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Abstract 
 
INTRODUCTION: Segmenting brain structures around a tumor on brain images is important for 
radiotherapy and surgical planning. Current auto-segmentation methods often fail to segment brain 
anatomy when it is distorted by tumors. 
 
OBJECTIVE: To develop and validate 3D capsule networks (CapsNets) that can segment brain 
structures with novel spatial features that were not represented in the training data. 
Methods: We developed, trained, and tested 3D CapsNets using 3430 brain MRIs acquired in a multi-
institutional study. We compared our CapsNets with U-Nets using multiple performance measures, 
including accuracy in segmenting various brain structures, segmenting brain structures with spatial 
features not represented in the training data, performance when the models are trained using limited data, 
memory requirements, and computation times. 
 
RESULTS: 3D CapsNets can segment third ventricle, thalamus, and hippocampus with Dice scores of 
94%, 94%, and 91%, respectively. 3D CapsNets outperform 3D U-Nets in segmenting brain structures 
that were not represented in the training data, with Dice scores more than 30% higher. 3D CapsNets are 
also remarkably smaller models compared to 3D U-Nets, with 93% fewer trainable parameters. This led 
to faster convergence of 3D CapsNets during training, making them faster to train compared to U-Nets. 
The two models were equally fast during testing. 
 
CONCLUSION: 3D CapsNets can segment brain structures with high accuracy, outperform U-Nets in 
segmenting brain structures with features that were not represented during training, and are remarkably 
more efficient compared to U-Nets, achieving similar results while their size is one order of magnitude 
smaller.  
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Introduction 
 
In patients with brain tumors undergoing radiotherapy, important brain structures such as thalamus and 
hippocampus should be avoided to prevent organ toxicity and preserve brain functions.1 Therefore, it is 
important to segment brain structures on brain images in these patients.1,2 Brain image segmentation is also 
important in surgical planning, image-guided interventions, and disease progress monitoring.2 Manual 
segmentation is impractical because it requires radiologist-level expertise, is time-consuming, and is prone 
to inter- and intra-operator variability.2 Currently-available software packages for image segmentation often 
fail when the brain anatomy is distorted by tumors, hemorrhages, and other space-occupying lesions.2,3 
These packages work by constructing distributions for the shape and location of each brain structure. When 
a space-occupying lesion distorts the brain anatomy, it changes the shape and location of brain structures 
to the extent that they fall out of their expected distributions, resulting in segmentation failure.2 Therefore, 
the key to segmenting brain structures when their spatial features are changed by space-occupying lesions 
is to develop a method that can generalize to unseen spatial features. 
 
Segmentation using deep learning methods, such as U-Nets, has two major drawbacks: 1) the unique 
anatomy of each patient might not be represented in the training data; and 2) when a tumor distorts the 
shape and location of brain structures, they fall out of the distributions represented in the training data. 
Notably, the full distribution of the anatomical variations and distortions caused by brain tumors cannot be 
represented in any training data, no matter how large the training data might be. While the convolutional 
operators in U-Nets generalize knowledge from one part of the image to other parts, they cannot generalize 
to segment a structure when it is rotated, squeezed, or otherwise distorted by space-occupying lesions. In 
summary, U-Nets cannot generalize to unseen spatial features. Data augmentation is commonly used to 
remedy this shortcoming, but the augmented data cannot represent the full distribution of anatomical 
variations and distortions either. As a result, efforts to segment brain structures (e.g. hippocampus) in the 
presence of space-occupying lesions have been largely unsuccessful.4–6 
 
Capsule networks (CapsNets) are the potential solution to this problem.4,5 The main idea behind CapsNets 
is that rotation, size, shear, and other spatial information about each structure on the image can be encoded 
and propagated in the network. If a structure rotates, changes in size, or undergoes other spatial changes, 
the capsule encoding that structure can still recognize it while encoding the changed spatial features. 
CapsNets can achieve this level of knowledge generalization without data augmentation. LaLonde et al 
developed 2D CapsNets that outperformed U-Nets in segmenting lungs on CT slices, and segmenting 
muscle and fat tissues on leg MRI slices, with Dice scores higher than 95%. They also showed that CapsNets 
outperform other segmentation methods, including U-Nets, when the model was fed with rotated inputs that 
were not represented during training. However, 2D CapsNets achieved less impressive results in 
segmenting heart and brain MRI slices, with Dice scores less than 70%. Subsequently, 2.5D CapsNets were 
introduced that analyzed five consecutive slices as input, resulting in Dice scores closer to 85%. Because 
most brain structures such as hippocampus and thalamus traverse more than five slices, 2D and 2.5D 
segmentation paradigms expectedly achieve suboptimal results. Therefore, there was a need to develop 3D 
CapsNets for volumetric segmentation. 
 
