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Abstract

Background and Purpose: Current auto-segmentation models of brain structures, UNets and nnUNets, have
limitations, including the inability to segment images that are not represented during training and lack of

computational efficiency. 3D capsule networks (CapsNets) have the potential to address these limitations.

Methods: We used 3430 brain MRIs, acquired in a multi-institutional study, to train and validate our models. We
compared our CapsNet with standard alternatives, UNets and nnUNets, based on segmentation efficacy (Dice
scores), segmentation performance when the image is not well-represented in the training data, performance when

the training data are limited, and computational efficiency including required memory and computational speed.

Results: The CapsNet segmented the third ventricle, thalamus, and hippocampus with Dice scores of 95%, 94%,
and 92%, respectively, which were within 1% of the Dice scores of UNets and nnUNets. The CapsNet
significantly outperformed UNets in segmenting images that are not well-represented in the training data, with
Dice scores 30% higher. The computational memory required for the CapsNet is less than a tenth of the memory
required for UNets or nnUNets. The CapsNet is also more than 25% faster to train compared with UNet and

nnUNet.

Conclusion: We developed and validated a CapsNet that is effective in segmenting brain images, can segment
images that are not well-represented in the training data, and are computationally efficient compared with

alternatives.
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Abbreviations:

ADNI: Alzheimer’s disease neuroimaging initiative
o CapsNet: capsule network

e CPU: central processing unit

e CT: computed tomography

o GB: giga-byte

e GPU: graphics processing unit

e MRI: magnetic resonance imaging
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Introduction

Neuroanatomical image segmentation is an important component in the management of various neurological
disorders.’® Accurate segmentation of anatomical structures on brain magnetic resonance images (MRIs) is an
essential step in a variety of neurosurgical and radiation therapy procedures.**® Manual segmentation is time-
consuming and is prone to intra- and inter-observer variability.”® With the advent of deep learning to automate
various image analysis tasks,>!° there has been increasing enthusiasm to use deep learning for brain image auto-

segmentation, -4

UNets are among the most popular and successful deep learning auto-segmentation algorithms.11>16 Despite the
broad success of UNets in segmenting anatomical structures across various imaging modalities, they have well
described limitations. UNets perform best on images that closely resemble the images used for training, but
underperform on images that contain variant anatomy or pathologies that change the appearance of normal
anatomy.® Additionally, UNets have a large number of trainable parameters, hence training and deploying UNets
for image segmentation often requires substantial computational resources that may not be scalable in all clinical
settings.'® There is a need for fast, computationally efficient segmentation algorithms that can segment images not

represented in the training data with high fidelity.

Capsule networks (CapsNets) represent an alternative auto-segmentation method that can potentially overcome the
limitations of UNets.}*° CapsNets can encode and manipulate spatial information such as location, rotation, and
size about structures within an image, and use this spatial information to produce accurate segmentations. Encoding
spatial information allows CapsNets to generalize well on images that are not well-represented in the data used to
train the algorithm.'®% Moreover, CapsNets use a smarter paradigm for information encoding which relies on fewer

parameters leading to increased computational efficiency.t’1°
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Capsule networks have shown promise on some biomedical imaging tasks,*® but have yet to be fully explored for
segmenting anatomical structures on brain MRIs. In this study, we explore the utility of CapsNets for segmenting
anatomical structures on brain MRIs using a multi-institutional dataset of more than 3,000 brain MRIs. We compare

the segmentation efficacy and computational efficiency of CapsNets with popular UNet-based models.

Methods

Dataset

The dataset for this study included 3,430 T1-weighted brain MRI images, belonging to 841 patients from 19
institutions enrolled in Alzheimer’s Disease Neuroimaging Initiative (ADNI) study.?® The inclusion criteria of
ADNI have been previously described.?! On average, each patient underwent four MRI acquisitions. Details of MRI
acquisition parameters are provided in Appendix 1.2 We randomly split the patients into training (3,199 MR, to
93% of data), validation (117 MRI volumes, 3.5% of data), and test (114 MRI volumes, 3.5% of data) sets. Data
was divided at the patient level to assure that all images belonging to a patient were assigned either the training,
validation, or test set. Patient demographics are provided in Table 1. This study was approved by the Institutional

Review Board of Yale School of Medicine (IRB number 2000027592).

Anatomic Segmentations

We trained our models to segment three anatomical structures of the brain: third ventricle, thalamus, and
hippocampus. These structures were chosen to represent structures with varying degrees of segmentation difficulty.
Preliminary ground-truth segmentations were initially generated using FreeSurfer,?>-2* and then manually corrected

by a board-eligible radiologist with nine years of experience in neuroimaging research.
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Image Pre-Processing

MRI preprocessing included correction for intensity inhomogeneities, including B1-field variations.®? The 3D
brain volume was cropped after removing the skull, face, and neck tissues 2* To overcome memory limitations,
segmentations were done on 64x64x64-voxel patches of the MRI volume that contained the segmentation target.
The patch was automatically placed over the expected location of the segmentation target using pre-defined
coordinates referenced from the center of the image. The coordinates of each patch were computed during training
and were fixed during testing, without any manual input and without using the ground-truth segmentations. Details

of pre-processing are provided in Appendix 2.

