in the data used to

train the algorithm.18,19 Moreover, CapsNets use a smarter paradigm for information encoding which relies on fewer

parameters leading to increased computational efficiency.17–19

Capsule networks have shown promise on some biomedical imaging tasks,19 but have yet to be fully explored for

segmenting anatomical structures on brain MRIs. In this study, we explore the utility of CapsNets for segmenting

anatomical structures on brain MRIs using a multi-institutional dataset of more than 3,000 brain MRIs. We compare

the segmentation efficacy and computational efficiency of CapsNets with popular UNet-based models.

Methods

Dataset

The dataset for this study included 3,430 T1-weighted brain MRI images, belonging to 841 patients from 19

institutions enrolled in Alzheimer’s Disease Neuroimaging Initiative (ADNI) study.20 The inclusion criteria of

ADNI have been previously described.21 On average, each patient underwent four MRI acquisitions. Details of MRI

acquisition parameters are provided in Appendix 1.20 We randomly split the patients into training (3,199 MRI, to

93% of data), validation (117 MRI volumes, 3.5% of data), and test (114 MRI volumes, 3.5% of data) sets. Data

was divided at the patient level to assure that all images belonging to a patient were assigned either the training,

validation, or test set. Patient demographics are provided in Table 1. This study was approved by the Institutional

Review Board of Yale School of Medicine (IRB number 2000027592).

Anatomic Segmentations

We trained our models to segment three anatomical structures of the brain: third ventricle, thalamus, and

hippocampus. These structures were chosen to represent structures with varying degrees of segmentation difficulty.

Preliminary ground-truth segmentations were initially generated using FreeSurfer,22–24 and then manually corrected

by a board-eligible radiologist with nine years of experience in neuroimaging research.

Image Pre-Processing

MRI preprocessing included correction for intensity inhomogeneities, including B1-field variations.25,26 The 3D

brain volume was cropped after removing the skull, face, and neck tissues 27 To overcome memory limitations,

segmentations were done on 64×64×64-voxel patches of the MRI volume that contained the segmentation target.

The patch was automatically placed over the expected location of the segmentation target using pre-defined

coordinates referenced from the center of the image. The coordinates of each patch were computed during training

and were fixed during testing, without any manual input and without using the ground-truth segmentations. Details

of pre-processing are provided in Appendix 2.

Capsule Networks

CapsNets are composed of three main components: 1) capsules that each encode a structure together with the pose

of that structure: the pose is an n-dimensional vector that learns to encode orientation, size, curvature, location, and

other spatial information about the structure; 2) a supervised learning paradigm that learns how to transform the

poses of the parts (e.g. head and tail of hippocampus) to the pose of the whole (e.g. the entire hippocampus); and 3)

a clustering paradigm that detects a whole if the poses of all parts transform into matching poses of the whole.

Further details regarding differences between CapsNets and other deep learning models are provided in Appendix

3.

2D CapsNets were previously introduced by LaLonde et al to segment one slice of the image at a time.19 We

developed 3D CapsNets for volumetric segmentation of a 3D volume, with the architecture shown in Figure 1.A.

The first layer, Conv1, performs 16 convolutions (5×5×5) on the input volume to generate 16 feature volumes,

which are reshaped into 16D vectors at each voxel. The 16D vector at each voxel is reshaped into a pose that learns

to encode spatial information at that voxel. The next layer, PrimaryCaps2, has two capsule channels that learn two

16D-to-16D convolutional transforms (5×5×5) from the poses of the previous-layer parts to the poses of the next-

layer wholes. Likewise, all capsule layers (green layers in Figure 1.A) learn m-to-n-dimensional transforms from

the poses of parts to the poses of wholes. Our CapsNet has downsampling and upsampling limbs. The downsampling

limb learns what structure is present at each voxel, and the skip connections from downsampling to upsampling

limbs preserve where each structure is on the image. Downsampling is done using 5×5×5 convolutional transforms

with stride = 2. Layers in the deeper parts of CapsNet contain more capsule channels (up to 8) and poses with more

components (up to 64) to be able to encode more complex structures, since each capsule in the deeper parts of the

model should be able to detect complex concepts in the entire image. Upsampling is done using 4×4×4 transposed

convolutional transforms with stride = 2 (turquoise layers in Figure 1A). The final layer, FinalCaps13, contains one

capsule channel that learns to activate capsules within the segmentation target and deactivate them outside the

target. Appendix 4 explains the options that we explored for developing our 3D CapsNets and how we chose the

best design options. Appendix 5 explains how the final layer activations were converted into segmentations. Details

about how the model finds agreeing poses of parts that vote for the pose of the whole are provided in Appendix 6.

Comparisons: UNets and nnUNets

Optimized 3D UNets and nnUNets were also trained on the same training data, 11–13,28 and their segmentation

efficacy and computational efficiency were compared with our CapsNet using the same test data. UNets and

nnUNets have shown strong auto-segmentation performance across a variety of different imaging modalities and

anatomic structures and are among the most commonly used segmentation algorithms in biomedical imaging.11–

13,15,29,30 Figure 1.B shows the architecture of our UNet. The input image undergoes 64 convolutions (3×3×3) to

generate 64 feature maps. These maps then undergo batch normalization and ReLU activation. Similar operations

are carried out again, followed by downampling using max-pooling (2×2×2). The downsampling and upsampling

limbs each include four units. Upsampling is done using 2×2×2 transposed convolutions with stride = 2. The final

layer carries out a 1×1×1 convolution to aggregate all 64 channels, followed by soft thresholding using the sigmoid

function. The model learns to output a number close to 1 for each voxel inside the segmentation target, and a number

close to 0 for each voxel outside the target. We also trained self-configuring nnUNets that automatically learn the

best architecture as well as the optimal training hyperparameters.16 Figure 1.C shows the architecture of the nnUNet

resulting from the self-configuring nnUNet paradigm.

Model Training

The CapsNet and UNet models were trained for 50 epochs using Dice loss and the Adam optimizer.31 Initial learning

rate was set at 0.002. We used dynamic paradigms for learning rate scheduling, with a minimal learning rate of

0.0001. The hyperparameters for our UNet were chosen based on the best-performing model over the validation

set. The hyperparameters for nnUNet were self-configured by the model.16 The training hyperparameters for

CapsNet and UNet are detailed in Appendix 6.

