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Abstract

The UK Biobank is a national prospective study of half a million participants between
the ages of 40 and 69 at the time of recruitment between 2006 and 2010, established to
facilitate research on diseases of aging. The imaging cohort is a subset of UK Biobank par-
ticipants who have agreed to undergo extensive additional imaging assessments. However,
Fry et al. (2017) finds evidence of “healthy volunteer bias” in the UK Biobank – participants
are less likely to smoke, be obese, consume alcohol daily than the target population of UK
adults. Here we examine selection bias in the UK Biobank imaging cohort. We address two
common misconceptions: first, that study size can compensate for bias in data collection,
and second that selection bias does not affect estimates of associations, which are the pri-
mary interest of the UK Biobank. We introduce inverse probability weighting (IPW) as an
approach commonly used in survey research that can be used to address selection bias in
volunteer health studies like the UK Biobank. We discuss 6 such methods – five existing
and one novel –, assess relative performance in simulation studies, and apply them to the
UK Biobank imaging cohort. We find that our novel method, BART for predicting the
probability of selection combined with raking, performs well relative to existing methods,
and helps alleviate selection bias in the UK Biobank imaging cohort.

1 Introduction

The UK Biobank (UKB) is a national prospective study of half a million participants between

the ages of 40 and 69 at the time of recruitment between 2006 and 2010. The UK Biobank was

established to examine relationships between exposures and common health-related outcomes

that affect aging populations, for example cancer, heart disease, diabetes, and dementia (Sudlow

et al., 2015). Though the study design took steps to maximize the generalizability of the UKB

cohort, recruiting enough participants for analysis of complex exposure-outcome relationships

was of greater concern (Sudlow et al., 2015). As a result, Fry et al. (2017) describes how the
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cohort suffers from “healthy volunteer” bias, in that participants exhibit lower rates of smoking,

obesity, and daily alcohol consumption than the target population of UK adults. Strikingly, Fry

et al. (2017) note that “all-cause mortality is approximately half that of the UK population as

a whole, and total cancer incidence rates are approximately 10%-20% lower.”

This healthy volunteer bias is a form of selection bias – when observed data is not rep-

resentative of the population of interest due to, for example, self-selection of participants or

analysis decisions. (J.Heckman, 1979; Little and Rubin, 1986). Selection bias threatens the

generalizability of study estimates to other populations. Despite the evidence of selection bias

in the UKB, Fry et al. (2017) conclude that “Although UK Biobank is not suitable for deriving

generalizable disease prevalence and incidence rates, its large size and heterogeneity of expo-

sure measures provide valid scientific inferences of associations between exposures and health

conditions that are generalizable to other populations.”

However, Meng (2018) proves mathematically that this conclusion is flawed. Large sample

sizes cannot (efficiently) overcome bias in data collection, and in fact that a larger sample size

can increase overconfidence in estimates when there is bias in data collection – the Big Data

Paradox. Bradley et al. (2021) further demonstrates how this Big Data Paradox can even affect

large surveys that do take steps to counteract selection bias.

Meng (2018) and Bradley et al. (2021) focus on bias in point estimates of population means,

however selection bias (in the form of “collider bias”) is well-known to also affect estimates of

associations (Munafò et al., 2018), calling into question the conclusion from Fry et al. (2017)

that estimates of associations using the UKB are still valid in the presence of selection bias.

LeWinn et al. (2017) demonstrates the impact of selection bias on a sample of 1,162 structural

brain images from a community-based sample of children, and find that adjusting for observed

selection bias changes estimates of the relationship between age and brain structure.

The UK Biobank is in the process of recruiting a subset of the total 500,000 UK Biobank

participants to undergo additional assessments as part of the world’s largest ever multi-modal

imaging study (Littlejohns et al., 2020). From the time recruitment began in 2016 to March

2020, over 50,000 participants completed the additional imaging screenings, with the goal of

completing 100,000 in total by 2023. Due to the additional respondent burden required to

undergo the extensive imaging necessary to participate in this cohort, there is large potential

for the selection bias in the UKB to be exacerbated in the imaging cohort.