Capsule Networks

CapsNets are composed of three main components: 1) capsules that each encode a structure together with the pose
of that structure: the pose is an n-dimensional vector that learns to encode orientation, size, curvature, location, and
other spatial information about the structure; 2) a supervised learning paradigm that learns how to transform the
poses of the parts (e.g. head and tail of hippocampus) to the pose of the whole (e.g. the entire hippocampus); and 3)
a clustering paradigm that detects a whole if the poses of all parts transform into matching poses of the whole.
Further details regarding differences between CapsNets and other deep learning models are provided in Appendix

3.

2D CapsNets were previously introduced by Lalonde et al to segment one slice of the image at a time.? We
developed 3D CapsNets for volumetric segmentation of a 3D volume, with the architecture shown in Figure 1.A.
The first layer, Convl, performs 16 convolutions (5x5x5) on the input volume to generate 16 feature volumes,
which are reshaped into 16D vectors at each voxel. The 16D vector at each voxel is reshaped into a pose that learns

to encode spatial information at that voxel. The next layer, PrimaryCaps2, has two capsule channels that learn two
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16D-to-16D convolutional transforms (5x5x5) from the poses of the previous-layer parts to the poses of the next-
layer wholes. Likewise, all capsule layers (green layers in Figure 1.A) learn m-to-n-dimensional transforms from
the poses of parts to the poses of wholes. Our CapsNet has downsampling and upsampling limbs. The downsampling
limb learns what structure is present at each voxel, and the skip connections from downsampling to upsampling
limbs preserve where each structure is on the image. Downsampling is done using 5x5x5 convolutional transforms
with stride = 2. Layers in the deeper parts of CapsNet contain more capsule channels (up to 8) and poses with more
components (up to 64) to be able to encode more complex structures, since each capsule in the deeper parts of the
model should be able to detect complex concepts in the entire image. Upsampling is done using 4x4x4 transposed
convolutional transforms with stride = 2 (turquoise layers in Figure 1A). The final layer, FinalCaps13, contains one
capsule channel that learns to activate capsules within the segmentation target and deactivate them outside the
target. Appendix 4 explains the options that we explored for developing our 3D CapsNets and how we chose the
best design options. Appendix 5 explains how the final layer activations were converted into segmentations. Details

about how the model finds agreeing poses of parts that vote for the pose of the whole are provided in Appendix 6.

Comparisons: UNets and nnUNets

Optimized 3D UNets and nnUNets were also trained on the same training data, 1*132% and their segmentation
efficacy and computational efficiency were compared with our CapsNet using the same test data. UNets and
nnUNets have shown strong auto-segmentation performance across a variety of different imaging modalities and
anatomic structures and are among the most commonly used segmentation algorithms in biomedical imaging.**-
13152930 Figure 1.B shows the architecture of our UNet. The input image undergoes 64 convolutions (3x3x3) to
generate 64 feature maps. These maps then undergo batch normalization and ReLU activation. Similar operations
are carried out again, followed by downampling using max-pooling (2x2x2). The downsampling and upsampling
limbs each include four units. Upsampling is done using 2x2x2 transposed convolutions with stride = 2. The final
layer carries out a 1x1x1 convolution to aggregate all 64 channels, followed by soft thresholding using the sigmoid

function. The model learns to output a number close to 1 for each voxel inside the segmentation target, and a number
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close to 0 for each voxel outside the target. We also trained self-configuring nnUNets that automatically learn the
best architecture as well as the optimal training hyperparameters.’® Figure 1.C shows the architecture of the nnUNet

resulting from the self-configuring nnUNet paradigm.

Model Training

The CapsNet and UNet models were trained for 50 epochs using Dice loss and the Adam optimizer.®! Initial learning
rate was set at 0.002. We used dynamic paradigms for learning rate scheduling, with a minimal learning rate of
0.0001. The hyperparameters for our UNet were chosen based on the best-performing model over the validation
set. The hyperparameters for nnUNet were self-configured by the model.’® The training hyperparameters for

CapsNet and UNet are detailed in Appendix 6.

Model Performance

The segmentation efficacy of the three models was measured using Dice scores. To compare the performance of

each segmentation model when training data is limited, we also trained the models using subsets of the training data

with 600, 240, 120, and 60 MRIs. We then compared the segmentation efficacy of the models using the test set.

The relative computational efficiency of the models was measured by 1) the computational memory required to run

the model (in megabytes), 2) the computational time required for training each model, and 3) the time that each

model takes to segment one MRI volume.