In this study, we developed and validated 3D CapsNets for volumetric segmentation of brain MRIs.7 The 
3D CapsNets were trained using more than 3000 brain MRIs acquired in a multi-institutional study, and 
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were evaluated using a battery of performance measures including segmentation accuracy, out-of-
distribution performance, performance when the models were trained using limited data, memory 
requirements, and computation times. For comparison, 3D U-Nets were also coded, trained, and tested. 
 
 
Methods 
 
The Data 
 
We downloaded 3430 T1-weighted brain MRI volumes, belonging to 841 patients, from the Image and 
Data Archive (IDA).8 These patients were enrolled in the multi-institutional Alzheimer’s Disease 
Neuroimaging Initiative (ADNI) study.9 Patients in this dataset range from mild cognitive impairment to 
Alzheimer’s dementia. On average, each patient underwent four MRI acquisitions. Details of MRI 
acquisition parameters are provided in Supplemental Table 1.  
 
We randomly split the patients (not the MRIs) into training, validation, and test sets. Therefore, all MRIs 
belonging to a patient ended up in the same set. We assigned 30 patients to the validation set (117 MRI 
volumes), 30 patients to the test set (114 MRI volumes), and the remaining 781 patients to the training set 
(3199 MRI volumes). The demographics for each of the training, validation, and test sets are provided in 
Table 1. 
 
FreeSurfer-segmented brain images were also downloaded from IDA.3,10,11 While Alzheimer’s dementia is 
associated with degenerative changes in the brain, it does not cause brain anatomy distortions (as seen with 
tumors, hemorrhages, or other space-occupying lesions). FreeSurfer is shown to have expert-level 
segmentation accuracy for non-distorted brain images, including in patients with Alzheimer’s dementia.12 
Therefore, FreeSurfer segmentations were used as the ground truth to train and test our models.  
 
Pre-Processing  
 
To make data loading faster, we converted the DICOMs of each brain MRI into a 3D NIfTi file.13 We used 
FreeSurfer to correct for intensity inhomogeneities including B1-field variations.3,14 We also used 
FreeSurfer to remove the skull, face, and neck, only leaving the brain.15 The resultant 3D images were then 
cropped around the extracted brain.  
 
To overcome memory limitations, we cropped 64×64×64-voxel boxes of the MRI volume that contained 
each segmentation target. The position of each box (e.g. for segmenting the right hippocampus) was 
determined by the first author (board-eligible radiologist with 9 years of experience in neuroimaging 
research) was fixed for all volumes.  
 
3D CapsNet 
 
We built on the 2D CapsNets introduced by LaLonde et al7 to develop 3D CapsNets for volumetric 
segmentation. CapsNets are composed of three main ingredients: 1) capsules that each encode a structure 
together with the pose of that structure: the pose is an n-dimensional vector that learns to encode orientation, 
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size, curvature, location, and other spatial information about the structure; 2) a supervised learning 
paradigm that learns the transforms between the poses of the parts (e.g. head and tail of hippocampus) and 
the pose of the whole (e.g. the entire hippocampus); and 3) a clustering paradigm that detects a whole if the 
poses of all parts (after getting transformed) vote for matching poses of the whole. Therefore, any CapsNet 
architecture requires procedures for: 1) creation of the first capsules from the input; 2) learning transforms 
between the poses of parts and wholes; and 3) clustering the votes of the parts to detect wholes.  
 
