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ABSTRACT

Deep learning-based auto-segmentation of organs at risk (OAR) holds the potential to improve

efficacy and reduce inter-observer variability in radiotherapy planning; yet training robust

auto-segmentation models and evaluating their performance is crucial for clinical

implementation. Clinically acceptable auto-segmentation systems will transform radiation

therapy planning procedures by reducing the amount of time required to generate the plan and

therefore shortening the time between diagnosis and treatment. While studies have shown that

auto-segmentation models can reach high accuracy, they often fail to reach the level of

transparency and reproducibility required to assess the models’ generalizability and clinical

acceptability. This dissuades the adoption of auto-segmentation systems in clinical

environments. In this study, we leverage the recent advances in deep learning and open science

platforms to reimplement and compare the performance of eleven published OAR

auto-segmentation models on the largest compendium of head-and-neck cancer imaging

datasets to date. To create a benchmark for current and future studies, we made the full data

compendium and computer code publicly available to allow the scientific community to
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scrutinize, improve and build upon. We have developed a new paradigm for performance

assessment of auto-segmentation systems by giving weight to metrics more closely correlated

with clinical acceptability. To accelerate the rate of clinical acceptability analysis in medically

oriented auto-segmentation studies, we extend the open-source quality assurance platform,

QUANNOTATE, to enable clinical assessment of auto segmented regions of interest at scale.

We further provide examples as to how clinical acceptability assessment could accelerate the

adoption of auto-segmentation systems in the clinic by establishing ‘baseline’ clinical

acceptability threshold(s) for multiple organs-at-risk in the head and neck region. All centers

deploying auto-segmentation systems can employ a similar architecture designed to

simultaneously assess performance and clinical acceptability so as to benchmark novel

segmentation tools and determine if these tools meet their internal clinical goals.

Keywords: deep learning, semantic segmentation, auto-segmentation, convolutional neural

networks, turing test, organs at risk, head and neck cancer, clinical acceptability

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 25, 2022. ; https://doi.org/10.1101/2022.01.15.22269276doi: medRxiv preprint 

https://doi.org/10.1101/2022.01.15.22269276
http://creativecommons.org/licenses/by-nc/4.0/


INTRODUCTION

In radiotherapy (RT) planning, organs at risk (OARs) are delineated to limit the radiation dose to

these organs and minimize organ-specific toxicities. Automated OAR delineation has been a

long-standing goal to increase efficiency and decrease manual effort required in RT planning.

Early deformable atlas-based registration approaches 1–6 have been replaced by deep learning

(DL)-based approaches using convolutional neural networks (CNN) as the state-of-the-art

platform for automated segmentation of OARs in the head neck region since 2016 7–19. In a

recent study, Van Dijk et al. have shown that radiation oncologists preferred DL-based

auto-contours compared with Atlas Based auto-segmentation contours 18. In addition, a clinical

assessment of a commercially available OAR segmentation algorithm, showed the potential in

using these systems to optimize clinical contouring workflows 14. These studies confirm the

translation potential of integrating DL-based auto-contouring models into the RT workflow for the

treatment of head and neck cancer (HNC) as well as cancers of other primary sites.

Performance metrics like the Volumetric Sørensen–Dice Coefficient (DICE) or the 95th

Percentile Hausdorff Distance (95HD) are commonly used in comparing auto-contours and

ground truth contours; yet, quantitative evaluation of clinical acceptability of an

auto-segmentation model is hindered by inter-observer variability and previous studies have

analyzed clinical acceptability mostly in qualitative settings. Correlating qualitative performance

in terms of acceptability testing with quantitative metrics outlining a network’s performance could

prove invaluable to the future optimization and development of clinically acceptable auto

segmentation systems.

Recent publications have shown the utility of properly trained and optimized simple CNN

architectures when applied to complex segmentation tasks 20. This paradigm shift suggests that

model complexity does not necessarily correlate with increased model performance and

concludes that details in method configuration affect performance at a higher level than

structural architectural variations. In the context of OAR segmentation for HNC most recent

publications have used a structural variant of original UNET architectures as their model of

choice 21,22, indicating greater dependence on this backbone for semantic segmentation of

OARs in the HN region 8,10–19,23–27. Unfortunately, the published DL methods often suffer from

lack of transparency regarding releasing code and underlying data 28. Open-source release of

data and code is essential to allow external model validation and to test the robustness of the

findings in question and assess their potential clinical acceptability.

To address the lack of open source resources to validate findings of previously published

studies, we performed a large comparative analysis of open source DL networks applied to
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OAR segmentation for radiation therapy of HNC. We hypothesized that simple 3D UNET

architectures with little to no architectural modifications may outperform more complex networks

when segmenting OARs in HNC. We conducted this study by evaluating the performance of

eleven open-source 3D segmentation models originally engineered for medical image

segmentation in a radiological context to segment 19 OAR classes commonly used in RT

planning. We found that the simplest 3D-UNET architecture proved to produce superior

segmentations across all 19 OARs analyzed. Blinded clinical acceptability testing was

conducted for each OAR in the study using a novel extension to a previously published

web-based RT quality assurance tool. The results were then compared with six quantitative

segmentation metrics for each OAR to determine those most closely correlated with clinical

acceptability.

METHODS

Dataset Curation
We have built the largest dataset containing imaging, RT structures (OARs, gross tumor volume

and neck lymph node levels), treatment, demographic and clinical information for HNC patients

treated at the University Health Network (UHN) from 2005-2017. This original dataset of 3,211

patients is referred to as RADCURE and is under submission at The Cancer Imaging Archive
29,30. A UHN institutional review board approved our study and waived the requirement for

informed consent (REB 17-5871); we performed all experiments in accordance with relevant

guidelines and ethical regulations of Princess Margaret Cancer Center. Only PM data used for

network training was involved in the REB. As the associated clinical data has been collected

prospectively as part of the PM Anthology of Outcomes 31, the clinical endpoints associated with

this imaging resource are of high quality and have been used to drive significant changes in the

management of HNC 32. This dataset has been previously used for radiomic prediction of

survival in HNC 33 and in studies addressing dental artifact reduction 34. At PM, all patient

contours are required to conform to standard nomenclature for both OARs and targets. To

search for all the OARs available in the dataset, we implemented a series of regularized

expression strings that were used to identify and standardize the names of the OARs which

were reviewed by a radiation oncologist specializing in HNC (AJH). A list of the regular

expressions used for OAR naming standardization can be found in the utilities folder on the

study’s github page. The RTSTRUCT files revealed a total of 34 OARs in the head and neck

region had been contoured over the study period. For this analysis, we selected 19 OARs that
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were consistently delineated in 582 patients (Supplementary Figure 1). The study cohort

consisted of 378 oropharyngeal, 123 nasopharyngeal, 10 hypopharyngeal, 10 oral cavity, and 7

laryngeal cancer patients as well as 55 patients of unknown or other primary-site cancers. The

19 OARs included acoustics (L/R), brachial plexuses (L/R), brainstem, chiasm, esophagus,

eyeballs (L/R), larynx, lenses (L/R), lips, mandible, optic nerves (L/R), parotid glands (L/R), and

spinal cord. (Figure 1)

Selection of Published Segmentation Models
A literature search was conducted from January 2016 to April 2020 to find medical image

segmentation studies using DL-based modeling approaches. Original segmentation studies that

did not release code on publication or did not actively maintain the repository were excluded

from the analysis (Table 1). We also excluded 2D architectures whose convolutional schemes

could not be directly updated to 3D without disrupting architectural integrity. Primary selection

criteria included models coded originally in PyTorch 35, that were 3D or could be minimally

modified to accept 3D inputs. Popularity of repositories on github quantified by it’s public github

star rating was also a factor used when selecting architectures with similar architectural layouts.