Out-of-Distribution Testing

To evaluate the performance of CapsNet and UNet models on the images that were not represented during training,

we trained the models using images of the right hemisphere of the brain that only contained the right thalamus and
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right hippocampus. Then, we evaluated the segmentation efficacy of the trained models on the images of the left
hemisphere of the brain that contained the contralateral left thalamus and left hippocampus. Because the left-
hemisphere images in the test set are not represented in the right-hemisphere images in the training set, this
experiment evaluates the out-of-distribution performance of the models. We intentionally did not use any data
augmentation during training to assess out-of-distribution performance of the models. Given that nnUNet paradigm

requires data augmentation, nnUNet was not included in this experiment.

Implementation

Image pre-processing was done using Python (version 3.9) and FreeSurfer (version 7). PyTorch (version 1.11) was
used for model development and testing. Training and testing of the models were run on GPU-equipped servers (4
VvCPUs, 61 GB RAM, 12 GB NVIDIA GK210 GPU with Tesla K80 Accelerators). Code used to train and test our
models, our pre-trained models, and a sample MRI are available on our lab’s GitHub page: www.github.com/Aneja-

Lab-Yale/Aneja-Lab-Public-CapsNet.

Results

All three segmentation models showed high performance across all three neuroanatomical structures with Dice
scores above 90% (Table 2). Performance was highest for the 3™ ventricle (95%-96%) followed by the thalamus
(94%-95%) and hippocampus (92%-93%). Dice scores between the CapsNet and UNet-based models were within

1% for all neuroanatomical structures.
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Segmentation performance for each model remained high across training datasets of varying sizes (Figure 4). When
training on 120 brain MRISs, all three models maintained their segmentation accuracy within 1% when compared to
models trained on 3,199 brain MRIs. Segmentation performance did decrease for all three models when trained on

60 brain MRIs (83% CapsNet, 84% UNet, 88% nnUNet)

Although both CapsNet and UNet had difficulty segmenting contralateral structures, the CapsNet significantly
outperformed the UNet (Thalamus P-value < 0.001, Hippocampus P-value < 0.001) (Table 3). CapsNet models
frequently identified the contralateral structure of interest but underestimated the size of the segmentation, resulting
in Dice scores between 40% and 60%. In contrast, the UNet models frequently failed to identify the contralateral

structure of interest, resulting in Dice scores lower than 20% (Figure 3).

The CapsNet was more computationally efficient compared to UNet-based models (Figure 5). The CapsNet required
228 MBs, compared to 1,364 MBs for UNet and 1,410 MBs for nnUNet. The CapsNet trained 25% faster than the
UNet (1.5s v 2s per sample) and 100% faster than the nnUNet (1.5s vs 3s per sample). When we compared the
deployment times of the fully-trained models, CapsNet and UNet could segment images equally fast (0.9s per

sample) which was slightly faster than the nnUNet (1.1s per sample).

Discussion

Neuroanatomic segmentation of brain structures is an essential component in the treatment of various neurologic
disorders. Deep-learning-based auto-segmentation methods have shown the ability to segment brain images with
high fidelity, which was previously a time-intensive task.**'* In this study, we compared the segmentation efficacy
and computational efficiency of CapsNets with UNet-based auto-segmentation models. We found CapsNets to be

reliable and computationally efficient, achieving segmentation accuracy comparable to commonly-used UNet-
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based models. Moreover, we found CapsNets to have higher segmentation performance on out-of-distribution data,

suggesting an ability to generalize beyond their training data.

Our results corroborate previous studies demonstrating the ability of deep learning models to reliably segment
anatomical structures on diagnostic images.*!2* UNet-based models have been shown to effectively segment
normal anatomy across a variety of different imaging modalities including CT, MRI, and Xray images.1529.30.32-34
Moroever, Isensee et al showed the ability of nnUNets to generate reliable segmentations across 23 biomedical
image segmentation tasks with automated hyperparameter optimization. We have extended prior work by
demonstrating similar segmentation efficacy between CapsNets and UNet-based models with CapsNets being
notably more computationally efficient. Our CapsNets require less than 10% the amount of memory required by

UNet-based methods and trains 25% faster.

Our findings are consistent with prior studies demonstrating the efficacy of CapsNets for image segmentation.®3°
LaLonde et al previously demonstrated that 2D CapsNets can effectively segment lung tissues on CT images and
muscle and fat tissues on thigh MR images. Their group similarly found that CapsNets can segment images with
performance rivaling UNet-based models while requiring with less than 10% of the memory required by UNet-
based models. Our study builds upon prior studies by showing the efficacy of CapsNets for segmenting
neuroanatomical substructures on brain MRIs. Additionally, compared to prior work, we have implemented 3D

CapsNet architecture, which has not been previously described in the literature.