Figure 1.A shows the architecture of our 3D CapsNet. The first layer, Conv1, performs 16 convolutions 
(5×5×5) on the input volume to generate 16 feature volumes, which are reshaped into 16D vectors at each 
voxel. The 16D vector at each voxel provides the first pose that can learn to encode spatial information at 
that voxel. The next layer, PrimaryCaps2, has two capsule channels that learn two 16D-to-16D 
convolutional transforms (5×5×5) from the poses of the previous layer to the poses of the next layer. 
Likewise, the next convolutional capsule layers (green layers in Figure 1.A) learn m-to-n-dimensional 
transforms between the poses of the previous layer and the poses of the next layer. The number of 
transforms at each layer matches the number of capsule channels (shown by stacks of capsules in Figure 
1.A). Our CapsNet has downsampling and upsampling limbs. The downsampling limb learns what structure 
is present at each voxel, and the skip connections from downsampling to upsampling limbs preserve where 
each structure is on the image. Downsampling is done using 5×5×5 convolutional transforms with stride = 
2. The poses in the deeper parts of the downsampling limb have more pose components (up to 64) to be 
able to encode more complex spatial information. Additionally, layers in the deeper parts of the model 
contain more capsule channels (up to 8) to be able to encode more structures at each voxel, since each voxel 
in these layers corresponds to multiple voxels in the input that can each represent a separate structure. 
Upsampling is done using 4×4×4 transposed convolutional transforms with stride = 2 (turquoise layers on 
Figure 1A). The final layer, FinalCaps13, contains one capsule channel that learns to activate capsules 
within the segmentation target and deactivate them outside the target. Activation of a capsule is determined 
by the length of its pose vector, which is a number between 0 and 1. Further details about the activation of 
capsules are provided in the supplemental material. 
 
To find clusters of the agreeing votes of the parts, we used the inner products between the poses of the parts 
and the aggregate pose of the whole.5 We used Dice loss to train our models and to evaluate segmentation 
accuracy.16 Further details about the clustering method, loss function calculation, and activation of each 
capsule are provided in the supplemental material.  
 
3D U-Net 
 
Figure 1.B shows the architecture of our 3D U-Net. The input image undergoes 64 convolutions (3×3×3) 
to generate 64 feature volumes. These volumes then undergo batch normalization and ReLU activation. 
Similar operations are carried out once more before downsampling using max-pooling (2×2×2). The 
downsampling limb includes four downsampling units, each composed of a max-pooling layer followed by 
two convolutional layers. The layers in the deeper parts of the downsampling limb have more channels (up 
to 1024). The upsampling limb includes four upsampling units, each composed of an upsampling layer, 
concatenation with the skip connection, and two convolutional layers. Upsampling is done using 2×2×2 
transposed convolutions with stride = 2. The final layer carries out a 1×1×1 convolution to aggregate all 64 
channels, followed by soft thresholding using the sigmoid function. The model learns to output a number 
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close to 1 for each voxel inside the segmentation target, and a number close to 0 for each voxel outside the 
target. 
 
Training  
 
We used Dice loss for training our models. Adam optimizer was used with the following hyperparameters: 
𝛽! = 0.9, 𝛽" = 0.999, and 𝜖 = 10#$. Training was done using 50 epochs, each consisting of all 3199 brain 
MRIs in the training set, and with the batch size of four. Because of the large epoch size, we split each 
epoch into mini-epochs that each comprised 30 batches (120 MRIs). After each mini-epoch during training, 
the Dice loss was computed for the validation set (117 MRIs).  
 
We used dynamic paradigms for learning rate scheduling and for selecting the best models. The initial 
learning rate was set at 0.002. The validation set Dice loss was monitored after each mini-epoch, and if it 
did not decrease over 10 consecutive mini-epochs, the learning rate was decreased by half. The minimum 
learning rate was set at 0.0001. The model with the lowest Dice loss over the validation set was selected as 
the best model and was used for testing. 
 
Performance Evaluations 
 
We compared CapsNets and U-Nets using the following performance measures:  
 
1) Segmentation accuracy for three brain structures: third ventricle, thalamus, and hippocampus. These 

three structures represent easy, medium, and difficult structures for segmentation. Third ventricle is an 
easy structure because it is a cerebrospinal fluid (CSF) filled cavity with clear boundaries. Thalamus is 
a medium-difficulty structure because it is abutted by CSF on one side and brain parenchyma on the 
other side. Hippocampus is a difficult structure because it has a complex shape and is abutted by multiple 
brain structures with indistinct borders. Segmentation accuracies were quantified using Dice scores. 
 