This paper seeks to quantify the selection bias in the UKB imaging cohort, and to present a
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set of methods commonly used in survey analysis that could be applied to the UKB to lessen the

impact of selection bias on estimates. Section 2 further outlines the UKB imaging cohort data,

and introduces the Health Survey for England, which is used to define the target population.

Section 3 presents six methods (a mix of standard and novel) that may be used to adjust

for selection bias, outlines simulation studies designed to test the relative performance of the

proposed methods, and describes how we evaluate the methods’ performances. Results from

the selection bias analysis, simulation studies, and application of methods to the UKB imaging

cohort are given in Section 4.

2 Data

The UK Biobank is a national prospective health study of UK adults ages 40-69 at time of

recruitment, which occurred between 2006 and 2010. All participants completed extensive

questionnaires, underwent physical and mental health examinations, gave biological samples

and consented to have their National Health Service (NHS) records accessed by the study. The

goal of the study is to collect data on diseases of aging, before onset Fry et al. (2017).

Additionally, up to 100,000 participants will undergo imaging assessments, including MRI

of the brain, heart and abdomen, and full-body bone and joint X-ray. The first subjects were

imaged in 2016, and imaging is expected to continue through 2022 (Miller et al., 2016). To

date, 34,890 subjects have undergone brain MRI imaging. We restrict our sample to the 20,827

observations that contain complete measurements of T1 total brain volume (grey and white

matter), normalized for head size.

To assess selection bias in the UKB imaging cohort, we compare demographic distributions

participants to those from the 2016 Health Survey for England (HSE), a high-quality, national

health survey. The Health Survey for England (HSE) is an annual survey conducted by the

Joint Health Surveys Unit of NatCen Social Research and the Department of Epidemiology and

Public Health at University College London (HSE, 2018). We use the 2016 data as it was the

latest available at the time this analysis was conducted. The UK Biobank imaging study began

in 2016, so there is a slight mismatch in time of collection between the UK Biobank data and

our target population, and weighted estimates will correspond to a nationally representative

2016 adult population.

The 2016 HSE interviewed 8,011 adults aged 16 and over, and 2,056 children under the age

3



of 16. We restrict our data to the 4,318 adults aged 44-79 as the UK Biobank imaging subjects

only fall within that age range. The health metrics that we are interested in comparing to the

UK Biobank are only available for a subset of the overall sample, so we further restrict the

sample to 2,348 individuals who are aged 44-79 and underwent a nurse interview. We use the

HSE-supplied survey weights for the nurse interview subset for all population calculations. The

UK Data Service releases anonymized individual-level results for the HSE, which we use here.

Additional details about the two data sources, as well as an overview of coding and analysis

decisions can be found in Appendix A.

3 Methods

This section outlines the four sets of methods used. First we discuss the six proposed adjustment

methods, then outline how the simulations studies were designed, next discuss how we evaluated

the performance of the various methods, and finally give a brief summary of how the methods

were applied to the UKB imaging cohort. More detailed descriptions of each method can be

found in the Appendix.

3.1 Adjustment Methods

We use the structural causal model (SCM) notation to describe the general task of adjusting an

estimate for an outcome Y in the presence of selection bias (Pearl, 1995b,a; Bareinboim et al.,

2014; Bareinboim and Pearl, 2016). This is in contrast to the alternative potential outcomes

framework for evaluating missing data (Rubin, 1976; Little and Rubin, 1986).

It is possible to recover an unbiased estimate of the association between Y and X in the

presence of selection bias, if the conditional probability P (y|x) can be expressed as follows in

terms of observed quantities:

P(y|x) =
∑
Z

P(y|x, z, S = 1)P(z|x) (1)

S is the selection indicator, equal to 1 if a unit was observed in the sample, and 0 otherwise.

