Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

Pooled RNA: extraction free testing of saliva for SARS-CoV-2 detection

View ORCID ProfileOrchid M. Allicock, Devyn Yolda-Carr, John A. Todd, View ORCID ProfileAnne L. Wyllie
doi: https://doi.org/10.1101/2022.01.16.22269390
Orchid M. Allicock
1Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Orchid M. Allicock
Devyn Yolda-Carr
1Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
John A. Todd
2Flambeau Diagnostics, Madison WI 53719, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Anne L. Wyllie
1Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Anne L. Wyllie
  • For correspondence: anne.wyllie{at}yale.edu
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Supplementary material
  • Data/Code
  • Preview PDF
Loading

Abstract

The key to limiting SARS-CoV-2 spread is to identify virus-infected individuals (both symptomatic and asymptomatic) and isolate them from the general population. Hence, routine weekly testing for SARS-CoV-2 in all asymptomatic (capturing both infected and non-infected) individuals is considered critical in situations where a large number of individuals congregate such as schools, prisons, aged care facilities and industrial workplaces. Such testing is hampered by operational issues such as cost, test availability, access to healthcare workers and throughput. We developed the SalivaDirect RT-qPCR assay to increase access to SARS-CoV-2 testing via a low-cost, streamlined protocol using self-collected saliva. To expand the single sample testing protocol, we explored multiple extraction-free pooled saliva testing workflows prior to testing with the SalivaDirect assay. A pool size of five, with or without heat inactivation at 65°C for 15 minutes prior to testing resulted in a positive agreement of 98% and 89%, respectively, and an increased Ct value shift of 1.37 and 1.99 as compared to individual testing of the positive clinical saliva specimens. Applying this shift in Ct value to 316 individual, sequentially collected, SARS-CoV-2 positive saliva specimen results reported from six clinical laboratories using the original SalivaDirect assay, 100% of the samples would have been detected (Ct value >45) had they been tested in the 1:5 pool strategy. The availability of multiple pooled testing workflows for laboratories can increase test turnaround time, permitting results in a more actionable time frame while minimizing testing costs and changes to laboratory operational flow.

Competing Interest Statement

The authors have declared no competing interest.

Funding Statement

This study was funded by Flambeau Dx (A.L.W) and Fast Grant from Emergent Ventures at the Mercatus Center at George Mason University (A.L.W).

Author Declarations

I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.

Yes

The details of the IRB/oversight body that provided approval or exemption for the research described are given below:

Institutional Review Board of the Yale Human Research Protection Program gave ethical approval for this work (Protocol IDs. 2000028394, 2000028599).

I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.

Yes

I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).

Yes

I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.

Yes

Data Availability

All data produced in the present work are contained in the manuscript

Copyright 
The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.
Back to top
PreviousNext
Posted January 17, 2022.
Download PDF

Supplementary Material

Data/Code
Email

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Pooled RNA: extraction free testing of saliva for SARS-CoV-2 detection
(Your Name) has forwarded a page to you from medRxiv
(Your Name) thought you would like to see this page from the medRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Pooled RNA: extraction free testing of saliva for SARS-CoV-2 detection
Orchid M. Allicock, Devyn Yolda-Carr, John A. Todd, Anne L. Wyllie
medRxiv 2022.01.16.22269390; doi: https://doi.org/10.1101/2022.01.16.22269390
Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Pooled RNA: extraction free testing of saliva for SARS-CoV-2 detection
Orchid M. Allicock, Devyn Yolda-Carr, John A. Todd, Anne L. Wyllie
medRxiv 2022.01.16.22269390; doi: https://doi.org/10.1101/2022.01.16.22269390

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Infectious Diseases (except HIV/AIDS)
Subject Areas
All Articles
  • Addiction Medicine (430)
  • Allergy and Immunology (756)
  • Anesthesia (221)
  • Cardiovascular Medicine (3296)
  • Dentistry and Oral Medicine (364)
  • Dermatology (280)
  • Emergency Medicine (479)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (1171)
  • Epidemiology (13381)
  • Forensic Medicine (19)
  • Gastroenterology (899)
  • Genetic and Genomic Medicine (5155)
  • Geriatric Medicine (482)
  • Health Economics (783)
  • Health Informatics (3271)
  • Health Policy (1142)
  • Health Systems and Quality Improvement (1192)
  • Hematology (431)
  • HIV/AIDS (1018)
  • Infectious Diseases (except HIV/AIDS) (14632)
  • Intensive Care and Critical Care Medicine (913)
  • Medical Education (477)
  • Medical Ethics (127)
  • Nephrology (524)
  • Neurology (4928)
  • Nursing (262)
  • Nutrition (730)
  • Obstetrics and Gynecology (883)
  • Occupational and Environmental Health (795)
  • Oncology (2524)
  • Ophthalmology (726)
  • Orthopedics (281)
  • Otolaryngology (347)
  • Pain Medicine (323)
  • Palliative Medicine (90)
  • Pathology (543)
  • Pediatrics (1302)
  • Pharmacology and Therapeutics (551)
  • Primary Care Research (557)
  • Psychiatry and Clinical Psychology (4216)
  • Public and Global Health (7507)
  • Radiology and Imaging (1706)
  • Rehabilitation Medicine and Physical Therapy (1014)
  • Respiratory Medicine (980)
  • Rheumatology (480)
  • Sexual and Reproductive Health (498)
  • Sports Medicine (424)
  • Surgery (548)
  • Toxicology (72)
  • Transplantation (236)
  • Urology (205)