2) Out-of-distribution segmentation accuracy: to evaluate the performance of our models in segmenting 
images that were not represented during training, we trained our models to segment right thalamus and 
hippocampus. Then, we compared the performance of our models in segmenting the contralateral left 
thalamus and hippocampus. Notably, we did not use data augmentation during training.  

 
3) Training using small datasets: in addition to training our models on the full training set (3199 MRIs), 

we also trained them on smaller training sets comprised of 600, 240 and 120 MRI volumes. These 
smaller training sets were randomly selected. Then, the compared the performance of our models on the 
test set. 

 
4) Model size and computation times: the number of trainable parameters, the model size in megabytes, 

and the computation times were compared between CapsNets and U-Nets, both during training and 
testing. Computation times were calculated per example.   

 
For all experiments, the mean segmentation accuracies over the test set were compared between CapsNets 
and U-Nets using paired-samples t-tests. The mean Dice scores together with their 95% confidence intervals 
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were also tabulated for the two models and the three brain structures that were segmented. While our main 
measure of segmentation accuracy was Dice score, we also tested our final models using additional 
measures of segmentation accuracy. Details about these additional measures and the performance of our 
models using these measures are provided in the supplemental material.  
 
Implementation 
 
We implemented our models in Python (version 3.9). The models were coded in PyTorch (version 1.9). 
The statistical analyses were conducted using the SciPy package within Python. Pre-processing, statistical 
analyses, and visualization of the results were done on a local computer (iMac, 3.1 GHz Intel Core i7 
processor, 16 GB DDR3 RAM, 1GB NVIDIA graphics). Training and testing of the models were run on 
AWS p2xlarge instances (4 vCPUs, 61 GB RAM, 12 GB GPU).  
 
 
Results 
 
As mentioned in Methods, this study included 3430 brain MRIs belonging to 841 patients that were enrolled 
in the multi-institutional Alzheimer’s Disease Neuroimaging Initiative (ADNI) study.9 Patient 
demographics are provided in Table 1.  
 
The accuracy of 3D CapsNets in segmenting various brain structures is above 90% and is within 1.5% of 
to the accuracy of U-Nets. Figure 1 shows the segmentation of various brain structures by both models in 
a patient. Table 2 compares the segmentation accuracy of the two models, measured by Dice scores. 
Supplemental Table 2 compares additional measures of segmentation accuracy between the two models. 
 
The 3D CapsNets achieved better out-of-distribution segmentation accuracy compared to 3D U-Nets. When 
both models were trained to segment right-sided brain structures and tested on contralateral left left-sided 
brain structures, 3D CapsNets significantly outperformed 3D U-Nets with Dice scores more than 30% 
higher. Figure 3 illustrates segmentation of the contralateral left thalamus and hippocampus by both models 
in a patient. Table 2 compares out-of-distribution segmentation accuracy between the two models. 
 
The 3D CapsNets and 3D U-Nets achieved comparable segmentation accuracy when trained on smaller 
datasets. When the size of the training set was decreased from 3199 to 600 brain MRIs, both CapsNet and 
U-Net were minimally affected. Further decrease in the size of the training set down to 120 brain MRIs 
caused a decrease in the accuracy of both models down to 85%. Figure 4 shows the performance of both 
models when trained on smaller datasets. 
 
Our 3D CapsNets are remarkably smaller models compared to 3D U-Nets. The 3D CapsNet has 7.4 million 
trainable parameters, while the corresponding 3D U-Net has 90.3 million trainable parameters. In addition, 
the 3D CapsNet has fewer layers and fewer steps of image propagation in forward and backward passes, 
leading to a smaller cumulative size of the feature volumes in the entire model. The 3D CapsNet and 3D 
U-Net respectively hold 228 and 1364 megabytes of cumulative feature volumes in the entire model. Figure 
5.A compares the size of 3D CapsNet and 3D U-Net models. 
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The 3D CapsNets train slightly faster compared to U-Nets. When we compared the training time between 
the two models (on an AWS p2xlarge instance with 12GB of GPU memory), our 3D CapsNets and 3D U-
Nets respectively took about 1.5 and 2 seconds per example per epoch to train. The two models are equally 
fast during testing, taking 0.9 seconds to segment the MRI volume. Figure 5.B compares the training and 
testing times between the two models.  
 