Selected networks were to be trained end-to-end directly, with no complex architectural or

computational restrictions and with minimal modifications made to original source code provided

by the original authors to keep architectural integrity. We refactored all tested models into a

Pytorch Lightning framework 36 to increase readability, reusability and re-implementation of the

code.

Training of Open Source Segmentation Models

Selected initial models were trained using a combined loss scheme to address the heavy

pixel-wise class imbalance present within our dataset between the individual classes of OARs.

We combined a modified and weighted TopK Cross entropy loss 11, which selects the top 10% of

most difficult pixels in the cross entropy loss calculation and only added the contribution of these

pixels to the loss with the Focal Tversky Loss previously defined to excel at semantic

segmentation tasks where pixel-wise class imbalance between classes is high 37,38. The RADAM

optimizer was used to minimize the loss during training 39,40. The initial learning rate of the

optimizer was set to .001. The validation loss was monitored and the learning rate decreased by

a factor of 0.5 if there was no significant change in validation loss after 12 epochs. The voxel

spacing of each patient scan was standardized to 1mm x 1mm x 3mm using SimpleITK 41. An

augmentation scheme was implemented during training. Translation, mirroring, zooming, and

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 25, 2022. ; https://doi.org/10.1101/2022.01.15.22269276doi: medRxiv preprint 

https://paperpile.com/c/86CMyb/WmD7
https://paperpile.com/c/86CMyb/q8f7
https://paperpile.com/c/86CMyb/jmm9
https://paperpile.com/c/86CMyb/BPuC+1Ypl
https://paperpile.com/c/86CMyb/j5gH+A0nO
https://paperpile.com/c/86CMyb/YGNO
https://doi.org/10.1101/2022.01.15.22269276
http://creativecommons.org/licenses/by-nc/4.0/


rotation were applied in-plane (x-y plane only) and at random during training. We used random

translations between -32 and 32 pixels in each plane; uniform scaling factors between 0.9 and

1.1; and mirrored images with a probability of 0.5. Patient scans were cropped to a size of

(192x192x64) pixels for use during training. The ground truth mask was first used to identify the

coordinates of the patient’s center of mass on which cropping was based. All CT volumes used

in analysis were clipped to a HU range of -200 to 300 (a common soft tissue window applied by

radiation oncologists) before augmentations were applied. Z-score normalization was applied

after all augmentations were completed. For each experiment the same 80/10/10 split,

corresponding to 479, 44, and 59 scans for training, validating, and testing, respectively, was

used (Figure 1). Each model was trained on 4 NVIDIA Tesla P100 GPUs for 3 days or until

convergence. Early stopping was implemented if no significant change (0.1 decrease in loss

magnitude) was made in validation loss minimization after 50 epochs. After testing each model

on the hold out set of 59 patients, the best model ranked by average classical segmentation

metrics across all OARs (DICE, 95HD) were chosen for a 2nd re-training phase.

The best performing model (highest DICE and lowest 95HD) was selected and re-trained on

full-resolution patient scans for an additional three days on 4 NVIDIA Tesla V100 GPUs and

tested using MONAI based sliding-window inference 42. The following additional changes were

made to the final training protocol: initial learning rate was reduced to 4e-4, validation loss was

monitored and learning rate was decayed by a factor of 0.96 after no change in loss for 1 epoch,

all CT volumes used in the final analysis were clipped to a HU range of -500 to 1000. Cropping

regimen was modified to the size of (192x192x128) pixels. Images were not resampled for

re-training. We used random translations between -64 and 64 pixels while the other randomized

augmentations and Z-score normalization scheme were kept unchanged. The initial

convolutional setting of the best network was set to 48 feature maps instead of 32 feature maps

used during the validation phase of our study. Although large parameter dense CNNs could lead

to network overfitting (and poor generalizability) when data used for training is sparse 43,

increasing the parameters by increasing feature maps at each network layer, increases the

model’s capacity to learn complex relationships like learning to segment complex anatomical

features from a medical image.

Integrating Blinded Clinical Acceptability Testing Into Open-Source Quality Assessment
Tool
Multiple observers were invited to review and evaluate clinical acceptability of OAR contours

generated by the best performing model. Observers were able to access the contours online
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from different locations and were blinded to the assessments by other observers. In order to

conduct this analysis, we used QUANNOTATE (www.quannotate.com), a web-based quality

assurance labeling platform which recently allowed researchers to conduct a wide range of

anatomy labeling tasks primarily focused on post-therapy assessment of clinical target volume

coverage around primary tumor and neck level regions used in RT for HNC 44. In this study, we

re-engineered QUANNOTATE using MERN (MongoDB, React JS, Express, Node JS) as the

primary development stack 44 due to its speed and adaptability. The interface is open-source

and can be accessed at (https://github.com/bhklab/quannotate). The application was modified

so that each user is able to assess specific contours by individual OAR category. Inside the test

dashboard, observers are able to slide through an entire patient scan, in an OAR dependent

manner, using the integrated in-browser window slider. Users can select between different

clinical CT windowing levels of the patient’s CT image where the contours have been

superimposed. There are currently three windowing level settings that can be used during the

assessment, these include bone, soft tissue and lung views. A clinical assessed contour

evaluation protocol was defined to determine clinical validity of the contours produced by the

best method after retraining the best performing model (Figure 1). Users were asked a series of

questions about each contour set. The first question, “Who delineated this contour?” assesses

the hypothetical author of the contour under analysis. The options that can be selected include

“I don’t know”, “Human” or “Computer”. The next question assesses the clinical acceptability by

getting the user to ‘rate’ the contour being assessed. We adopted a previously developed 5

point rating clinical acceptability scale for our study 17,45. The contour acceptability scale ranged

from 1 (Poor, large areas need minor or major edits, is unusable for planning purposes), 2 (Fair,

needs significant edits to be used for planning purposes), 3 (Good, needs minor edits to be

used for planning purposes), 4 (Within acceptable inter physician variation for planning

purposes) and 5 (Perfect, indistinguishable from physician drawn contours for planning

purposes). The users were blinded to the origin of the contour at the time of the questionnaire,

and answers were exported to be analyzed after all users completely assessed all contours.

Individual ratings of 4 or higher will be considered acceptable, the condition being no additional

edits are required to transition set contour into a RT plan. When analyzing ratings averaged

across all observers, a contour will be considered clinically acceptable when mean acceptability

rating (MAR) for that contour across all observers is above 3.5, and not-clinically acceptable

when MAR is less than 3.5 (Supplementary Figure 2).
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Assessing Clinical Acceptability of the Best Performing Model
Due to time constraints, ten randomized patients were randomly selected from the hold out test

set per OAR category and uploaded to QUANNOTATE for further scrutiny. Each observer used

the QUANNOTATE interface to complete the blinded questionnaire defined above for two sets of

contours for each OAR (Ground Truth or AI Generated). In total, answers were recorded for 380

scans per observer, where nscans = (10 Ground Truth Scans + 10 Paired Deep Learning

Contours) x 19 OAR Categories. Results were extracted and Mean Acceptability Rating (MAR)

for each OAR was calculated by averaging the ratings obtained for each contour across all

observers. Corresponding heatmap(s) showing the distribution of MAR(s) for manual and DL

generated contours were extracted. After inference, segmentation network performance was

assessed by calculating three different types of performance metrics. Classical segmentation

metrics including DICE and 95HD, boundary metrics (Surface Distance [SD], Added path length

[APL]) , and false negative metrics (False Negative Volume and False Negative Length) 46.