Z is an admissible set of auxiliary variables that blocks paths in the causal graph between Y

and S, such that Y ⊥⊥ S|X,Z. It is possible to recover an unbiased estimate of P (y|x if and

only if there is a set Z that induces conditional independence between Y and S, and all the

elements of Z are observed in the sample and the population. In other words, P(y|x, z, S = 1)
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and P(z|x) must be observable.

It is often the case that we don’t observe P (z|x) in the population, because we only observe

Z in the sample. In this case, to recover P (y|x), we must assume that Y
⋃
X ⊥⊥ S|Z. In this

case, we can express the association as

P(y|x) =
∑
Z

P(y|x, z, S = 1)P(z) (2)

All the methods for adjusting for selection bias that we consider here are Inverse Probability

Weight (IPW) techniques (Horvitz and Thompson, 1952). IPW techniques assign weights to

each observation in the sample such that – in theory – the weights adjust for unequal probability

of selection, such that the weighted sample is representative of the target population. Hernán

et al. (2004) describes IPW, when applied correctly, as “creating a pseudopopulation” that

produces estimates that are “unaffected by selection bias.”

The motivation for this approach can be seen exactly by re-expressing Equation 2 (Correa

et al., 2018):

P(y|x) =
∑
Z

P(y|x, z, S = 1)P(z) (3)

=
∑
Z

P(y,x, z|S = 1)

P(x|z, S = 1)

P(z)

P(z|S = 1)
(4)

=
∑
Z

P(y,x, z|S = 1)

P(x|z, S = 1)

P(S = 1)

P(S = 1|z)
(5)

In the final expression, P(y,x, z|S = 1) is the joint distribution of outcome Y , exposure X,

and auxiliary set Z observed under selection bias and P(x|z, S = 1) is analogous to a propensity

score (CITE) under selection bias. The P(S = 1)/P(S = 1|z) term is the inverse probability of

selection, or the weight used in IPW adjustment.

Methods for adjusting for selection bias all seek to identify such a set Z and estimate the

inverse probability of selection weight, w = P(S = 1)/P(S = 1|z). They are differentiated by

how Z is selected, and how w is estimated.

We evaluate the following six methods for adjusting for selection bias:

• Post-stratification

• Raking
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• Calibration

• Raking with LASSO variable selection

• Logistic regression for estimating response propensity

• BART for estimating response propensity and raking

The first three methods (post-stratification, raking, and calibration) are standard survey

inverse probability weighting techniques (Deville and Sarndal, 1992; Deville et al., 1993). These

three methods are all examples of generalized raking procedures, differentiated by the specific

measure used to regularize the distance between prior and posterior weight values. Practically,

post-stratification considers the full joint distribution of categorical Z, while raking estimates

w by iterating through the marginal distributions of each element of Z until weights converge.

Calibration extends raking to allow elements in Z to be population totals rather than exclusively

discrete variables.

Raking with LASSO variable selection seeks to address the problem of selecting a sufficient

auxiliary set Z by using regularized regression of each S and Y on Z to select a subset of all

covariates available in the population to serve as Z. After Z is selected, standard raking is

performed.

Logistic regression for estimating response propensity and BART for estimating response

propensity and raking both attempt to estimate P(S = 1)/P(S = 1|z) directly, without the

constraint that the weighted distribution of Z must match the population distribution. BART

for estimating response propensity and raking uses a Bayesian Additive Regression Tree (instead

of simple logistic regression), which may better account for interactions between elements of Z,

and has the additional step of standard raking using a subset of Z with the highest variable

importance to ensure that the marginal distributions of key elements of Z match that of the

population.

More details on the methods and their implementation can be found in Appendix B.

3.2 Simulation studies

We conduct simulation studies using UKB data to evaluate the relative performance of the six

adjustment methods. In the simulation, we select random subsamples of various sizes from

the 20,827 UK Biobank imaging subjects, and use adjustment procedures to estimate known
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quantities of the UK Biobank imaging population from the biased samples. First, we generate

a missingness mechanism based on covariate data Z from the UK Biobank, and use it assign

each subject j = (1, . . . , N = 20827) a probability pj that they are observed (see Section C.1

for details on how the probability of missingness is generated).