Previous studies have suggested that CapsNets are able to generalize beyond their training data.'®® Hinton et al
demonstrated that CapsNets can learn spatial information about the objects in the image, and can then generalize
this information beyond what is present in the training data, which gives CapsNet out-of-distribution generalization
capability.’® The ability to segment out-of-distribution images was also shown by LalLonde et al for their 2D
CapsNet model that segments images.’® We build upon previous studies by demonstrating out-of-distribution

generalizability of 3D CapsNets for segmenting medical images.
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Although we found CapsNets to be effective in biomedical image segmentation, previous studies on biomedical
imaging have shown mixed results.®® Survarachakan et al previously found 2D CapsNets to be effective for
segmenting heart structures, but ineffective for segmenting hippocampus on brain images.®® Our more favorable
results in segmenting hippocampus are likely because of the 3D structure of our CapsNet, which can use the
contextual information in the volume of the image rather than justa slice of the image, to better segment the complex

shape of the hippocampus.

Our study has several limitations which should be noted. Our models were only tested on three brain structures that
are commonly segmented on brain MRIs, meaning that our findings may not generalize across other imaging
modalities and anatomic structures. Nevertheless, our findings show the efficacy of CapsNets on brain structures
with different levels of segmentation difficulty, suggesting potential utility for a variety of scenarios. Computational
efficiency across models was measured using the same computing resources and GPU memory, and our findings
may not translate to different computational settings. Future studies can further explore the relative computational
efficiency of CapsNets compared to other auto-segmentation models across different computing environments.
Lastly, we only compared the efficacy of CapsNets withUNet-based models. While there are multiple other auto-
segmentation models, UNet-based models are currently viewed as the most successful deep-learning models for
segmenting biomedical images. Further studies comparing the CapsNet to other deep-learning models are an area

of future research.

Conclusion

In this study, we showed that 3D CapsNets can accurately segment neuroanatomical structures on brain MR images
with segmentation accuracy similar to UNet-based models. We also showed that CapsNets outperform UNet-based
models in segmenting out-of-distribution data. CapsNets are also more computationally efficient compared to UNet-

based models, since they train faster and require less computation memory.
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Figure 1: CapsNet (A), UNet (B), and self-configured nnUNet (C) architectures. All models process 3D images
in all layers, with dimensions shown on the left side. D, H, and W respectively represent the depth, height, and width
of the image in each layer. In (A), the number over the Conv1 layer represents the number of channels. The numbers
over the capsule layers (ConvCaps, DeconvCaps, and FinalCaps) represent the number of pose components. The
stacked layers represent capsule channels. In (B) and (C), the numbers over each layer represent the number of
channels. In UNet and nnUNet, the convolutions have stride=1 and the transposed convolutions have stride = 2.
Please note that the numbers over capsule layers show the number of pose components, while the numbers over

non-capsule layers show the number of channels.
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Table 1: Study participants tabulated by the training, validation, and test sets.

Number of Number of  Age

Data Partitions Genderf Diagnosis’™

MRI volumes patients mean + SD
Training set 3199 841 67 42% F,58% M 29% CN, 54% MCI, 17% AD
Validation set 117 30 75+6 30% F, 70% M 21% CN, 59% MCI, 20% AD
Test set 114 30 77 33% F,67% M 27% CN, 47% MCI, 26% AD

+ F: female; M: male.

F1 CN: cognitively normal; MCI: mild cognitive impairment; AD: Alzheimer’s disease.


https://doi.org/10.1101/2022.01.18.22269482
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2022.01.18.22269482; this version posted October 24, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-NC-ND 4.0 International license .

Figure 2: CapsNet, UNet, and nnUNet segmentation of brain structures that were represented in the training
data. Segmentations for three structures are shown: 3rd ventricle, thalamus, and hippocampus. Target
segmentations and model predictions are respectively shown in red and white. Dice scores are provided for the

entire volume of the segmented structure in this patient (who was randomly chosen from the test set).
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Table 2: Comparing the segmentation efficacy of CapsNets, UNets, and nnUNets in segmenting brain
structures that were represented in the training data. The segmentation accuracy was quantified using Dice
scores on the test (114 brain MRIs). The 3rd ventricle, thalamus, and hippocampus respectively represent easy,

medium, and difficult structures to segment.

Brain CapsNet Dice UNet Dice nnUNet Dice
structure (95% CI) (95% CI) (95% CI)
3rd ventricle 95% 96 % 6%
(94 to 96) (95 to 97) (95 to 97)
Thalamus 94% 95 % 94%
(93 to 95) (94 to 96) (92 to 96)
92 % 93 % 92%

Hippocampus (91 to 93) (92 to 94) (91 to 93)
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Figure 3: CapsNets outperforms UNets in segmenting images that were not represented in the training data.
Both models were trained to segment right brain structures, and were tested to segment contralateral left brain
structures. Target segmentations and model predictions are respectively shown in red and white. Dice scores are
provided for the entire volume of the segmented structure in this patient. The CapsNet partially segmented the
contralateral thalamus and hippocampus, but the UNet poorly segmented the thalamus and entirely missed the

hippocampus.