These metrics were extracted for each OAR contour. To determine the weight each metric

should have when assessing acceptability, a correlation heatmap was extracted and used to

compare metrics at the OAR level against its corresponding MAR recorded using

QUANNOTATE. Metrics were considered ‘more clinically acceptable’ if they showed significantly

greater correlation with MAR. Suggestions will be made as to how these metrics can be used to

optimize a network’s segmentations for clinical acceptability. (Supplementary Figure  2)

Ensemble Modeling for Improved Performance and Generalizability
Ensembling by averaging the predictions of similar but distinct CNN models has proven to boost

network performance while increasing a model’s generalizability potential. To minimize variance

and spurious model predictions, we decided to use five random K-Fold training/validation splits

to build a WOLNET segmentation ensemble. The training scheme was modified as follows:

random crops of size (112px 176px x 176px) were used to train the network with a batch size of

2. Each fold was trained on 4 NVIDIA Tesla V100 GPUs with 32G RAM, on the original

multi-class segmentation task for 3 days or until convergence. To mimic a live clinical

environment, the cropping regiment was modified as follows. Otsu thresholding was used to

create a binary mask of the entire body section in the scan 47. This mask was then used to find

the center of mass of the patient, from which the original patient image was cropped to a size of

(224px x 224px) in the x-y plane. The depth of the scan (z-plane) was left un-cropped. The

following (224px x224px x Zpx) image was then used for inference. In order to calculate

predictions over the entire volume, we employed an in-house sliding window function. Using the

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 25, 2022. ; https://doi.org/10.1101/2022.01.15.22269276doi: medRxiv preprint 

https://paperpile.com/c/86CMyb/MmS3
https://paperpile.com/c/86CMyb/mBAk
https://doi.org/10.1101/2022.01.15.22269276
http://creativecommons.org/licenses/by-nc/4.0/


ROI size defined above, multiple sub-crops of size (112px 176px x 176px) were generated and

passed through each model in the ensemble. A total of 224 sub-crops were generated for each

scan. The relative positions of each subcrop were tracked in relation to the original scan and

used to average predictions from overlapping sections upon completion of inference. The final

predictions from each scan were calculated by averaging the predictions from each model in the

ensemble.

Collection and Preprocessing of External Datasets
We have also gathered a set of 5 publicly available datasets for external validation of our

segmentation models that span a total of 335 patients 11,48–51 (Supplementary Table 1). These

datasets contain varying distributions of OARs that overlap with those included in our study. Two

out of the five datasets were extracted and curated using an internal preprocessing

methodology. These scripts were used in tandem with Imgtools (github.com/bhklab/imgtools),

another in-house image processing package, to make these imaging data directly amenable to

DL. Processed datasets including other in-house pre-processing scripts used during curation

are made publicly available and can be accessed at

(github.com/bhklab/ptl-oar-segmentation/utils). To provide an accurate “clinic-like” environment

for external validation, no ground-truth information will be used to identify the center of mass of

any scan during inference. During inference, otsu thresholding was used to first create a ‘mask’

of the body, from which the patient’s center of mass was calculated and used to crop the image

in the x-y plane with dimensions of 292x292px. Sliding window inference was applied to the

cropped version of the patient scan. Final predictions were averaged across each fold and

performance was assessed using the classical segmentation metrics described above. The

weights for each fold, and processed versions of each external dataset, were saved and made

available on (github.com/bhklab/ptl-oar-segmentation/inference). External publicly available

datasets were governed by individual REBs by it’s institution of origin.

RESULTS

A complete workflow summarizing the study overview was generated to highlight the most

important parts of this analysis (Figure 1).

Model selection
Out of the 15 OAR segmentation papers published from 2016 to 2020 only three provided

open-source code to allow the community to validate their findings. Out of the three studies that
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did release their code, only one (Anatomy-Net 13) could be re-trained in an end-to-end fashion

without major architectural modifications. Additionally, only one open-source repository from

these studies was effectively maintained or updated their code12 and therefore the published

findings from the majority of OAR segmentation studies in the HN region could not be directly

reproduced without major modifications to their pipelines (i.e. re-implementation). In total, 60

additional studies with a medical image segmentation theme were reviewed in the conducted

literary search to augment networks we could test during our analysis. Out of the 60 studies

examined, only 31 studies made a part of their code available to the open-source community.

Out of the 31 open source architectures analyzed, eleven open source networks passed the

defined selection criteria 13,22,52–60. Studies were excluded from this analysis based on code

availability, computational capacity, model integrability and repository maintenance. A total of

eleven segmentation models were selected to be trained (Supplementary Table 2).

Performance of the best Segmentation model

We compared the segmentation models using the DICE and 95HD metrics for the combined set

of OARs, however, we would note that quantitative performance of any given contour may not

correlate well when observed through the qualitative scope of clinical acceptability testing. This

is to say that not all top OARs with high-volumetric dice or low hausdorff distance between the

corresponding ground truth contour could be considered acceptable when assessed by field

experts. This puts an emphasis to produce networks that are optimized for metrics most closely

associated with acceptability. When analyzing the mean performance metrics of all OARs for

each open source model trained, the top three segmentation models were UNET variants.

WOLNET 61 performed the best among the 11 models and achieved the highest average DICE

(0.765±0.10) (Supplementary Figure 3a) and lowest average HD (2.63±2.61) (Supplementary

Figure 3b). Altered 3D versions of UNET3+DEEPSUP (DICE 0.74±0.10; HD 2.98±2.63) and

UNET++ (DICE 0.73±0.10; HD 3.10±2.83) were the second and third top-performing

segmentation models. The metrics for individual OARs were compared for the top-three

networks. WOLNET consistently outperforms other methods for all OARs in our analysis. These

results show a significant performance difference between WOLNET and all other segmentation

models when comparing average performance metrics for each method across all OARs

(Supplementary Figure 3c). WOLNET was re-trained according to procedures outlined in

(Methods: Training of Open Source Segmentation Models), resulting in a final average DICE of

(0.77± 0.09) and a 95HD of (3.42± 4.05). Four other common segmentation metrics were also

extracted for each OAR category. (Supplementary Table 3). Mandible (0.92±0.03), Eyes (0.88 ±
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0.04), and Spinal Cord ( 0.85± 0.05) received the highest mean DICE, while Chiasm (0.41 ±

0.18), Brachial plexus (0.70 ± 0.12), and Optic Nerves (0.71 ± 0.10) received the lowest mean

DICE respectively. Chiasm and the Acoustics (L/R) had significantly higher variance in DICE

than other OARs (Figure 2a). Lenses (1.44 ± 0.53), Eyes (1.81 ± 0.75) and Spinal Cord

(1.98±0.73 ) had the lowest HD, whereas Acoustics (3.66 ± 9.93), Brachial Plexus (4.98 ± 7.35)

and Chiasm (6.59 ± 4.46) had the highest recorded 95HD respectively. Brachial Plexus (L/R)

and Acoustics (R/L) had significantly higher variance in 95HD than other OARs (Figure 2b,

Supplementary Table 3). Exported contours from a random test set patient were compared

against the ground truth human generated contours for that patient, showing high correlation

between contours (Figure 2c).