Model Performance

The segmentation efficacy of the three models was measured using Dice scores. To compare the performance of

each segmentation model when training data is limited, we also trained the models using subsets of the training data

with 600, 240, 120, and 60 MRIs. We then compared the segmentation efficacy of the models using the test set.

The relative computational efficiency of the models was measured by 1) the computational memory required to run

the model (in megabytes), 2) the computational time required for training each model, and 3) the time that each

model takes to segment one MRI volume.

Out-of-Distribution Testing

To evaluate the performance of CapsNet and UNet models on the images that were not represented during training,

we trained the models using images of the right hemisphere of the brain that only contained the right thalamus and

right hippocampus. Then, we evaluated the segmentation efficacy of the trained models on the images of the left

hemisphere of the brain that contained the contralateral left thalamus and left hippocampus. Because the left-

hemisphere images in the test set are not represented in the right-hemisphere images in the training set, this

experiment evaluates the out-of-distribution performance of the models. We intentionally did not use any data

augmentation during training to assess out-of-distribution performance of the models. Given that nnUNet paradigm

requires data augmentation, nnUNet was not included in this experiment.

Implementation

Image pre-processing was done using Python (version 3.9) and FreeSurfer (version 7). PyTorch (version 1.11) was

used for model development and testing. Training and testing of the models were run on GPU-equipped servers (4

vCPUs, 61 GB RAM, 12 GB NVIDIA GK210 GPU with Tesla K80 Accelerators). Code used to train and test our

models, our pre-trained models, and a sample MRI are available on our lab’s GitHub page: www.github.com/Aneja-

Lab-Yale/Aneja-Lab-Public-CapsNet.

Results

All three segmentation models showed high performance across all three neuroanatomical structures with Dice

scores above 90% (Table 2). Performance was highest for the 3rd ventricle (95%-96%) followed by the thalamus

(94%-95%) and hippocampus (92%-93%). Dice scores between the CapsNet and UNet-based models were within

1% for all neuroanatomical structures.

Segmentation performance for each model remained high across training datasets of varying sizes (Figure 4). When

training on 120 brain MRIs, all three models maintained their segmentation accuracy within 1% when compared to

models trained on 3,199 brain MRIs. Segmentation performance did decrease for all three models when trained on

60 brain MRIs (83% CapsNet, 84% UNet, 88% nnUNet)

Although both CapsNet and UNet had difficulty segmenting contralateral structures, the CapsNet significantly

outperformed the UNet (Thalamus P-value < 0.001, Hippocampus P-value < 0.001) (Table 3). CapsNet models

frequently identified the contralateral structure of interest but underestimated the size of the segmentation, resulting

in Dice scores between 40% and 60%. In contrast, the UNet models frequently failed to identify the contralateral

structure of interest, resulting in Dice scores lower than 20% (Figure 3).

The CapsNet was more computationally efficient compared to UNet-based models (Figure 5). The CapsNet required

228 MBs, compared to 1,364 MBs for UNet and 1,410 MBs for nnUNet. The CapsNet trained 25% faster than the

UNet (1.5s v 2s per sample) and 100% faster than the nnUNet (1.5s vs 3s per sample). When we compared the

deployment times of the fully-trained models, CapsNet and UNet could segment images equally fast (0.9s per

sample) which was slightly faster than the nnUNet (1.1s per sample).

Discussion

Neuroanatomic segmentation of brain structures is an essential component in the treatment of various neurologic

disorders. Deep-learning-based auto-segmentation methods have shown the ability to segment brain images with

high fidelity, which was previously a time-intensive task.13,14 In this study, we compared the segmentation efficacy

and computational efficiency of CapsNets with UNet-based auto-segmentation models. We found CapsNets to be

reliable and computationally efficient, achieving segmentation accuracy comparable to commonly-used UNet-

based models. Moreover, we found CapsNets to have higher segmentation performance on out-of-distribution data,

suggesting an ability to generalize beyond their training data.

Our results corroborate previous studies demonstrating the ability of deep learning models to reliably segment

anatomical structures on diagnostic images.11,12,14 UNet-based models have been shown to effectively segment

normal anatomy across a variety of different imaging modalities including CT, MRI, and Xray images.15,29,30,32–34

Moroever, Isensee et al showed the ability of nnUNets to generate reliable segmentations across 23 biomedical

image segmentation tasks with automated hyperparameter optimization. We have extended prior work by

demonstrating similar segmentation efficacy between CapsNets and UNet-based models with CapsNets being

notably more computationally efficient. Our CapsNets require less than 10% the amount of memory required by

UNet-based methods and trains 25% faster.

Our findings are consistent with prior studies demonstrating the efficacy of CapsNets for image segmentation.19,35

LaLonde et al previously demonstrated that 2D CapsNets can effectively segment lung tissues on CT images and

muscle and fat tissues on thigh MR images. Their group similarly found that CapsNets can segment images with

performance rivaling UNet-based models while requiring with less than 10% of the memory required by UNet-

based models. Our study builds upon prior studies by showing the efficacy of CapsNets for segmenting

neuroanatomical substructures on brain MRIs. Additionally, compared to prior work, we have implemented 3D

CapsNet architecture, which has not been previously described in the literature.

Previous studies have suggested that CapsNets are able to generalize beyond their training data.18,19 Hinton et al

demonstrated that CapsNets can learn spatial information about the objects in the image, and can then generalize

this information beyond what is present in the training data, which gives CapsNet out-of-distribution generalization

capability.18 The ability to segment out-of-distribution images was also shown by LaLonde et al for their 2D

CapsNet model that segments images.19 We build upon previous studies by demonstrating out-of-distribution

generalizability of 3D CapsNets for segmenting medical images.

Although we found CapsNets to be effective in biomedical image segmentation, previous studies on biomedical

imaging have shown mixed results.35 Survarachakan et al previously found 2D CapsNets to be effective for

segmenting heart structures, but ineffective for segmenting hippocampus on brain images.35 Our more favorable

results in segmenting hippocampus are likely because of the 3D structure of our CapsNet, which can use the

contextual information in the volume of the image rather than just a slice of the image, to better segment the complex

shape of the hippocampus.