 
Discussion 
 
In this study, we developed and validated 3D CapsNets for volumetric segmentation of brain MRIs. We 
also coded, trained, and tested 3D U-Nets as the main competitor. We compared the two models using a 
battery of performance measures. Our results showed that 3D CapsNets have high segmentation accuracy 
for segmenting various brain structures with Dice scores above 90%. While 3D CapsNets are one order of 
magnitude smaller than U-Nets, their segmentation accuracy is within 1.5% of U-Nets.  
 
In out-of-distribution segmentation, 3D CapsNets outperformed U-Nets with Dice scores more than 30% 
higher. This is expected, given that the main idea behind the CapsNets is generalization to novel viewpoints 
and spatial features. In object recognition, 2D CapsNets were already shown to ourperform convolutional 
neural networks (CNNs) when the objects are imaged from viewpoints that were not represented during 
training.4 In 2D image segmentation, 2D CapsNets are shown to outperform 2D U-Nets in segmenting 
rotated images.7 Our study extends the literature by showing that 3D CapsNets outperform 3D U-Nets in 
segmenting contralateral brain structures that were not represented during training. Notably, we did not use 
data augmentation during training. Given our results, we propose that 3D CapsNets can segmenting brain 
structures with out-of-distribution spatial features, such as scenarios in which the brain anatomy is distorted 
by space-occupying lesions. We propose that a model with out-of-distribution segmentation capabilities 
will be able to segment such deformed brain structures. 
 
CapsNets are slightly faster to train compared to U-Nets. While clustering of vote vectors between capsule 
layers slows down CapsNets, they converge faster than U-Nets given that they have 93% fewer parameters 
to train. The net effect of these opposing factors leads to slightly faster training of CapsNets. The two 
models are equally fast during testing. Given that the forward pass through the fixed, trained parameters 
during testing is much faster compared to the forward and backward passes during training, the larger size 
of the U-Net does not slow it down as much during testing as it does during training. At the same time, 
clustering between the capsule layers slows down the CapsNet during testing same as training. As a result, 
the two models end up being equally fast during testing. 
 
To develop 3D CapsNets and make them work for volumetric brain MRI segmentation, we explored a large 
space of design questions, hyperparameters, loss functions, and implementation details to find optimal 
solutions. We used the validation set to explore these questions and tested our final models on the test set 
only once. While our model performs well for volumetric segmentation of T1-weighted brain MRIs, we did 
not evaluate its performance for segmentation of other organs or other imaging modalities. We assume that 
our model would need modifications to perform well on other segmentation tasks or on brain MRIs that are 
pre-processed differently. We have described the experiments that helped us find optimal solutions for our 
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design questions in the supplemental material, and we welcome further research to generalize our 3D 
CapsNet to other imaging modalities and segmentation tasks.  
 
This study extends the literature by developing and validating 3D CapsNets for volumetric segmentation. 
We also showed that 3D CapsNets are promising for out-of-distribution segmentation of brain structures 
that were not represented during training, which will open the door to use them in segmenting distorted 
brain anatomy in patients with brain tumors, hemorrhages, and other space-occupying lesions. Our future 
work will focus on using 3D CapsNets to segment the distorted anatomy in patients with brain tumors, with 
the aim of improving radiotherapy, surgical planning, and disease progress monitoring in these patients.   
 