Clinical Acceptability
The complete set of contours were analyzed by four practicing radiation oncologists with 10+

years of experience using the QUANNOTATE platform. A total of 20 samples, 10 manual

(human) contours and 10 paired computer (deep learning) contours) for each of the 19 OARs (a

total of 380 contours) were assessed by each observer. In total, 40 ratings for each OAR in

each category were recorded (10 ratings per oncologist). According to the un-averaged clinical

acceptability ratings, 73% of manual contours analyzed were considered acceptable, compared

with 48% of deep learning contours (Figure 2d). Deviance from perfect acceptability for the

manual contour assessment could be concerning. Certain factors could affect the outcome of

the acceptability analysis. Firstly, as more rigorous contouring standards have developed at our

center over time, contours delineated prior to those ‘standard upgrades’ would be considered

‘unacceptable’ by current delineation requirements. Secondarily, external observers participated

in the acceptability test and contouring practices for a given OAR analyzed could vary at their

center which may have more or less stringent contouring requirements than at Princess

Margaret. Taking this into account, MAR analysis still provides valuable information for clinical

acceptability of any ROI used in radiation therapy planning. A MAR threshold of 3.5 or more was

considered to be ‘acceptable’ for this analysis meaning that these contours require no edits to

be confidently adopted into RT planning. The manual contours received a global MAR of

3.81±0.88 and compared with 3.37±0.97 for DL contours. When comparing MAR for all OARs,

78% of manual contours are considered acceptable (Supplementary Figure 4a) compared with

52% of DL contours (Supplementary Figure 4b). Histogram of mean acceptability rating (MAR)

was plotted for manual ground truth contours (Supplementary Figure 4c) and deep learning

generated contours (Supplementary Figure 4d) at the OAR level. When analyzing individual
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OAR categories, manual contours were considered more acceptable than deep learning

contours for 15 out of the 19 OARs assessed. When assessing whether certain OAR categories

passed the mean acceptability cutoff of 3.5, 15 manually delineated OARs on average were

considered clinically acceptable, requiring no edits for planning purposes, compared with 9

OARs generated by DL. When analyzing categories of OARs requiring minor edits for their

contours to be accepted into RT plans (3.0 < MAR < 3.5), 7 DL generated OARs compared with

4 manually contoured OARs met this criteria (Supplementary Table 4). The least clinically

acceptable manually contoured OAR was the chiasm (lightest pink shade on histogram) with an

average acceptability rating of 3.03±1.27, while the most acceptable manually contoured OAR

was the mandible (reddish shade on histogram) with an average acceptability rating of

4.15±0.89. The least clinically acceptable deep learning generated OAR was the Larynx (bronze

shade on histogram) with an average acceptability rating of 2.38±0.90, while the most

acceptable deep learning generated OAR was the lenses (turquoise shade on histogram) with

an average acceptability rating of 3.90±0.85.

Defining Clinically Acceptable Performance Metrics
There exists a divide between quantitative performance of segmentation networks with the

qualitative evaluation of the contours that are produced by them. In other words, just because a

network can segment a contour with a higher than average DICE score, does not necessarily

mean that contour is good enough to be integrated within a clinical RT plan. Same logic applies

to low 95HD scores. Acceptability testing is therefore an essential component in any RT

focused auto-segmentation study to give clinical relevance to deep learning contours generated.

The results of the acceptability test and MAR correlation are plotted in a heatmap for each

individual OAR (Figure 3a-b). When correlating DL contour MAR with performance metrics,

boundary distance metrics (HD, SD) were found to be most significantly correlated indicating

optimizing networks for these metrics could prove beneficial in producing more clinically relevant

contours (Figure 3c). When analyzing global correlation with MAR across all OARs, there were

no significant correlations between acceptability ratings and performance metrics

(Supplementary Figure 5). However, when looking at individual OARs, HD was significantly

correlated with MAR for 6 out of the 19 OARs (These include left eye, brain stem, right parotid

gland, Left Lens and Chiasm (Supplementary Figure 6).

External Validation
A model’s application potential is directly related to how well that model can perform on external

datasets with characteristics outside the cohort of the one used to train the predictive model 72,73.
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Depending on the model’s robustness when applied to external data, additional rounds of

finetuning may be required to optimize the model’s performance.We therefore developed a

WOLNET ensemble, with 5 models each trained on different training set divisions. In order to

test the full extent of the ensemble model’s generalizability potential, 5 datasets were collected

and curated. The ensemble was applied to the processed images of each datasets and classical

metrics were extracted for each OAR category that had contours delineated in the dataset under

scrutiny (Supplementary Table 1; Supplementary Figure 7).

The WOLNET ensemble outperformed the singular WOLNET model that was used for

acceptability testing both in terms of DICE (Supplementary Table 5) and 95HD (Supplementary

Table 6) for most OARs. When looking at metric variation by OAR volume, we see a positive

trend correlating high volume OARs with higher VolDice and lower 95HD ratings

(Supplementary Figure 8). These findings are consistent for all OARs segmented except

low-volume chiasm (which is poorly defined on a CT scan and therefore contours are more

variable) and high-volume mandible (which is precisely defined on a CT scan and relatively

easy to segment). We found that DICE was lowly and more positively correlated with OAR

volume than 95HD (Supplementary Figure 8e). We found extensive variability of ground truth

information extracted from each external dataset and only a subset of OARs segmented in this

study overlapped (Supplementary Table 5). Median classical performance metrics extracted for

each OAR present in each dataset (Observer) were compared in separate scatterplots for each

dataset (Figure 4). Barplots of 3D volumetric Dice and 95HD were also extracted for each

dataset (Supplementary Figure 8). In comparison to the performance of the singular WOLNET

model used for QUANNOTATE testing, improvements in terms of DICE and 95HD were made

for each OAR category. We can expect to see similar improvements in OAR acceptability when

clinical acceptability testing is conducted. Two datasets had the most overlapping OAR

categories with our Radcure dataset. All results for external validation of the WOLNET

ensemble on each external dataset for each OAR category that overlapped with RADCURE

were extracted (Average DICE - Supplementary Table 6; Average 95HD - Supplementary Table

7). Dataset 1 (HNSCC-3DCT-RT) 74 and Dataset 5 (StructSeg19) 49 had 14 out of the 19

RADCURE OARs delineated in their dataset. The top performing OAR categories when

compared against GT contours in dataset 1 were the eyeballs (L/R) both achieving DICE scores

of 0.83±0.05 and 95HD scores of 2.83±0.87 and 2.45±0.64 respectively. The lowest performing

OAR in Dataset 1 was the chiasm achieving an average DICE of 0.27±0.21 The top performing

OAR categories when compared against GT contours in dataset 5 were the parotids (L/R) both

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 25, 2022. ; https://doi.org/10.1101/2022.01.15.22269276doi: medRxiv preprint 

https://paperpile.com/c/86CMyb/MuTT
https://paperpile.com/c/86CMyb/9FMv
https://doi.org/10.1101/2022.01.15.22269276
http://creativecommons.org/licenses/by-nc/4.0/


achieving DICE scores of 0.86±0.04 and 95HD scores of 3.0±1.73 and 3.0±3.0 respectively. The

lowest performing OAR in Dataset 5 was also the Chiasm with an average DICE of 0.33±0.17

and average 95HD of 5.14±3.53. While performance on external datasets doesn’t eclipse that of

the internal radcure test set for most OARs, findings show that the WOLNET ensemble without

finetuning is generalizable on external data. Major causes of performance variations include:

inter-observer variations between delineation protocols during ground truth contouring;

variability in patient cohorts and scanners used for imaging. Ensemble finetuning can further

enhance performance for certain smaller OARs that may show extensive delineation variability

at the dataset level.