Our study has several limitations which should be noted. Our models were only tested on three brain structures that

are commonly segmented on brain MRIs, meaning that our findings may not generalize across other imaging

modalities and anatomic structures. Nevertheless, our findings show the efficacy of CapsNets on brain structures

with different levels of segmentation difficulty, suggesting potential utility for a variety of scenarios. Computational

efficiency across models was measured using the same computing resources and GPU memory, and our findings

may not translate to different computational settings. Future studies can further explore the relative computational

efficiency of CapsNets compared to other auto-segmentation models across different computing environments.

Lastly, we only compared the efficacy of CapsNets withUNet-based models. While there are multiple other auto-

segmentation models, UNet-based models are currently viewed as the most successful deep-learning models for

segmenting biomedical images. Further studies comparing the CapsNet to other deep-learning models are an area

of future research.

Conclusion

In this study, we showed that 3D CapsNets can accurately segment neuroanatomical structures on brain MR images

with segmentation accuracy similar to UNet-based models. We also showed that CapsNets outperform UNet-based

models in segmenting out-of-distribution data. CapsNets are also more computationally efficient compared to UNet-

based models, since they train faster and require less computation memory.

Acknowledgements:

Arman Avesta is a PhD Student in the Investigative Medicine Program at Yale which is supported by CTSA Grant

Number UL1 TR001863 from the National Center for Advancing Translational Science, a component of the

National Institutes of Health (NIH). The contents of this article are solely the responsibility of the authors and do

not necessarily represent the official view of NIH. This work was supported by the Radiological Society of North

America’s Fellow Research Grant Number RF2212RO. The data used in this article were obtained from the

Alzheimer's Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The investigators within the

ADNI contributed to the design and implementation of ADNI but did not participate in the analysis or writing of

this article.

Disclosures:

Arman Avesta:

Arman Avesta is on the trainee editorial board of Radiology: Artificial Intelligence. Journal policy recused the

author from having any role in the peer review of this manuscript.

Research Funding: CTSA UL1 TR001863 from the National Center for Advancing Translational Science.

Potential Conflict of Interest: Arman Avesta holds securities at Hyperfine Inc.

Yongfeng Hui:

The publication was written prior to Yongfeng Hui joining Amazon.

Mariam Aboian:

Research funding: KL2 TR001862 from the National Center for Advancing Translational Science and NIH

roadmap for Medical Research. The contents of this article are solely the responsibility of the authors and do not

necessarily represent the official view of NIH.

James S. Duncan

Patents, Royalties, Other Intellectual Property: Systems, Methods and Apparatuses for Generating Regions of

Interest from Voxel Mode Based Thresholds, Publication No: US20190347788A1, application No. 15/978,904.

Filed on May 14, 2018, Publication Date: November 14, 2019. Inventors: Van Breugel J, Abajian A, Treli- hard J,

Smolka S, Chapiro J, Duncan JS and Lin M. Joint application from Philips, N.V. and Yale University. US Patent

10,832,403 (2020)

Harlan M. Krumholz

Employment: Hugo Health (I), FPrime

Stock and Other Ownership Interests: Element Science, Refactor Health, Hugo Health

Consulting or Advisory Role: UnitedHealthcare, Aetna

Research Funding: Johnson and Johnson

Expert Testimony: Siegfried and Jensen Law Firm, Arnold and Porter Law Firm, Martin/Baughman Law Firm

Sanjay Aneja:

Research Funding: The MedNet, Inc, American Cancer Society, National Science Foundation, Agency for

Healthcare Research and Quality, National Cancer Institute, ASCO, The Patterson Trust

Patents, Royalties, Other Intellectual Property: Provisional patent of deep learning optimization algorithm

Travel, Accommodations, Expenses: Prophet Consulting (I), Hope Foundation

Other Relationship: NRG Oncology Digital Health Working Group, SWOG Digital Engagement Committee,

ASCO mCODE Technical Review Group, Associate Editor for JCO Clinical Cancer Informatics

References

1. Feng CH, Cornell M, Moore KL, et al. Automated contouring and planning pipeline for hippocampal-avoidant whole-

brain radiotherapy. Radiat Oncol Lond Engl 2020;15:251.

2. Dasenbrock HH, See AP, Smalley RJ, et al. Frameless Stereotactic Navigation during Insular Glioma Resection using

Fusion of Three-Dimensional Rotational Angiography and Magnetic Resonance Imaging. World Neurosurg

2019;126:322–30.

3. Dolati P, Gokoglu A, Eichberg D, et al. Multimodal navigated skull base tumor resection using image-based vascular

and cranial nerve segmentation: A prospective pilot study. Surg Neurol Int 2015;6:172.

4. Thompson RF, Valdes G, Fuller CD, et al. Artificial intelligence in radiation oncology: A specialty-wide disruptive

transformation? Radiother Oncol J Eur Soc Ther Radiol Oncol 2018;129:421–6.

5. Kotecha R, Aneja S. Opportunities for integration of artificial intelligence into stereotactic radiosurgery practice. Neuro-

Oncol 2021;23:1629–30.

6. Aneja S, Chang E, Omuro A. Applications of artificial intelligence in neuro-oncology. Curr Opin Neurol 2019;32:850–

6.

7. Nalepa J, Marcinkiewicz M, Kawulok M. Data Augmentation for Brain-Tumor Segmentation: A Review. Front Comput

Neurosci 2019;13:83.

8. Despotović I, Goossens B, Philips W. MRI Segmentation of the Human Brain: Challenges, Methods, and Applications.

Comput Math Methods Med 2015;2015:e450341.

9. Joel MZ, Umrao S, Chang E, et al. Using Adversarial Images to Assess the Robustness of Deep Learning Models

Trained on Diagnostic Images in Oncology. JCO Clin Cancer Inform 2022:e2100170.

10. Chang E, Joel MZ, Chang HY, et al. Comparison of radiomic feature aggregation methods for patients with multiple

tumors. Sci Rep 2021;11:9758.