 
Conclusion 
 
In this study, we developed and validated 3D Capsule Networks and used them for volumetric segmentation 
of brain MR images. While this model is one order of magnitude smaller than the equivalent 3D U-Net, it 
achieves comparable performance in segmenting various brain structures. Additionally, 3D CapsNets can 
segment brain images that are not represented during training, outperforming 3D U-Nets in out-of-
distribution segmentation.  
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Figure 1: CapsNet (A) and U-Net (B) architectures. Both models process 3D volumes in all layers, with 
dimensions shown on the left side. D, H, and W respectively represent the depth, height, and width of the 
image in each layer. In (A), the number over the Conv1 layer represents the number of channels. The 
numbers over the capsule layers (ConvCaps, DeconvCaps, and FinalCaps) represent the number of pose 
components. The stacked layers represent capsule channels. In (B), the numbers over each layer represent 
the number of channels. In the 3D U-Net, the convolutions have stride=1 and the transposed convolutions 
have stride = 2. Please note that the numbers over capsule layers show the number of pose components, 
while the numbers over non-capsule layers show the number of channels.  
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Table 1: Study participants. These accuracies were computed on the test set (114 brain MRIs). The 3rd 
ventricle, thalamus, and hippocampus respectively represent easy, medium, and hard structures to 
segment. 
 

Data Partitions Number of MRI 
volumes 

Number of 
patients 

Age 
mean ± SD 

Gender 
% female Ethnicity 

Training set 3199 841 ? ± ? ?% ? 

Validation set 117 30 ? ± ? ?% ? 

Test set 114 30 ? ± ? ?% ? 
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Figure 2: CapsNet vs U-Net in segmenting brain structures that were represented in the training 
data. Segmentations for three structures are shown: 3rd ventricle, thalamus, and hippocampus. Target 
segmentations and model predictions are respectively shown in white and red. Dice scores are provided 
for the entire volume of the segmented structure in this case (this case was randomly chosen from the test 
set).  
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Table 2: CapsNet vs U-Net in segmenting brain structures that were represented in the training 
data. The segmentation accuracy was quantified using Dice scores on the test (114 brain MRIs). The 3rd 
ventricle, thalamus, and hippocampus respectively represent easy, medium, and difficult structures to 
segment. 
 

Brain structure CapsNet 
Dice score (95% CI) 

U-Net 
Dice score (95% CI) P-value† 

3rd ventricle 93.6 (93.2 to 94.0) % 95.3 (95.0 to 95.6) % < 0.01 

Thalamus 93.6 (93.4 to 93.8) % 94.4 (94.3 to 94.6) % < 0.01 

Hippocampus 91.0 (90.7 to 91.3) % 92.5 (92.1 to 92.9) % < 0.01 

 

† Paired-samples t-test, degrees of freedom = 114 - 1 = 113 
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Figure 3: CapsNet outperforms U-Net in out-of-distribution segmentation. Both models were trained 
to segment right-sided brain structures, and were tested to segment contralateral left-sided brain structures. 
Target segmentations and model predictions are respectively shown in white and red. Dice scores are 
provided for the entire volume of the segmented structure in this case. While CapsNet partially segmented 
the contralateral thalamus and hippocampus, U-Net poorly segmented thalamus and entirely missed the 
hippocampus. 
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Table 3: CapsNet vs U-Net out-of-distribution segmentation accuracy. Both models were trained to 
segment the right thalamus and hippocampus. Then, they were tested on segmenting the contralateral left 
thalamus and hippocampus. 
 

Brain structure CapsNet 
Dice score (95% CI) 

U-Net 
Dice score (95% CI) P-value† 

Thalamus 52 (46 to 58) % 16 (11 to 21) % < 0.01 

Hippocampus 43 (38 to 48) % 10 (6 to 14) % < 0.01 
 

† Paired-samples t-test, degrees of freedom = 114 - 1 = 113 
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Figure 4: CapsNet vs U-Net segmentation accuracy as a measure of training set size. When the size of 
the training set was decreased from 3199 to 600 brain MRIs, both models maintained their segmentation 
accuracy above 90%. Further decrease in the size of the training set down to 120 MRIs led to worsening of 
their segmentation accuracy down to 85% (measured by Dice scores). 
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Figure 5: Model size (A) and computation times (B) compared between CapsNet and U-Net. The 
model size bars in (A) represent parameter size (28 and 345 MB for CapsNet and U-Net, respectively) plus 
the cumulative size of the forward and backward pass feature volumes (228 and 1364 for CapsNet and U-
Net, respectively). The CapsNets train train slightly faster (B), given that they have 93% fewer trainable 
parameters. However, clustering between the capsule layers slows down CapsNets, making them only 
slightly faster than U-Nets during training. The two models are equally fast during testing.  
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