Dice score: 45%]
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Table 3: Comparing the efficacy of CapsNets and UNets in segmenting images that were not represented in
the training data. Both models were trained to segment the right thalamus and hippocampus. Then, they were

tested on segmenting the contralateral left thalamus and hippocampus.

Brain CapsNet Dice  UNet Dice  CapsNet vs UNet
structure (95% CI) (95% CI) P-value®
52% 16%
Thalamus (461058)  (11to21) <001
0, 0,
Hippocampus 43% 10% <0.01

(38 to 48) (6 to 14)

1 Paired-samples t-test, degrees of freedom =114 - 1 =113
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Figure 4. Comparing CapsNets, UNets, and nnUNets when training data is limited. When the size of the
training set was decreased from 3199 to 120 brain MRIs, hippocampus segmentation accuracy (measured by Dice
score) of all three models did not decrease more than 1%. Further decrease in the size of the training set down to 60

MRIs led to worsened segmentation accuracy.
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Figure 5: Comparing the computational efficiency between CapsNets, UNets, and nnUNets, in terms of
memory requirements (A) and computational speed (B). The bars in (A) represent the computational memory
required to accommodate the total size of each model, including the parameters plus the cumulative size of the
forward- and backward-pass feature volumes. CapsNet trains faster (B), given that its trainable parameters are one
order of magnitude fewer than UNets or nnUNets. The training times represent the time that each model took to
converge for segmenting hippocampus, divided by the number of training examples and the training epochs (to

make training times comparable with test times). The test times represent how fast a fully-trained model can segment

a brain image.
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3D Capsule Networks for Brain Image Segmentation

SUPPLEMENTAL MATERIAL
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Appendix 1: MRI acquisition parameters

Field strength = 3.0 tesla
Coil = 8HR Brain

Weighting =T1

Flip angle=8.0 degree
TR =6.6 ms
TE=2.8ms
T1=900.0 ms

Acquisition type = 3D

Acquisition plane = Sagittal

Matrix size = 256x256%166 pixels (XxY xZ)

Pixel size = 1x1x1.2 mm (XXYxZ)

Pixel spacing: along X direction = 1 mm; along Y direction=1 mm
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Appendix 2: Pre-Processing

We corrected for intensity inhomogeneities including B1-field variations. Our pre-processing pipeline first registers the
brain image to the MNI305 atlas. Then, pixel intensities are used to roughly segment the white matter. The variations in the
pixel intensities in the white matter are then used to estimate the B1 field map Finally, B1 bias field correction is done by
dividing the pixel intensities by the estimated bias field.!

The next step is the removal of the skull, face, and neck, only leaving the brain. We used a hybrid method of skull stripping
that combines a watershed algorithm and a deformable surface model.? This method first roughly segments the white-matter
based on pixel intensities. Then, watershed algorithms are used to find the gray-white matter junction and the brain surface.
Next, a deformable surface model is used to model the brain surface. The curvature of the brain surface at each point is
computed, and these curvatures are used to register the brain surface onto an atlas. The atlas is formed by computing the
curvatures of the brain sulci and gyri in several subjects. The reconstructed brain surface, registered to the atlas, is then
automatically corrected in case the curvatures in a particular region of the surface do not make sense. The resulting corrected
brain surface model is used for skull stripping.?

To overcome memory limitations, we cropped 64x64x64-voxel boxes of the MRI volume that contained each segmentation
target. The box is automatically placed over the expected location of each segmentation target based on the expected
coordinates of the segmentation target. The box is large enough to accommodate inter-subject variability in the expected
location of each segmentation target.

Intensity
inhomogeneity
correction

baxcaxs A\

segmentation patch

Skull
stripping

Crop MRI volume
around the brain

Figure S3: Pre-processing steps.
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Appendix 3: Capsule Networks

Capsule networks (CapsNets) can detect objects
when their spatial features change.® This is a
fundamental property of CapsNets that enables
them to perform well when a test example is not
represented in the training data. (A) shows the
sagittal T1-weighted brain MRI of a patient with
a forward head tilt, and (B) shows the MRI of
another patient with a backward head tilt. White
arrows (connecting the posterior commissure to
the anterior commissure) demonstrate the
orientation of the brain. Let’s assume that we
have a CapsNet that is trained to segment the
entire brain. Let’s also assume that the training set only
contains patients with forward head tilt (like in A). An
ideal CapsNet should generalize to segment the brain in
patients with a backward tilt (like in B). To achieve this
goal, CapsNets encode the spatial features of each
structure that they detect. The spatial features of the
brain are encoded in a pose vector. The pose contains
spatial features such as orientation, position, size,
curvature, etc. Here, the orientation of the brain (one of
the spatial features) is shown by the white arrow. Our
goal is to illustrate how CapsNets detect a whole (the
brain) when parts (frontal pole, corpus callosum,
brainstem, cerebellum, occipital pole, etc.) all vote for
the same spatial features of the whole.