11. Rudie JD, Weiss DA, Colby JB, et al. Three-dimensional U-Net Convolutional Neural Network for Detection and

Segmentation of Intracranial Metastases. Radiol Artif Intell 2021;3:e200204.

12. Rauschecker AM, Gleason TJ, Nedelec P, et al. Interinstitutional Portability of a Deep Learning Brain MRI Lesion

Segmentation Algorithm. Radiol Artif Intell 2022;4:e200152.

13. Weiss DA, Saluja R, Xie L, et al. Automated multiclass tissue segmentation of clinical brain MRIs with lesions.

NeuroImage Clin 2021;31:102769.

14. Rudie JD, Weiss DA, Saluja R, et al. Multi-Disease Segmentation of Gliomas and White Matter Hyperintensities in the

BraTS Data Using a 3D Convolutional Neural Network. Front Comput Neurosci 2019;13.

15. Punn NS, Agarwal S. Modality specific U-Net variants for biomedical image segmentation: a survey. Artif Intell Rev

https://doi.org/10.1007/s10462-022-10152-1.

16. Isensee F, Jaeger PF, Kohl SAA, et al. nnU-Net: a self-configuring method for deep learning-based biomedical image

segmentation. Nat Methods 2021;18:203–11.

17. Sabour S, Frosst N, Hinton GE. Dynamic routing between capsules. In: Proceedings of the 31st International

Conference on Neural Information Processing Systems. NIPS’17. Red Hook, NY, USA: Curran Associates Inc.;

2017:3859–69.

18. Hinton GE, Sabour S, Frosst N. Matrix capsules with EM routing. In: International Conference on Learning

Representations 2018.

19. LaLonde R, Xu Z, Irmakci I, et al. Capsules for biomedical image segmentation. Med Image Anal 2021;68:101889.

20. Crawford KL, Neu SC, Toga AW. The Image and Data Archive at the Laboratory of Neuro Imaging. NeuroImage

2016;124:1080–3.

21. Weiner M, Petersen R, Aisen P. Alzheimer’s Disease Neuroimaging Initiative. URL:

https://clinicaltrials.gov/ct2/show/NCT00106899. Accessed on: 03/21/2022.; 2014.

22. Clerx L, Gronenschild EHBM, Echavarri C, et al. Can FreeSurfer Compete with Manual Volumetric Measurements in

Alzheimer’s Disease? Curr Alzheimer Res 2015;12:358–67.

23. Ochs AL, Ross DE, Zannoni MD, et al. Comparison of Automated Brain Volume Measures obtained with NeuroQuant

and FreeSurfer. J Neuroimaging Off J Am Soc Neuroimaging 2015;25:721–7.

24. Fischl B. FreeSurfer. NeuroImage 2012;62:774–81.

25. Fischl B, Salat DH, Busa E, et al. Whole brain segmentation: automated labeling of neuroanatomical structures in the

human brain. Neuron 2002;33:341–55.

26. Ganzetti M, Wenderoth N, Mantini D. Quantitative Evaluation of Intensity Inhomogeneity Correction Methods for

Structural MR Brain Images. Neuroinformatics 2016;14:5–21.

27. Somasundaram K, Kalaiselvi T. Automatic brain extraction methods for T1 magnetic resonance images using region

labeling and morphological operations. Comput Biol Med 2011;41:716–25.

28. Cardenas CE, Yang J, Anderson BM, et al. Advances in Auto-Segmentation. Semin Radiat Oncol 2019;29:185–97.

29. Elguindi S, Zelefsky MJ, Jiang J, et al. Deep learning-based auto-segmentation of targets and organs-at-risk for magnetic

resonance imaging only planning of prostate radiotherapy. Phys Imaging Radiat Oncol 2019;12:80–6.

30. Francis S, Jayaraj PB, Pournami PN, et al. ThoraxNet: a 3D U-Net based two-stage framework for OAR segmentation

on thoracic CT images. Phys Eng Sci Med 2022;45:189–203.

31. Yaqub M, Jinchao F, Zia MS, et al. State-of-the-Art CNN Optimizer for Brain Tumor Segmentation in Magnetic

Resonance Images. Brain Sci 2020;10:E427.

32. Yahyatabar M, Jouvet P, Cheriet F. Dense-Unet: a light model for lung fields segmentation in Chest X-Ray images.

Annu Int Conf IEEE Eng Med Biol Soc IEEE Eng Med Biol Soc Annu Int Conf 2020;2020:1242–5.

33. Chi J, Zhang S, Han X, et al. MID-UNet: Multi-input directional UNet for COVID-19 lung infection segmentation from

CT images. Signal Process Image Commun 2022;108:116835.

34. Agnes SA, Anitha J. Efficient multiscale fully convolutional UNet model for segmentation of 3D lung nodule from CT

image. J Med Imaging Bellingham Wash 2022;9:052402.

35. Survarachakan S, Johansen JS, Aarseth M, et al. Capsule Nets for Complex Medical Image Segmentation Tasks. In:

Gjovik, Norway; 2020:15.

Figure 1: CapsNet (A), UNet (B), and self-configured nnUNet (C) architectures. All models process 3D images

in all layers, with dimensions shown on the left side. D, H, and W respectively represent the depth, height, and width

of the image in each layer. In (A), the number over the Conv1 layer represents the number of channels. The numbers

over the capsule layers (ConvCaps, DeconvCaps, and FinalCaps) represent the number of pose components. The

stacked layers represent capsule channels. In (B) and (C), the numbers over each layer represent the number of

channels. In UNet and nnUNet, the convolutions have stride=1 and the transposed convolutions have stride = 2.

Please note that the numbers over capsule layers show the number of pose components, while the numbers over

non-capsule layers show the number of channels.

Table 1: Study participants tabulated by the training, validation, and test sets.

Data Partitions

Number of

MRI volumes

Number of

patients

Age

mean ± SD

Gender† Diagnosis††

Training set 3199 841 76 ± 7 42% F, 58% M 29% CN, 54% MCI, 17% AD

Validation set 117 30 75 ± 6 30% F, 70% M 21% CN, 59% MCI, 20% AD

Test set 114 30 77 ± 7 33% F, 67% M 27% CN, 47% MCI, 26% AD

† F: female; M: male.