DISCUSSION

In the current study, we demonstrated that a simple 3D Unet (named WOLNET) provides

the best objective performance of all published models but complete acceptability (where

generated contours require no edits to be inducted into RT plans) of the all OAR contours

generated by this approach has yet to be achieved. We are confident that 16 out of 19 OARs

generated by this simple open-source network can be inducted into RT plans with at least minor

edits before direct inclusion into RT plans. Critically, final weights and code for all 11

open-source 3D segmentation models used in this study, including the quannotate web-platform

used for acceptability testing and preprocessed datasets used for the external validation have

been publicly shared with the scientific community. This is the first deep learning study

addressing automated OAR segmentation for RT planning conducted with reproducibility and

data sharing as a foundational motivation for this analysis. Additionally, we provide a foundation

on top of which future automated segmentation systems can be benchmarked and assessed in

terms of performance and clinical acceptability for multiple OARs in the HN region. Adopting

similar protocols in future studies and clinical trials assessing performance of segmentation

systems in clinical settings will accelerate adoption of these methods and their ability to

dramatically improve standard of care. We selected open-source segmentation architectures

constructed for medical image segmentation, assessed the segmentation quality of each

network, and provided the community with pre-trained weights of the top-performing models.

These results provide a set of ‘open-source’ controls on top of which future segmentation

studies can improve upon. For a study to be fully open source, code, data, coding environment

and model weights used in the analysis have to be released with the publication. Of those who

released their code, lack of compliance to current technological reproducibility standards

prevents future validation 28. We encourage authors whose studies follow ours to adopt an
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open-source friendly, reproducibility centric policy when releasing their work including any

significant improvements to our methods.

The current study showed the relative effectiveness of simple UNET based networks on

complex multi-class segmentation tasks. For this analysis, we choose a loss based approach to

combat the large class imbalance problem that exists within the OAR segmentation problem of

the HNC region. However, other studies have shown that loss based approaches combined with

more complex architectural designs may improve segmentation results 16,19,27 It was not a

surprise, however, that a simple UNET variant beat out more complex networks tested in this

study. State of the art segmentation is dominated by the UNET and its variants, proving that the

simplest of networks can compete with the most advanced networks of our day to achieve state

of the art performances. Our results agree with other analyses which have concluded that the

issue affecting poor auto-segmentation model performance does not lie at the level of model

complexity, but rather the steps surrounding model training. They have found that optimizing

data preprocessing and postprocessing at the target level can dramatically improve model

performance 75.

There can be differences by which experts passively identify errors in contours before

assessing contour acceptability. Experts may focus on detecting errors at the boundaries of

OARs. Additionally, experts may focus on determining whether a contour displays adequate

volumetric coverage over the target of interest. Keeping this in mind, it is intriguing to note, that

when Mean Acceptability Rating (MAR) was compared against all the performance metrics used

to adjudicate model accuracy across all OARs, the most significant correlation occurred with

respect to boundary distance metrics (Figure 3c 95HD : -.26 , SD : -.30). In other words, our

findings suggest that clinicians are more likely to focus on detecting errors made around the

boundaries of OARs when assessing acceptability, rather than focusing on volumetric errors in

the complete 3D coverage of a contour (which can be modeled by a volumetric based statistic

like DICE). Large errors made around contour boundaries imply high boundary distance metrics,

which in turn, results in low acceptability ratings.

This study is the first of its kind to establish robust baselines of clinical acceptability for

both manual contours and DLC. Previous studies only reported showing observers one slice of

a 3D contour when asking them to assess acceptability18. This is a poor representation of

acceptability as a large majority of the OAR contour using previous methods fails to be
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assessed. We engineered a more robust version of clinical acceptability testing in

QUANNOTATE that gave expert observers the ability to analyze the entire extent contour in

question on all CT imaging slices when performing the assessment. In order for DLC to be

superior and pass the test, the contour must be generated accurately across the entire span of

the 3D OAR in question, not just a single 2D slice. In theory, OARs with high-ranked

performance metrics could fail the test if any part of the 3D contour under examination looks

‘questionable’. Clinical Acceptability of entire 3D volumes allows us to paint a more accurate

picture of deep learning contour fidelity by finding errors present at the edges of complex

ROI(s). When analyzing results we noticed this occurred during the assessment of deep

learning generated larynx contours. When analyzing the contours produced, the failure in

performance was caused by broken segmentations produced at the upper and lower bounds of

the larynx. The poor performance could be explained by the complexity of the larynx itself but

could also represent a novel limitation of current segmentation models when presented with

poorly defined ‘edges’ of therapy structures (Supplementary Figure 9). As an OAR the larynx is

composed of 3 CT densities (cartilage/bone, soft tissue, and air) while the other OARs have soft

tissue or bone. The complexity of the larynx contour could have caused inconsistencies when

the ground truth contours were originally produced. We found that some ground truth contours

included the cartilage, while others included only the soft tissue. These inconsistencies within

our training data caused poor convergence at the boundaries of the larynx. A robust

assessment of clinical acceptability like the one performed in this study is required before

applying any deep learning based auto contouring system in a clinical setting.

Conducting external validation experiments on multiple datasets without fine tuning to

external data was essential to assess the direct generalizability of the WOLNET implementation.

Regardless of the dataset, the WOLNET ensemble performed well at segmenting large OARs

like the Mandible and Brain Stem and OARs with homogeneous structures like the eyeballs and

parotids. Despite adequate performance across most OARs in external datasets tested, we are

confident that fine tuning these networks to external datasets will improve performance at the

dataset level. In addition to network finetuning, improvement of protocols related to the following

can also boost future network generalizability. These include: improved inference using

adaptable sliding windows; increasing receptive field of the network during training; ensuring

equal distribution of images take from different scanners and centers is used during training;

leveraging full use of the datasets at hand by conditioning networks to learn from all data we

have at our disposal and optimizing networks using custom loss functions engineered from
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metrics most correlated with clinical acceptability. Future work seeks to establish acceptability

standards for simple segmentation networks applied to multiple sites outside the head and neck

region.

CONCLUSION

These results show that simple open-source 3D architectures consistently outcompete more

complex networks by quantitative measures. Qualitative assessment for clinical acceptability

may not agree with quantitative performance, especially when the entire range of OARs is

evaluated. Greater weight should be placed to optimize auto-segmentation systems for

boundary distance metrics to produce more ‘clinically acceptable’ contours. Clinical acceptability

testing and the open-source frameworks that provide networks and interfaces on which these

tests can be conducted, will prove invaluable to the future adoption of deep learning based auto

segmentation systems in clinical RT practices.
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TABLES & FIGURES

Table 1. Summary of published OAR segmentation studies and their open-source status. Only AnatomyNet 13 (in
bold) could be included in our study as it.
Study Code Name (if

Applicable)
Model Type Training Data Model Weights # Patients # OARs

Ibragimov, 2017 8 No 3D CNN No No 50 14

Močnik, 2018 9 No 2D CNN No No 85 1

Ren, 2018 10 No 3D VGG No No 98 3

Tappeiner , 2019
12

Yes 3D RESNET NA Yes 40 9

Nikolov, 2018 11 No 2.5D UNET No No 663 21

Tong, 2018 (Tong
et al. 2018)

No FCN+SRM 3D FCN No No 32 8

Zhu, 2019 13 Yes AnatomyNet 3D UNET No No 271 9
van Dijk, 2019 18 No 2D UNET No No 693 22
Rooij, 2019 14 No 3D UNET No No 157 11
Gao, 2019 (Gao
et al. 2019)

No FocusNetv1 3D UNET No No 50 18

Zhong 2019 15 No 2D RESNET No No 140 5

Tang, 2019 16 Yes UaNet 3D UNET No Yes 215 28
Wang, 2019
(Wang et al.
2019)

No 3D UNET No No 50 14

Rhee, 2020 17 No 3D UNET No No 3693 16
Guo, 2020 19 No SOARS 3D P-HNN No No 142 42

Zhang, 2021
(Zhang et al.
2020)