CapsNets are composed of three main ingredients: 1)
capsules that each encode a structure together with the
pose of that structure; 2) a supervised learning paradigm
that learns the transforms between the poses of the parts
(e.g. corpus callosum, brainstem) and the pose of the
whole (e.g. the entire brain); and 3) a clustering
paradigm that detects a whole if the poses of all parts
(after getting transformed) vote for matching poses of
the whole. Therefore, any CapsNet needs to: 1) learn the
transforms between the poses of parts and wholes; and
2) cluster the votes of the parts to detect wholes.

(C) shows a CapsNet that has already detected parts of
the brain and has encoded their spatial features
(demonstrated by the smaller white arrow over each
part). The red curved arrows demonstrate the transforms
between the poses of the part and the pose of the whole.

Key:
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Brain Structure Pose

Transform:
Brain Structure Pose
-> Brain Pose

n o
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After transformation, each part votes for a candidate pose of the whole. If all these votes match, the whole is present. Please
note that we are only showing the orientations here for simplicity, but the pose vectors encode more complex spatial features.
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In (E), We want the CapsNet to detect the backward-tilted brain
while the model is only trained on forward-tilted brain images (such
as in C). We can imagine that (E) is just the rotated version of (C),
as demonstrated in (D). The parts are all rotated clockwise
(compared to the poses of the parts in C). However, the same
transforms (red curved arrows) can still transform the poses of the
parts into the candidate poses of the whole. The candidate poses of
the whole still match, and therefore the whole is detected. This
process does not need any data augmentation: an ideal CapsNet can
detect objects when they are rotated or have undergone other spatial
changes, without the need for any data augmentation. This is
because the CapsNet can still use the same transforms between the
parts and the wholes (red curved arrows) even though the input
image has rotated. Therefore, a change in the poses of the parts will
cause an equivalent change in the pose of the whole, while the
relationship between the poses of the parts and the whole remains
the same. This is a powerful capability that makes CapsNets
equivariant to the changes in the inputs: spatial change in the inputs
will cause an equivalent spatial change in the pose of the detected
objects.® Such CapsNets can still detect the changed objects and will
encode these changes in the pose of the detected objects. As a result,
a CapsNet that is trained on forward-tilted brains (such as in C) can

Not Brain

Transform:
¥\ BrainStructure Pose
se

rain
\ ‘ - Brain Po:

R
CapsNet does not detect a brain,
because poses do not agree here!

Soa

Brain Parts:

Key:
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detect backward-tilted brains (such as in E) without the need for any 1

data augmentation. |3/ pes
Brain Parts: /\

This approach is fundamentally different from other machine N

learning methods such as U-Nets (G), which do not have A

equivariance capabilities. Instead, the max-pooling layersin U-Nets [ cerereiupAliOcEDaIPog

model invariant to the changed inputs. In essence, CapsNets use /
equivariance to encode and model the spatial changes in the inputs,

making CapsNets more efficient in handling variations of the same ‘/ !
object.® On the other hand, U-Nets use information killing (in max- £
pooling layers) to make the model invariant to the spatial changes
in the inputs. Therefore, U-Nets cannot efficiently detect variations

try to kill information about the changes in the inputs to make the ok Beske -
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attacks compared to U-Nets (H). Here, this adversarial image Bl Pats: = U-Net might falsely detect a brain here!
contains all parts of the brain but with orientations that do not make S

transformed into the candidate poses of the whole (using the same \! g

transforms as in C), the candidate poses of the whole do not match. 4

the other hand, a U-Net that is trained using augmented data may detect the parts. Such a U-Net has no mechanism to encode
the orientation and other spatial features of each part. In the U-Net feature space, each part is either present or absent. Since

(F) demonstrates why CapsNets are less susceptible to adversarial T T p——
sense, not making a whole. When the poses of the parts are

Therefore, the CapsNet would not detect a brain because of the mismatch between the candidate poses of the brain (F). On
all parts are present on this adversarial image, the U-Net can be fooled to detect the entire brain (H).
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We can indeed use data augmentation to train U-Nets to detect objects with changed spatial features. We can also use
adversarial training to prevent U-Nets from detecting adversarial images. But these inefficiencies lead to the need for a
larger U-Net model. On the other hand, CapsNets handle the changed spatial features in a smarter way. This allows
CapsNets, which are one order of magnitude smaller compared to U-Nets, to achieve similar results.*
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Appendix 4: Decision Choices to Develop Capsule Networks

To develop 3D CapsNets and make them work for volumetric brain MRI segmentation, we explored multiple architecture
options, hyperparameters, loss functions, and implementation details to find optimal solutions. We used the validation set
to explore these questions and select the best-performing model. We tested the best-performing model on the test set only
once. Here are the design options that we explored and how we chose the winning options:

1. Network architecture: we built on the previous work by Lal.onde et all* to develop a 3D capsule network architecture.
While Figure 1.A in the paper shows the architecture that performed best on the validation set, we explored the following
options to get to the final architecture:

a.
b.