†† CN: cognitively normal; MCI: mild cognitive impairment; AD: Alzheimer’s disease.

Figure 2: CapsNet, UNet, and nnUNet segmentation of brain structures that were represented in the training

data. Segmentations for three structures are shown: 3rd ventricle, thalamus, and hippocampus. Target

segmentations and model predictions are respectively shown in red and white. Dice scores are provided for the

entire volume of the segmented structure in this patient (who was randomly chosen from the test set).

Dice score: 92%

CapsNet UNet

Dice score: 92%

Dice score: 95% Dice score: 97%

CapsNet

Dice score: 94%

UNet

CapsNet UNet

Dice score: 94%

3rd Ventricle 3rd Ventricle

Thalamus Thalamus

Hippocampus Hippocampus

Dice score: 95%

Dice score: 95%

Dice score: 92%

Table 2: Comparing the segmentation efficacy of CapsNets, UNets, and nnUNets in segmenting brain

structures that were represented in the training data. The segmentation accuracy was quantified using Dice

scores on the test (114 brain MRIs). The 3rd ventricle, thalamus, and hippocampus respectively represent easy,

medium, and difficult structures to segment.

Brain

structure

CapsNet Dice

(95% CI)

UNet Dice

(95% CI)

nnUNet Dice

(95% CI)

3rd ventricle
95%

(94 to 96)

96 %

(95 to 97)

96%

(95 to 97)

Thalamus
94%

(93 to 95)

95 %

(94 to 96)

94%

(92 to 96)

Hippocampus
92 %

(91 to 93)

93 %

(92 to 94)

92%

(91 to 93)

Figure 3: CapsNets outperforms UNets in segmenting images that were not represented in the training data.

Both models were trained to segment right brain structures, and were tested to segment contralateral left brain

structures. Target segmentations and model predictions are respectively shown in red and white. Dice scores are

provided for the entire volume of the segmented structure in this patient. The CapsNet partially segmented the

contralateral thalamus and hippocampus, but the UNet poorly segmented the thalamus and entirely missed the

hippocampus.

CapsNet UNet

Dice score: 45% Dice score: 0%

Contralateral Hippocampus

CapsNet

Dice score: 56%

Contralateral Thalamus

Contralateral Hippocampus

UNet

Contralateral Thalamus

Dice score: 3%

Table 3: Comparing the efficacy of CapsNets and UNets in segmenting images that were not represented in

the training data. Both models were trained to segment the right thalamus and hippocampus. Then, they were

tested on segmenting the contralateral left thalamus and hippocampus.

Brain

structure

CapsNet Dice

(95% CI)

UNet Dice

(95% CI)

CapsNet vs UNet

P-value†

Thalamus
52%

(46 to 58)

16%

(11 to 21)
< 0.01

Hippocampus
43%

(38 to 48)

10%

(6 to 14)
< 0.01

† Paired-samples t-test, degrees of freedom = 114 - 1 = 113

Figure 4: Comparing CapsNets, UNets, and nnUNets when training data is limited. When the size of the

training set was decreased from 3199 to 120 brain MRIs, hippocampus segmentation accuracy (measured by Dice

score) of all three models did not decrease more than 1%. Further decrease in the size of the training set down to 60

MRIs led to worsened segmentation accuracy.

Figure 5: Comparing the computational efficiency between CapsNets, UNets, and nnUNets, in terms of

memory requirements (A) and computational speed (B). The bars in (A) represent the computational memory

required to accommodate the total size of each model, including the parameters plus the cumulative size of the

forward- and backward-pass feature volumes. CapsNet trains faster (B), given that its trainable parameters are one

order of magnitude fewer than UNets or nnUNets. The training times represent the time that each model took to

converge for segmenting hippocampus, divided by the number of training examples and the training epochs (to

make training times comparable with test times). The test times represent how fast a fully-trained model can segment

a brain image.

A B

3D Capsule Networks for Brain Image Segmentation

SUPPLEMENTAL MATERIAL

Appendix 1: MRI acquisition parameters

Field strength = 3.0 tesla

Coil = 8HR Brain

Weighting = T1

Flip angle=8.0 degree

TR = 6.6 ms

TE = 2.8 ms

TI = 900.0 ms

Acquisition type = 3D

Acquisition plane = Sagittal

Matrix size = 256×256×166 pixels (X×Y×Z)

Pixel size = 1×1×1.2 mm (X×Y×Z)

Pixel spacing: along X direction = 1 mm; along Y direction= 1 mm

Appendix 2: Pre-Processing

We corrected for intensity inhomogeneities including B1-field variations. Our pre-processing pipeline first registers the

brain image to the MNI305 atlas. Then, pixel intensities are used to roughly segment the white matter. The variations in the

pixel intensities in the white matter are then used to estimate the B1 field map Finally, B1 bias field correction is done by

dividing the pixel intensities by the estimated bias field.1

The next step is the removal of the skull, face, and neck, only leaving the brain. We used a hybrid method of skull stripping

that combines a watershed algorithm and a deformable surface model.2 This method first roughly segments the white-matter

based on pixel intensities. Then, watershed algorithms are used to find the gray-white matter junction and the brain surface.

Next, a deformable surface model is used to model the brain surface. The curvature of the brain surface at each point is

computed, and these curvatures are used to register the brain surface onto an atlas. The atlas is formed by computing the

curvatures of the brain sulci and gyri in several subjects. The reconstructed brain surface, registered to the atlas, is then

automatically corrected in case the curvatures in a particular region of the surface do not make sense. The resulting corrected

brain surface model is used for skull stripping.2

To overcome memory limitations, we cropped 64×64×64-voxel boxes of the MRI volume that contained each segmentation

target. The box is automatically placed over the expected location of each segmentation target based on the expected

coordinates of the segmentation target. The box is large enough to accommodate inter-subject variability in the expected

location of each segmentation target.

Skull

stripping

Intensity

inhomogeneity

correction

Crop MRI volume

around the brain

64×64×64

segmentation patch

Figure S3: Pre-processing steps.