No 3D FCN No No 170 12

Gao, 202124 Yes FocusNetv2 3D UNET No No 1164 22
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Figure 1. Study Overview: A general
overview of the study design. A total of
582 patients met selection criteria
having the same 19 OAR(s) delineated
in their RTSTRUCT files. Data was
extracted and used to train 11 different
open source 3D segmentation networks.
The 11 networks were selected as a
subset of 60 studies proposing
implementing image segmentation
networks in a medical context. A subset
of 29 studies did not release code along
with their publication, and therefore,
these models could not be directly
assessed. Another 20 studies were
removed because of one or more of the
following: networks could not be tested
with original configuration due to
limitation of computational power, 2D
networks that could not be converted to
3D convolutional scheme without
modifying it’s architectural integrity,
close similarity or overlap between other
architectures, code released with the

study was unmaintained and/or could not be integrated into PytorchLightning. The networks were ranked based on overall performance on a
hold out test set of 59 patients across all 19 OARs. The top model was then chosen to be fine-tuned and used in a blinded clinical acceptability
assessment conducted by 4 expert radiation oncologists on the open source Quannotate platform.
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Figure 2. Preliminary results for
organs-at-risk (OARs)
segmentation for the best
performing network of the 11
reimplemented models
(WOLNET) on test set samples
in RADCURE. A. 3D Volumetric
Dice for each OAR B. Contours
from random test set patient C.
95th Percentile Hausdorff
Distance for each OAR D.
Preliminary results for the clinical
acceptability test of the WOLNET
predictions using our
open-source where 73% of
manual contours analyzed were
considered acceptable,
compared with 48% of deep
learning contours.
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Figure 3. Panel A shows the results of the acceptability test by representing mean acceptability rating (MAR) counts for each OAR in
a heatmap for manual ground truth contours. The higher the value of a box the more contours of that given OAR (row) had any given
MAR value (column) and the lighter that box will be. Notice a shift to the left when examining the heatmap of mean acceptability
ratings for deep learning contours examined for each OAR indicating a greater degree of clinical acceptance for manual contours as
depicted by figure 4D. Manual contours received a significantly higher mean rating of 3.75 than deep learning contours which were
rated 3.23 when all OARs were considered (3.75 ± 0.77 vs. 3.23 ± 0.86, p <0.01). Panel C plots mean acceptability rating correlation
with 6 common segmentation metrics. Mean acceptability rating showed significant negative correlation with boundary distance
metrics like 95% Hausdorf and Surface distances. (~-0.26 for 95% Hausdorff Distance and ~-0.30 for Surface Distance).
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Figure 4: External Validation Performance of Optimized WOLNET Ensemble: Scatterplots
plot median classical performance metrics (DICE, 95HD) for each OAR category. A: Radcure
Test Set (n=59), B: Dataset 1: TCIA-HNSCC-3DCT-RT (n=83) C: Dataset 2: Deepmind (n=35),
D: Dataset 3: MACCAI’15 - PDDCA (n=48), E: Dataset 4: TCIA-HN1-RADIOMICS (n=119) F:
Dataset 5: MACCAI’19 - StructSeg19 (n=50)
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SUPPLEMENTARY MATERIALS

Supplementary Figure 1: Cohort Diagram
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Supplementary Figure 3: a-b) Comparison of quantitative performance of all models using
classical metrics (Hausdorff Distance and Volumetric Dice Coefficient) c) Quantitative performance
(DSC) of 3 best performing models for 19 OARs Plotted are the distribution of volumetric dice values
for the top performing models when applied to our test set, notice WOLNET is the single 3D CNN that
produced superior segmentations for every OAR in our analysis.
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Supplementary Figure 2. Overview of Clinical Acceptability Protocol, an open source web-based quality assurance tool from our
previous study was modified for clinical acceptability testing of radiation therapy contours. For this analysis, 4 expert radiation
oncologists were each given the opportunity to assess the acceptability of deep learning or manual ground truth contours in a blinded
fashion. 10 ground truth contours paired with 10 deep learning generated contours for the same patient were extracted for each of the 19
OARs. A total of 380 3D contours were assessed by each observer. They were asked to rate acceptability on a 5 point scale taking the
complete volume of the entire OAR contour into context. A rating of 4.0 and higher can be considered ‘acceptable’ in that no edits are
required by the examining physician for planning purposes. They were also asked to ‘guess’ the observer that generated the contour
(“Human”/ “Computer” / “I don’t Know”) before submitting their rating. Mean Acceptability Ratings were then calculated for each OAR, and
analysis assessing correlation of acceptability with 6 different segmentation performance metrics was conducted. These metrics include 3D
Volumetric Dice Overlap Coefficient, 95% Hausdorff Distance, Applied Path Length, False Negative Length, and False Negative Volume
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Supplementary Figure 4: (a) Bar
plots of the unaveraged
acceptability ratings for ground
truth contours across all OARs (b)
Bar plots of the unaveraged
acceptability ratings for deep
learning generated contours
across all OARs. A single
acceptability rating of 4 or more
was considered ‘acceptable’ for
this analysis (acceptable - orange;
unacceptable - blue) (c) Histogram
of mean acceptability rating (MAR)
for manual ground truth contours
(d) Histogram of mean
acceptability rating (MAR) for deep
learning generated contours. A
MAR threshold of 3.5 or more was
considered ‘acceptable’ for this
analysis meaning that contour
required no edits to be included
into a radiation therapy plan.
When analyzing individual OAR
categories, Manual contours were
considered more acceptable than
deep learning contours for 15 out
of the 19 OARs assessed. When
assessing whether certain OAR
categories passed the mean
acceptability cutoff of 3.5, 15
manually delineated OARs on
average were considered clinically
acceptable, requiring no edits for
planning purposes, compared with
9 OARs generated by deep
learning.
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Supplementary
Figure 5: Individual
Performance Metric
Correlation with
Mean Acceptability
Rating (MAR)
Correlation of Mean
acceptability with a)
classical segmentation
metrics (DICE, 95th
percentile Hausdorff)
b) advanced boundary
metrics (surface
distance (SD), added
path length (APL)) c)
false negative metrics
(false negative volume
(FNV), false negative
length (FNL)) across
all OARs. d) - f)
Correlation of mean
acceptability rating with
various performance
metrics for brain stem
(BSTEM), Larynx, left
brachial plexus
(LPLEX), and Chiasm.
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Supplementary Figure 7: Overview of Ensemble & WOLNET External Validation
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Supplementary Figure 6: Correlation of
95th Percentile Hausdorff Distance with
Mean Acceptability Rating. Mean
Acceptability Rating was significantly
correlated with HD for 7 out of the 19
OARs analyze
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Supplementary Figure 8: Scatterplot of Ensemble Performance against OAR volume for DICE
(A-B) 95HD (C-D); (E) Heatmap of correlation between classical metrics and OAR volume.

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 25, 2022. ; https://doi.org/10.1101/2022.01.15.22269276doi: medRxiv preprint 

https://doi.org/10.1101/2022.01.15.22269276
http://creativecommons.org/licenses/by-nc/4.0/


Supplementary
Figure 9: Barplots of
3D volumetric Dice
(left) and 95%HD
(right) for each
external dataset to
test WOLNET
ensemble
generalizability.
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Supplementary Figure 10: Clinical Acceptability of entire 3D volumes allows us to paint a more
accurate picture of deep learning contour fidelity by finding errors present at the edges of complex
ROI(s) like the Larynx. Note this was an error found after assessing contours produced by the network
after the second training phase, these were the contours uploaded to QUANNOTATE for acceptability
testing .