Kernel size: we explored 3x3x3 and 5x5x5 kernels; the latter performed better.

Downsampling method: we explored max-pooling versus 5x5x5 convolutions with stride of 2; the latter
performed better.

Upsampling method: we explored tri-linear interpolation versus 4x4x4 transposed convolutions with stride of
2; the latter performed better.

Number of dynamic routing iterations to find agreeing pose vectors: we explored 1, 2, and 3 iternations for
dynamic routing between capsule layers. As shown in Figure 1.A in the paper, the best-performing network
uses 1 iteration for the first capsule layer, and 3 iterations for subsequent capsule layers.

Number of capsule types in each layer: we tested up to 8 capsule types in the deepest part of the network, which
performed best. Memory limitations did not let us increase the number of capsule types any further.

Number of pose vector elements in each capsule: we tested up to 64 pose vector elements in the deepest part of
the network, which performed best. Memory limitations did not allow us to further increase the number of pose
vector elements.

2. Optimizer hyperparameters: we used Adam optimizer with dynamic scheduling of the learning rate. We explored the
following ranges of hyperparameters to select the best-performing model over the validation set. Since the best-
performing hyperparameters are detailed in Appendix 7, we are not listing them here again:

a.

Initial learning rate: we explored values ranging from 0.02 down to 0.001.

b. Minimal learning rate: we explored values ranging from 0.001 down to 0.0001.

C.

Dynamic learning rate scheduling patience: if the model performance does not improve over a humber of
training epochs (in our case, mini-epochs), the learning rate scheduler decreases the learning rate by a factor.
The number of epochs that the learning rate scheduler “waits” before decreases the learning rate, tolerating no
improvement in performance over the validation set, is determined by the learning rate scheduler's patience.
We explored patience values ranging from 5 to 10.

Learning rate decrement factor: when the model performance does not improve (over the validation set) after a
number of epochs (determined by patience), the learning rate scheduler divides the learning rate by a number.
We explored values ranging from 2 to 10.

3. Loss functions: we explored the following loss functions and found out that Dice loss perform best for our task:

Dice loss

Weighted average of Dice loss and cross-entropy loss

Intersection over union loss

Weighted average of intersections over union loss and cross-entropy loss
Soft dice loss

Our implementation of these loss functions is available at:
https://github.com/Aneja-Lab-Yale/Aneja-Lab-Public-CapsNet/blob/main/loss functions.py

4. Other design options:


https://github.com/Aneja-Lab-Yale/Aneja-Lab-Public-CapsNet/blob/main/loss_functions.py
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Batch size: we explored batch sizes ranging from 2 to 8. The batch size of 4 performed best over the validartion
set.

Patch size: we explored patch sizes ranging from 32x32x32 up to 128x128x128. While the larger patch size of
128x128x128 allows the network to use more contextual information in the image to segment each structure,
larger patch sizes use more computational memory, forcing us to change other memory-intensive design options
in the networks such as decreasing the number of capsule types in each layer or decreasing the number of pose
elements in each capsule. Our experiments showed that a patch size of 64x64x64 led to the best-performing
model over the validation set.

Converting the activations in the final capsule layer into segmentations: we introduced a forgiving paradigm to
convert final-layer activations into segmentations. This forgiving paradigm accelerated CapsNet training and
made the training process stable. Appendix 5 details this paradigm.
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Appendix 5: Converting Final Layer Activations into Segmentations

The final layer of the 3D CapsNet is composed of one capsule channel that learns to activate capsules within the
segmentation target and deactivate them outside the target. Activation of a capsule is determined by the length of its pose
vector, which is a number between 0 and 1. The ground truth segmentations are coded similarly: pixels outside and inside
the segmentation target are respectively coded by 0 and 1.

During testing, the length of the final layer’s pose vectors is thresholded at 7"

X 0, Vil <T
ftest(xi,j,k) = {1 ”vlﬂ;” >T (1)
) L], -

where £ (x; j ;) is the prediction of the CapsNet for the input voxel x; ; , and ||v; j || is the length of the final layer’s pose
vector v; ;. at the location (i,j,k) of the MRI volume (please note that v; ; , is itself a function of x; ; ., the function being
the entire CapsNet that takes x; ; , as the input and gives v; ; , as the output).