Appendix 3: Capsule Networks

Capsule networks (CapsNets) can detect objects

when their spatial features change.3 This is a

fundamental property of CapsNets that enables

them to perform well when a test example is not

represented in the training data. (A) shows the

sagittal T1-weighted brain MRI of a patient with

a forward head tilt, and (B) shows the MRI of

another patient with a backward head tilt. White

arrows (connecting the posterior commissure to

the anterior commissure) demonstrate the

orientation of the brain. Let’s assume that we

have a CapsNet that is trained to segment the

entire brain. Let’s also assume that the training set only

contains patients with forward head tilt (like in A). An

ideal CapsNet should generalize to segment the brain in

patients with a backward tilt (like in B). To achieve this

goal, CapsNets encode the spatial features of each

structure that they detect. The spatial features of the

brain are encoded in a pose vector. The pose contains

spatial features such as orientation, position, size,

curvature, etc. Here, the orientation of the brain (one of

the spatial features) is shown by the white arrow. Our

goal is to illustrate how CapsNets detect a whole (the

brain) when parts (frontal pole, corpus callosum,

brainstem, cerebellum, occipital pole, etc.) all vote for

the same spatial features of the whole.

CapsNets are composed of three main ingredients: 1)

capsules that each encode a structure together with the

pose of that structure; 2) a supervised learning paradigm

that learns the transforms between the poses of the parts

(e.g. corpus callosum, brainstem) and the pose of the

whole (e.g. the entire brain); and 3) a clustering

paradigm that detects a whole if the poses of all parts

(after getting transformed) vote for matching poses of

the whole. Therefore, any CapsNet needs to: 1) learn the

transforms between the poses of parts and wholes; and

2) cluster the votes of the parts to detect wholes.

(C) shows a CapsNet that has already detected parts of

the brain and has encoded their spatial features

(demonstrated by the smaller white arrow over each

part). The red curved arrows demonstrate the transforms

between the poses of the part and the pose of the whole.

After transformation, each part votes for a candidate pose of the whole. If all these votes match, the whole is present. Please

note that we are only showing the orientations here for simplicity, but the pose vectors encode more complex spatial features.

CapsNet

C

In (E), We want the CapsNet to detect the backward-tilted brain

while the model is only trained on forward-tilted brain images (such

as in C). We can imagine that (E) is just the rotated version of (C),

as demonstrated in (D). The parts are all rotated clockwise

(compared to the poses of the parts in C). However, the same

transforms (red curved arrows) can still transform the poses of the

parts into the candidate poses of the whole. The candidate poses of

the whole still match, and therefore the whole is detected. This

process does not need any data augmentation: an ideal CapsNet can

detect objects when they are rotated or have undergone other spatial

changes, without the need for any data augmentation. This is

because the CapsNet can still use the same transforms between the

parts and the wholes (red curved arrows) even though the input

image has rotated. Therefore, a change in the poses of the parts will

cause an equivalent change in the pose of the whole, while the

relationship between the poses of the parts and the whole remains

the same. This is a powerful capability that makes CapsNets

equivariant to the changes in the inputs: spatial change in the inputs

will cause an equivalent spatial change in the pose of the detected

objects.3 Such CapsNets can still detect the changed objects and will

encode these changes in the pose of the detected objects. As a result,

a CapsNet that is trained on forward-tilted brains (such as in C) can

detect backward-tilted brains (such as in E) without the need for any

data augmentation.

This approach is fundamentally different from other machine

learning methods such as U-Nets (G), which do not have

equivariance capabilities. Instead, the max-pooling layers in U-Nets

try to kill information about the changes in the inputs to make the

model invariant to the changed inputs. In essence, CapsNets use

equivariance to encode and model the spatial changes in the inputs,

making CapsNets more efficient in handling variations of the same

object.3 On the other hand, U-Nets use information killing (in max-

pooling layers) to make the model invariant to the spatial changes

in the inputs. Therefore, U-Nets cannot efficiently detect variations

of the same object.

(F) demonstrates why CapsNets are less susceptible to adversarial

attacks compared to U-Nets (H). Here, this adversarial image

contains all parts of the brain but with orientations that do not make

sense, not making a whole. When the poses of the parts are

transformed into the candidate poses of the whole (using the same

transforms as in C), the candidate poses of the whole do not match.

Therefore, the CapsNet would not detect a brain because of the mismatch between the candidate poses of the brain (F). On

the other hand, a U-Net that is trained using augmented data may detect the parts. Such a U-Net has no mechanism to encode

the orientation and other spatial features of each part. In the U-Net feature space, each part is either present or absent. Since

all parts are present on this adversarial image, the U-Net can be fooled to detect the entire brain (H).

CapsNet

U-Net

U-Net

F

G

H

We can indeed use data augmentation to train U-Nets to detect objects with changed spatial features. We can also use

adversarial training to prevent U-Nets from detecting adversarial images. But these inefficiencies lead to the need for a

larger U-Net model. On the other hand, CapsNets handle the changed spatial features in a smarter way. This allows

CapsNets, which are one order of magnitude smaller compared to U-Nets, to achieve similar results.4

Appendix 4: Decision Choices to Develop Capsule Networks

To develop 3D CapsNets and make them work for volumetric brain MRI segmentation, we explored multiple architecture

options, hyperparameters, loss functions, and implementation details to find optimal solutions. We used the validation set

to explore these questions and select the best-performing model. We tested the best-performing model on the test set only

once. Here are the design options that we explored and how we chose the winning options:

1. Network architecture: we built on the previous work by LaLonde et all4 to develop a 3D capsule network architecture.

While Figure 1.A in the paper shows the architecture that performed best on the validation set, we explored the following

options to get to the final architecture:

a. Kernel size: we explored 3×3×3 and 5×5×5 kernels; the latter performed better.

b. Downsampling method: we explored max-pooling versus 5×5×5 convolutions with stride of 2; the latter

performed better.

c. Upsampling method: we explored tri-linear interpolation versus 4×4×4 transposed convolutions with stride of

2; the latter performed better.

d. Number of dynamic routing iterations to find agreeing pose vectors: we explored 1, 2, and 3 iternations for

dynamic routing between capsule layers. As shown in Figure 1.A in the paper, the best-performing network

uses 1 iteration for the first capsule layer, and 3 iterations for subsequent capsule layers.

e. Number of capsule types in each layer: we tested up to 8 capsule types in the deepest part of the network, which

performed best. Memory limitations did not let us increase the number of capsule types any further.

f. Number of pose vector elements in each capsule: we tested up to 64 pose vector elements in the deepest part of

the network, which performed best. Memory limitations did not allow us to further increase the number of pose

vector elements.