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 25, 2022. ; https://doi.org/10.1101/2022.01.15.22269276doi: medRxiv preprint 

https://doi.org/10.1101/2022.01.15.22269276
http://creativecommons.org/licenses/by-nc/4.0/


Supplementary Tables
Supplementary Table 1. Public HNC imaging and segmentation datasets curated by our team. Missing data are represented in gray.
‘Available Data’ types that are only available for a portion of patients are represented by a transparently coloured cell.

Dataset Institution Scans
Available Data

References
Imaging Clinical OAR GTV

Radcure UHN 2552 29

HNSCC-3DCT-RT MIAMI 94 67

Deepmind
HMS+Multi-S
ite 35 11

PDDCA HMS 48 45

Radiomics-HN1 MAASTRO 137 43

STRUCTSEG19 CAS 50 44

Head-Neck-CT-Atlas MDACC 215 68
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Supplementary Table 2: Architectures Selected for Comparative Analysis

Name Description

3D-UNET
(WOLNET)

One popular pytorch implementations of 3D UNET paper 22 were taken and used as the
baseline architecture. Named WOLNET after it’s author. 61,62

3D-RESUNET We integrated a third party implementation 61,62 of a residual symmetric 3D UNET
proposed by 52. They introduced a residual skip connection to each valid convolutional
module present in their network. To minimize information loss, this network does not
down sample feature maps along the z dimension. To minimize the effects of anisotropy
2D convolutions are used in the modules at the lowest part of the network, which contain
fine scale feature maps. Each regular residual module will apply in total 7x7x5 of
nonlinear convolutions to the input. (To embed 2D features 3x3x1 convolutions are
applied followed by subsequent 3x3x3 convolutions.).

HIGHRESNET Li, W et al (2017) choose to integrate dilated convolutions and residual connections in
their proposed 20 layer residual network. These residually connected dilated
convolutions allowed for multi-scale feature preservation as training progressed. 53 A third
party implementation of HighResNet3D was used for our analysis. 63

PIPOFAN We modified the original 2D Pyramid Input Pyramid Output Network proposed by Fang,
et al (2020) to accept 3D volumes. This 3D pyramid abstraction network (PIPOFAN)
processes the volumetric input by applying 3D Equal Depth Convolutions (EDC), after
passing through the network the pyramid outputs are fused together which has been
shown to improve subsequent organ segmentations. This network was originally used to
segment multiple thoracic OARs on individual slices of a CT scan. 54,64

UNET3+ We introduced a 3D version of a 2D UNET3+ proposed by Huang, H et al (2020) which
was created as a modification of the UNET++ that incorporated full-scale
skip-connections into the UNET++ network. This architecture was engineered to produce
full-scale aggregated feature maps that allows deep supervision components to learn
more comprehensive hierarchical feature maps with the hopes of producing more
accurate contours. 55,65

UNET++ We integrated a 3D version of the 2D Nested Unet Architecture (UNET++) proposed by
Zhou et al (2018) using their code as the base network for the architecture used in the
study. The authors redesigned sip connection pathways of the original UNET architecture
with the intent to reduce the semantic gaps between the encoding and decoding feature
maps. This is the first paper to propose and integrate deep supervision into their network
where the outputs of each individual segmentation branch are averaged before the final
softmax layer of the network. 56,66
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ANATOMY AnatomyNet was the only segmentation model used in this analysis that was previously
published on a HNC OAR segmentation task. This UNET variant incorporates squeeze
and excitation residual building blocks in the downsampling/upsampling layers of the
network. Code was refactored and updated to suit the newest versions of pytorch. 13,67

DENSEVOX A pytorch based third party implementation of DenseVoxNet 3D first proposed bt Yu, L et
al 2017, for cardiac segmentation was integrated into our study. This network consists of
two DenseBlocks in the downsampling part of the network which are densely connected.
In total there are 24 transformation layers before upsampling. A long skip connection was
used to stabilize the training process by connecting the transition layer to the output
layer. 57,68

TIRAMISU We adapted a third party 2D implementation of a fully convolutional Densenet originally
presented by Jegou et al, 2017 (named 100-layer tiramisu). This paper was the first to
apply the DenseNet to the problem of 2D semantic segmentation. Densenets are
constructed by concatenating each output of a subsequent densely connected
convolutional block to the next block, therefore linearly augmenting the number of feature
maps after each ‘down transition’. This does not occur in the upsampling part of the
network. The feature maps from the downsampling path are then concatenated with
those of the upsampling path to produce a predicted segmentation mask at the resolution
of the original input. 58,69

RSANET RSANet is a 3D recurrent slice-wise attention network proposed by Zhang, H et al (2019)
could be directly integrated into our network. Originally constructed for Multiple Sclerosis
lesion segmentation this network utilizes slice wise attention blocks to help capture
long-range inter-slice dependencies along any direction of a 3D medical image. These
blocks allow for the recurrent aggregation of information along multiple directions
therefore providing a mechanism to help capture global contextual information, which can
be used to produce more accurate segmentations. 59,70

VNET An updated third party implementation of VNET architecture proposed by Millerari et al
(2016) was used in this study 60. The VNET architecture is a fully convolutional network
based on the original UNET. The authors choose to replace 3x3x3 convolutions present
in UNET by 1 strided 5x5x5 convolutions. Additionally, in place of max-pooling, 2x2x2
convolutions with stride of 2 were used during down sampling. Finally, PReLU
nonlinearities were chosen to replace original ReLUs throughout the network. 60,71
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Supplementary Table 3: Performance Metrics for Re-Trained Best Performing Model (WOLNET)

OAR DICE 95HD SD FNV APL FNL

BSTEM 0.81±0.05 4.3±5.47 1.63±0.55 0.03±0.04 0.26±0.04 0.02±0.03

SPCOR 0.87±0.04 1.98±0.73 0.8±0.25 0.06±0.04 0.22±0.06 0.06±0.03

ESOPH 0.78±0.08 5.45±6.02 1.3±0.6 0.13±0.11 0.27±0.05 0.1±0.06

LARYNX 0.85±0.07 2.79±1.44 1.05±0.52 0.1±0.11 0.2±0.04 0.08±0.06

MAND 0.92±0.03 2.13±5.01 0.63±0.23 0.03±0.04 0.14±0.04 0.03±0.03

LPAR 0.84±0.06 5.31±5.5 1.52±0.83 0.08±0.06 0.23±0.04 0.07±0.05

RPAR 0.84±0.12 5.04±5.93 1.51±1.95 0.11±0.08 0.22±0.04 0.09±0.07

LACOU 0.74±0.17 3.69±9.92 1.98±8.53 0.1±0.15 0.31±0.13 0.09±0.11

RACOU 0.73±0.16 3.83±9.94 2.05±8.73 0.09±0.16 0.32±0.12 0.08±0.12

RPLEX 0.7±0.13 4.79±7.58 1.56±2.34 0.16±0.08 0.4±0.08 0.15±0.07

LPLEX 0.7±0.12 5.16±7.12 1.57±2.07 0.14±0.08 0.39±0.07 0.14±0.07

LLENS 0.77±0.07 1.440.44 0.57±0.18 0.08±0.11 0.21±0.1 0.08±0.11

RLENS 0.78±0.1 1.44±0.6 0.5±0.18 0.11±0.15 0.21±0.13 0.11±0.15

LEYE 0.88±0.04 1.83±0.92 0.76±0.28 0.04±0.03 0.18±0.05 0.04±0.03

REYE 0.87±0.04 1.79±0.54 0.76±0.2 0.03±0.02 0.18±0.05 0.03±0.02

LOPTIC 0.72±0.1 1.96±1.28 0.65±0.34 0.12±0.1 0.24±0.09 0.12±0.1

ROPTIC 0.7±0.1 2.34±2.56 0.73±0.48 0.11±0.11 0.23±0.09 0.11±0.11

CHIASM 0.41±0.18 6.59±4.46 1.73±1.71 0.31±0.28 0.32±0.26 0.3±0.27

LIPS 0.74±0.08 3.06±1.53 1.03±0.47 0.11±0.08 0.4±0.08 0.11±0.07

ALL 0.77±0.09 3.42±4.05 1.18±1.6 0.1±0.1 0.26±0.08 0.09±0.08
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Supplementary Table 4: MC v. DLC Acceptability Ratings For Each OAR Category