During training, the length of the final layer’s pose vector and each location (i,j,k) undergo a piecewise linear transform as
follows:

(0 ) Vel < Tn
R =T
ftrain(xi,j,k) = % , Tp < ”vi,j,k” <T, (2
2 7 11
1 ) llvijxll = T2

Ifwe setT = 0.5 T; = 0.1and T, = 0.9, we get the following diagrams for fyes, (x; jx) and ferain (x; jx) as functions of

Vel
1.0 1 1.0
N =2
2 =
I =
208 & 08+
t:’ s}
Y] ~
«‘: «':
0.6 0.6
0.4 1 0.4
0.2 0.2
0.0 1 0.0
0.0 02 04 06 08 1.0 00 02 04 06 08 10
Vel Vel

During training, the piecewise conversion (formula 2) enables a forgiving paradigm for the length of the final layer’s pose
vectors: if the length of the vector is more than 0.9 for a voxel inside the segmentation target, the loss for that voxel would
be zero. Intuitively, a pose vector with a length more than 0.9 for a voxel inside the segmentation target is considered “good
enough”, so the training algorithm should not try to perfect the length of this vector to 1. Similarly, a pose vector with a
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length less than 0.1 is considered good enough for a voxel outside the segmentation target, so the training algorithm should
not try to perfect the length of this vector to 0. This forgiving training paradigm makes the training of CapsNet stable because
this paradigm does not try to perfect the length of the pose vectors of the final layer to 0’s and 1’s. In contrast, if a training
paradigm tries to perfect the length of the pose vectors to 0’s and 1’s, that training paradigm becomes unstable because the
pose vectors can assume a length close to 0 or 1, but not exactly 0 or 1. Remember that the pose vectors are generated by
the squash function,® which cannot generate vectors with a length equal to 0 or 1:

2
Sijk Il 3)
Isejiell 1 + 1|5 ;]

Vijk = squash(si,]-’k) =

where s; ; . is the total input to the final layer capsule at the location (i,j,k), and v; ;  is the pose vector of the final layer
capsule at that location.

Our experiments show that training with the forgiving paradigm is more stable and leads to faster convergence. When we
did not convert the length of the pose vector ||vl-,j,k|| using the conversion function (formula 2), CapsNet training became
unstable. Here we show the evolution of the training set and the validation set losses during 10 epochs of training, with and
without the forgiving paradigm:

Training with the forgiving paradigm (with conversion) Training without the forgiving paradigm (without conversion)
1.0 =
—— Training loss 1.0 1 n ! —— Training loss
| Validation loss "l | | nl —— Validation loss
08 | ‘
0.8 |
|
|
0.6 ol
@ g 067
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0.4 ‘ LNl ! L
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| '\ Ll b '
0.2 1 \ \ 1| J
\ 0.2 \ '\”'v
T T T T T T T T T T T T
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We additionally searched for the optimal conversion functions. The piecewise linear function led to the most stable training
and fastest convergence. Here we describe other functions that we studied (together with their plots) so that other groups
would be aware of these conversion functions that we think are suboptimal for this task:

1

4
1 + e~ 9-Ulvijll-1) (4)

ferain(xijx) = sigmoid (CI- (v jell = T)) =


https://doi.org/10.1101/2022.01.18.22269482
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2022.01.18.22269482; this version posted October 24, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-NC-ND 4.0 International license .

We set T = 0.5 and tried different values for g (10, 15, and 20):
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We also examined the piecewise conversion function (formula 2) with values for T; and T, other than 0.1 and 0.9:

| =g
o

(xl-,j,k)

f train

0.6

04

02

0.0

0.0 0.2 0.4 0.6 0.8 10
||”i.j.k ||

(xi,j,k)

f train

0.8

0.6

04

0.2

0.0

0.0 0.2 04 0.6 08 10
||”i,j,k ||

None of these conversion functions was as effective as the piecewise function with T; = 0.1 and T, = 0.9 in improving the
stability and convergence of CapsNet training.
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Appendix 6: Findings Agreeing Pose Vectors

Let’s assume the previous capsule layers has six capsule channels, each outputting the vote vector of a part (v to ve). To
find the vote vectors that agree, we first compute the vector summation of all vote vectors (v):
v = Z Vi
i
Then, we compute the inner products between each vote vector v; and the sum v, yielding weights for each vote vector wi:
W; = 7.V

Please note that each w; is a scalar. Next, we re-compute the vector sum v using the weighted average of the vote vectors
using weights w; computed in the previous step :
v = Z W; U;
i

This process is often repeated for three iterations. The number of iterations is a hyperparameter that should be set between
capsule layers. This whole process increases the weights of the vectors that align with the sum (v1, v2, and v in this
example) and decreases the weights of the vectors that do not align with the sum (vs, v, and vs in this example).

Vs
Vg Vv, | Iteration \
1
::: \
Vs

Vv
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Training set size (MRI volumes):
Validation set size (MRI volumes):
Test set size (MRI volumes):

Training batch size (MRI volumes):

Training mini-epoch size:

Training epochs:
Optimizer:
Optimizer hyperparameters:

Initial learning rate:
Minimal learning rate:
Learning rate scheduling:

Appendix 7: Training hyperparameters

3199
117
114

4
30 batches: during training, the validation set loss was computed after
each mini-epoch

50
Adam
B =09, B, =0.999, ¢ =108

0.002

0.0001

Dynamic (via monitoring the validation set loss during training):
Learning rate was decreased by half if the validation set loss did not
improve over 10 mini-epochs
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