2. Optimizer hyperparameters: we used Adam optimizer with dynamic scheduling of the learning rate. We explored the

following ranges of hyperparameters to select the best-performing model over the validation set. Since the best-

performing hyperparameters are detailed in Appendix 7, we are not listing them here again:

a. Initial learning rate: we explored values ranging from 0.02 down to 0.001.

b. Minimal learning rate: we explored values ranging from 0.001 down to 0.0001.

c. Dynamic learning rate scheduling patience: if the model performance does not improve over a number of

training epochs (in our case, mini-epochs), the learning rate scheduler decreases the learning rate by a factor.

The number of epochs that the learning rate scheduler “waits” before decreases the learning rate, tolerating no

improvement in performance over the validation set, is determined by the learning rate scheduler's patience.

We explored patience values ranging from 5 to 10.

d. Learning rate decrement factor: when the model performance does not improve (over the validation set) after a

number of epochs (determined by patience), the learning rate scheduler divides the learning rate by a number.

We explored values ranging from 2 to 10.

3. Loss functions: we explored the following loss functions and found out that Dice loss perform best for our task:

a. Dice loss

b. Weighted average of Dice loss and cross-entropy loss

c. Intersection over union loss

d. Weighted average of intersections over union loss and cross-entropy loss

e. Soft dice loss

Our implementation of these loss functions is available at:

https://github.com/Aneja-Lab-Yale/Aneja-Lab-Public-CapsNet/blob/main/loss_functions.py

4. Other design options:

https://github.com/Aneja-Lab-Yale/Aneja-Lab-Public-CapsNet/blob/main/loss_functions.py

a. Batch size: we explored batch sizes ranging from 2 to 8. The batch size of 4 performed best over the validartion

set.

b. Patch size: we explored patch sizes ranging from 32×32×32 up to 128×128×128. While the larger patch size of

128×128×128 allows the network to use more contextual information in the image to segment each structure,

larger patch sizes use more computational memory, forcing us to change other memory-intensive design options

in the networks such as decreasing the number of capsule types in each layer or decreasing the number of pose

elements in each capsule. Our experiments showed that a patch size of 64×64×64 led to the best-performing

model over the validation set.

c. Converting the activations in the final capsule layer into segmentations: we introduced a forgiving paradigm to

convert final-layer activations into segmentations. This forgiving paradigm accelerated CapsNet training and

made the training process stable. Appendix 5 details this paradigm.

Appendix 5: Converting Final Layer Activations into Segmentations

The final layer of the 3D CapsNet is composed of one capsule channel that learns to activate capsules within the

segmentation target and deactivate them outside the target. Activation of a capsule is determined by the length of its pose

vector, which is a number between 0 and 1. The ground truth segmentations are coded similarly: pixels outside and inside

the segmentation target are respectively coded by 0 and 1.

During testing, the length of the final layer’s pose vectors is thresholded at 𝑇:

𝑓𝑡𝑒𝑠𝑡(𝑥𝑖,𝑗,𝑘) = {
0, ‖𝒗𝑖,𝑗,𝑘‖ < 𝑇

1, ‖𝒗𝑖,𝑗,𝑘‖ ≥ 𝑇

where 𝑓(𝑥𝑖,𝑗,𝑘) is the prediction of the CapsNet for the input voxel 𝑥𝑖,𝑗,𝑘 and ‖𝒗𝑖,𝑗,𝑘‖ is the length of the final layer’s pose

vector 𝒗𝑖,𝑗,𝑘 at the location (i,j,k) of the MRI volume (please note that 𝒗𝑖,𝑗,𝑘 is itself a function of 𝑥𝑖,𝑗,𝑘, the function being

the entire CapsNet that takes 𝑥𝑖,𝑗,𝑘 as the input and gives 𝒗𝑖,𝑗,𝑘 as the output).

During training, the length of the final layer’s pose vector and each location (i,j,k) undergo a piecewise linear transform as

follows:

𝑓𝑡𝑟𝑎𝑖𝑛(𝑥𝑖,𝑗,𝑘) =

{

 0 , ‖𝒗𝑖,𝑗,𝑘‖ < 𝑇1

‖𝒗𝑖,𝑗,𝑘‖ − 𝑇1
𝑇2 − 𝑇1

 , 𝑇1 ≤ ‖𝒗𝑖,𝑗,𝑘‖ < 𝑇2

 1 , ‖𝒗𝑖,𝑗,𝑘‖ ≥ 𝑇2

If we set 𝑇 = 0.5 𝑇1 = 0.1 and 𝑇2 = 0.9, we get the following diagrams for 𝑓𝑡𝑒𝑠𝑡(𝑥𝑖,𝑗,𝑘) and 𝑓𝑡𝑟𝑎𝑖𝑛(𝑥𝑖,𝑗,𝑘) as functions of

‖𝒗𝑖,𝑗,𝑘‖ :

During training, the piecewise conversion (formula 2) enables a forgiving paradigm for the length of the final layer’s pose

vectors: if the length of the vector is more than 0.9 for a voxel inside the segmentation target, the loss for that voxel would

be zero. Intuitively, a pose vector with a length more than 0.9 for a voxel inside the segmentation target is considered “good

enough”, so the training algorithm should not try to perfect the length of this vector to 1. Similarly, a pose vector with a

𝑓 𝑡
𝑒
𝑠𝑡
(𝑥
𝑖,
𝑗,
𝑘
)

𝑓 𝑡
𝑟
𝑎
𝑖𝑛
(𝑥
𝑖,
𝑗,
𝑘
)

‖𝒗𝑖,𝑗,𝑘‖ ‖𝒗𝑖,𝑗,𝑘‖

(1)