ROI MAR (MC) MAR (DLC) ROI MAR (MC) MAR (DLC)

MAND 4.15±0.89 3.53±1.13

LEYE 3.45±0.71 3.00±0.78 RLENS 4.10±0.78 4.15±0.70

REYE 3.68±0.62 3.05±0.68 LACOU 3.30±0.91 3.20±0.97

BSTEM 4.13±0.69 2.8±0.91 RACOU 3.30±0.72 3.38±0.74

LARYNX 3.95±0.85 2.38±0.90 LPLEX 3.68±0.76 3.78±0.58

SPCOR 3.93±0.76 3.70±0.56 RPLEX 3.63±0.84* 3.58±0.81

LPAR 3.80±0.99 3.85±1.02 LIPS 3.75±0.71 3.33±0.80

RPAR 4.08±1.02* 3.95±1.23 LOPTIC 4.28±0.68 3.50±0.78

ESOPH 3.93±0.80 3.13±0.97 ROPTIC 4.18±0.68 3.20±0.79

LLENS 4.05±0.68 3.65±0.92 CHIASM 3.03±1.27* 2.90±1.06
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Supplementary Table 5: Distribution of Ground Truth OAR labels (masks) in external datasets

OAR
Internal Test -

RAD (n=59)
Dataset 1 -
Rad (n=83)

Dataset 2 -
Onc (n=35)

Dataset 2 -
Rad (n=35)

Dataset 3 -
Rad (n=48)

Dataset 4 -
Rad (n=119)

Dataset 5 -
Rad (n=50)

BSTEM 59 82 33 33 48 50

CHIASM 59 61 48 50

ESOPH 59 12

LACOU 59 50

LARYNX 59 47

LEYE 59 46 33 33 50

LIPS 59 5

LLENS 59 9 33 33 50

LOPTIC 59 27 33 33 48 50

LPAR 59 71 33 33 48 94 50

LPLEX 59

MAND 59 60 33 33 48 50

RACOU 59 50

REYE 59 49 33 33 50

RLENS 59 33 33 50

ROPTIC 59 28 33 33 48 50

RPAR 59 71 33 33 48 93 50

RPLEX 59

SPCOR 59 83 33 33 119 50

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 25, 2022. ; https://doi.org/10.1101/2022.01.15.22269276doi: medRxiv preprint 

https://doi.org/10.1101/2022.01.15.22269276
http://creativecommons.org/licenses/by-nc/4.0/


Supplementary Table 6: 3D Volumetric DICE Performance of Optimized WOLNET Ensemble on External Data
* two contours (L/R) mandible were used as single GT mask

OAR
Internal - Test

(n=59)
Dataset 1 - Rad

(n=83)
Dataset 2 - Onc

(n=35)
Dataset 2 - Rad

(n=35)
Dataset 3 - Rad

(n=48)
Dataset 4 - Rad

(n=119)
Dataset 5 - Rad

(n=50)

BSTEM 0.84±0.05 0.8±0.05 0.77±0.05 0.8±0.04 0.74±0.09 0.78±0.04

CHIASM 0.4±0.18 0.27±0.21 0.29±0.09 0.33±0.17

ESOPH 0.83±0.07 0.53±0.21

LACOU 0.79±0.17 0.59±0.1

LARYNX 0.88±0.06 0.66±0.14

LEYE 0.91±0.12 0.83±0.05 0.8±0.03 0.83±0.03 0.84±0.04

LIPS 0.76±0.13 0.45±0.05

LLENS 0.79±0.12 0.55±0.16 0.57±0.07 0.62±0.1 0.68±0.09

LOPTIC 0.78±0.09 0.54±0.12 0.55±0.05 0.55±0.06 0.5±0.06 0.53±0.1

LPAR 0.85±0.06 0.78±0.1 0.84±0.04 0.84±0.04 0.85±0.06 0.78±0.09 0.86±0.04

LPLEX 0.72±0.13

MAND 0.93±0.03 0.82±0.06 0.89±0.03 0.92±0.02 0.82±0.03 0.86±0.04*

RACOU 0.8±0.17 0.63±0.06

REYE 0.9±0.11 0.83±0.05 0.82±0.03 0.84±0.03 0.85±0.03

RLENS 0.82±0.12 0.58±0.09 0.62±0.09 0.68±0.1

ROPTIC 0.76±0.09 0.55±0.16 0.55±0.07 0.58±0.06 0.47±0.07 0.51±0.11

RPAR 0.86±0.12 0.81±0.09 0.85±0.04 0.86±0.04 0.84±0.06 0.78±0.07 0.86±0.04

RPLEX 0.72±0.14

SPCOR 0.86±0.05 0.77±0.09 0.66±0.07 0.7±0.04 0.73±0.09 0.68±0.07
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Supplementary Table 7: 95%HD  Performance of Optimized WOLNET Ensemble on External Data
* two contours (L/R) mandible were used as single GT mask

OAR
Internal - RAD

(n=59)
Dataset 1 - Rad

(n=83)
Dataset 2 - Onc

(n=35)
Dataset 2 - Rad

(n=35)
Dataset 3 - Rad

(n=48)
Dataset 4 - Rad

(n=119)
Dataset 5 - Rad

(n=50)

BSTEM 3.0±0.88 4.12±1.77 4.12±0.73 3.74±0.68 4.0±2.16 3.74±0.85

CHIASM 5.1±3.94 7.26±3.75 6.4±2.62 5.14±3.53

ESOPH 3.16±5.48 14.21±9.13

LACOU 1.57±9.79 3.74±1.14

LARYNX 2.24±1.38 6.0±2.71

LEYE 1.41±2.98 2.83±0.87 2.24±0.16 2.24±0.15 1.41±0.39

LIPS 2.45±1.21 8.6±2.59

LLENS 1.41±0.33 2.13±0.92 2.0±0.31 1.65±0.55 1.41±0.37

LOPTIC 1.41±1.29 6.48±5.28 2.24±1.53 2.24±1.88 2.63±4.44 5.05±2.19

LPAR 3.32±3.44 6.4±4.41 3.32±2.77 3.74±5.17 3.16±1.72 4.9±3.52 3.0±1.73

LPLEX 4.0±13.93

MAND 1.0±12.19 4.29±4.47 1.41±0.32 1.0±0.42 2.0±23.97 4.3±14.11*

RACOU 1.73±9.95 3.73±0.97

REYE 1.41±2.97 2.45±0.64 2.24±0.14 2.0±0.13 1.41±0.3

RLENS 1.41±0.45 1.95±0.31 1.41±0.44 1.41±0.41

ROPTIC 1.41±1.6 6.04±5.14 2.24±0.42 2.0±1.34 2.24±1.65 5.03±2.68

RPAR 3.0±4.29 5.74±4.86 3.16±2.36 3.16±2.73 3.0±1.66 5.39±4.75 3.0±3.04

RPLEX 4.0±13.8

SPCOR 2.0±1.3 3.0±4.35 3.16±1.27 3.0±1.41 3.0±12.3 2.83±0.83
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