(2)

length less than 0.1 is considered good enough for a voxel outside the segmentation target, so the training algorithm should

not try to perfect the length of this vector to 0. This forgiving training paradigm makes the training of CapsNet stable because

this paradigm does not try to perfect the length of the pose vectors of the final layer to 0’s and 1’s. In contrast, if a training

paradigm tries to perfect the length of the pose vectors to 0’s and 1’s, that training paradigm becomes unstable because the

pose vectors can assume a length close to 0 or 1, but not exactly 0 or 1. Remember that the pose vectors are generated by

the squash function,5 which cannot generate vectors with a length equal to 0 or 1:

𝒗𝑖,𝑗,𝑘 = 𝑠𝑞𝑢𝑎𝑠ℎ(𝒔𝑖,𝑗,𝑘) =
𝒔𝑖,𝑗,𝑘

‖𝒔𝑖,𝑗,𝑘‖
.
‖𝒔𝑖,𝑗,𝑘‖

2

1 + ‖𝒔𝑖,𝑗,𝑘‖
2

where 𝒔𝑖,𝑗,𝑘 is the total input to the final layer capsule at the location (i,j,k), and 𝒗𝑖,𝑗,𝑘 is the pose vector of the final layer

capsule at that location.

Our experiments show that training with the forgiving paradigm is more stable and leads to faster convergence. When we

did not convert the length of the pose vector ‖𝒗𝑖,𝑗,𝑘‖ using the conversion function (formula 2), CapsNet training became

unstable. Here we show the evolution of the training set and the validation set losses during 10 epochs of training, with and

without the forgiving paradigm:

We additionally searched for the optimal conversion functions. The piecewise linear function led to the most stable training

and fastest convergence. Here we describe other functions that we studied (together with their plots) so that other groups

would be aware of these conversion functions that we think are suboptimal for this task:

𝑓𝑡𝑟𝑎𝑖𝑛(𝑥𝑖,𝑗,𝑘) = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝑞. (‖𝒗𝑖,𝑗,𝑘‖ − 𝑇)) =
1

1 + 𝑒−𝑞.(‖𝒗𝑖,𝑗,𝑘‖−𝑇)

Training with the forgiving paradigm (with conversion)

(3)

(4)

Training without the forgiving paradigm (without conversion)

We set 𝑇 = 0.5 and tried different values for 𝑞 (10, 15, and 20):

We also examined the piecewise conversion function (formula 2) with values for 𝑇1 and 𝑇2 other than 0.1 and 0.9:

None of these conversion functions was as effective as the piecewise function with 𝑇1 = 0.1 and 𝑇2 = 0.9 in improving the

stability and convergence of CapsNet training.

‖𝒗𝑖,𝑗,𝑘‖

𝑓 𝑡
𝑟
𝑎
𝑖𝑛
(𝑥
𝑖,
𝑗,
𝑘
)

‖𝒗𝑖,𝑗,𝑘‖ ‖𝒗𝑖,𝑗,𝑘‖

𝑓 𝑡
𝑟
𝑎
𝑖𝑛
(𝑥
𝑖,
𝑗,
𝑘
)

𝑓 𝑡
𝑟
𝑎
𝑖𝑛
(𝑥
𝑖,
𝑗,
𝑘
)

‖𝒗𝑖,𝑗,𝑘‖

𝑓 𝑡
𝑟
𝑎
𝑖𝑛
(𝑥
𝑖,
𝑗,
𝑘
)

‖𝒗𝑖,𝑗,𝑘‖

𝑓 𝑡
𝑟
𝑎
𝑖𝑛
(𝑥
𝑖,
𝑗,
𝑘
)

Appendix 6: Findings Agreeing Pose Vectors

Let’s assume the previous capsule layers has six capsule channels, each outputting the vote vector of a part (v1 to v6). To

find the vote vectors that agree, we first compute the vector summation of all vote vectors (v):

𝑣 =∑𝑣𝑖
𝑖

Then, we compute the inner products between each vote vector vi and the sum v, yielding weights for each vote vector wi:

𝑤𝑖 = 𝑣𝑖 . 𝑣

Please note that each wi is a scalar. Next, we re-compute the vector sum v using the weighted average of the vote vectors

using weights wi computed in the previous step :

𝑣 =∑𝑤𝑖
𝑖

𝑣𝑖

This process is often repeated for three iterations. The number of iterations is a hyperparameter that should be set between

capsule layers. This whole process increases the weights of the vectors that align with the sum (v1, v2, and v6 in this

example) and decreases the weights of the vectors that do not align with the sum (v3, v4, and v5 in this example).

Appendix 7: Training hyperparameters

Training set size (MRI volumes): 3199

Validation set size (MRI volumes): 117

Test set size (MRI volumes): 114

Training batch size (MRI volumes): 4

Training mini-epoch size: 30 batches: during training, the validation set loss was computed after

each mini-epoch

Training epochs: 50

Optimizer: Adam

Optimizer hyperparameters: 𝛽1 = 0.9, 𝛽2 = 0.999, 𝜖 = 10−8

Initial learning rate: 0.002

Minimal learning rate: 0.0001

Learning rate scheduling: Dynamic (via monitoring the validation set loss during training):

Learning rate was decreased by half if the validation set loss did not

improve over 10 mini-epochs

References:

1. Dale AM, Fischl B, Sereno MI. Cortical surface-based analysis: segmentation and surface reconstruction.

2. Ségonne F, Dale AM, Busa E, et al. A Hybrid Approach to the Skull Stripping Problem in MRI.

3. Hinton GE, Sabour S, Frosst N. Matrix capsules with EM routing. In: International Conference on Learning

Representations 2018.

4. LaLonde R, Xu Z, Irmakci I, et al. Capsules for biomedical image segmentation. Med Image Anal 2021;68:101889.

5. Sabour S, Frosst N, Hinton GE. Dynamic routing between capsules. In: Proceedings of the 31st International

Conference on Neural Information Processing Systems. NIPS’17. Red Hook, NY, USA: Curran Associates Inc.;

2017:3859–69.

	Manuscript
	Supplemental Material