On each iteration of the simulation, we randomly select a sample of a fixed size nobs with

probability proportional to pj . Then, we adjust that sample using each of the methods being con-

sidered. We perform this simulation 7 times, once for each nobs ∈ N∗(0.01, 0.02, 0.04, 0.05, 0.075, 0.1, 0.25).

The full algorithm is described in 1.

Once we have generated weights for each sample, we calculate weighted estimates of the

following quantities:

• Brain volume: total brain volume (gray and white matter), normalized for head size,

measured in mm3 by T1 structural MRI. Brain volumes range from 1,151,700mm3 to

1,793,910mm3 with a mean of 1,502,37mm3,

• Association between brain volume and age: βage from the weighted linear regression

Ybrain volume = β0 + βageZage + ϵ

The simulation can be summarized as follows:

Algorithm 1: Simulation 1

Result: Weighted samples
1 sample missingness coefficients β;
2 calculate probability of missingness pj for all N subjects pj = logit(Zjβ) ;
3 for πobs ∈ (0.01, 0.02, 0.04, 0.05, 0.075, 0.1, 0.25) do
4 nsim = πobs ∗N ;
5 for m ∈ (1, . . .M = 1000) do
6 select sample of nsim subjects;

7 sj = 1 if jth subject is selected where sj ∼ Bern(pj |nsim);
8 for each adjustment procedure do
9 weight sample;

10 return weights

11 end

12 end

13 end

We will calculate the MSE for the weighted estimates produced by each method, as well as

the design effect (Kish, 1992) in order to assess the “cost” (in terms of increased variance) of the

reduction in bias from adjustment. We define one additional evaluation metric, distribution

bias, as the sum of the squared distances between the weighted marginal distributions and
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target marginal distributions across variables used in adjustment. This metric will allow us to

assess how well each adjustment method produces weighted marginal distributions of auxiliary

variables that match those of the population. More details on the calculation can be found in

Appendix C.2.

3.3 Application to the UK Biobank

After exploring the weighting methods in simulation studies, we apply them to the full UKB

imaging cohort. We use each method to adjust the UKB imaging cohort to match the population

distributions defined by the HSE. We use only demographic variables for adjustment, and assess

the impact of adjustment on key heath outcomes. For health outcomes available in the HSE,

we compare weighted UKB estimates to those from the HSE to assess the impact of weighting.

4 Results

4.1 Bias in the Neurological Imaging Cohort

Table 1 shows compares the UK Biobank imaging cohort to the 2016 HSE nurse interview

sample. The table gives population counts (weighted in the case of the HSE) and the distribution

of each study across levels of demographic variables.

Sociodemographic factors The UK Biobank imaging cohort is older than the HSE (44.4%

and 28.9% aged 65 or older, respectively), more educated (51.5% v. 27.6%), more white (97.1%

v. 89.5%) and more likely to be retired (56% v. 39.4%) or to own a home (73.4% v. 39.5%).

Notably, the cohort does not have a gender bias (52% women compared to 51.5% in the HSE),

despite the higher participation rates among women found by Fry et al. (2017).

Health characteristics The UK Biobank imaging cohort is healthier than the general pop-

ulation. Only 3.8% are current smokers, compared to 16.2% of the general population. The

cohort is less likely to be obese (18.7%) than the HSE (28.5%), to have ever been diagnosed

with high blood pressure (22.5% v. 30.8%) or to have ever been diagnosed with diabetes (5.1%

v. 9.8%).

Table 1: Selection bias in the UK Biobank imaging cohort relative to the 2016 HSE nurse
interview subsample.

Count % of sample
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Level HSE UKB HSE UKB % UKB-% HSE

01-Sex

Female 1436 11243 51.1 52.5 1.4

Male 1373 10164 48.9 47.5 -1.4

02-Age Bucket

45 to 49 414 834 14.7 3.9 -10.8

50 to 54 449 3016 16.0 14.1 -1.9

55 to 59 352 3600 12.5 16.8 4.3

60 to 64 351 4463 12.5 20.8 8.4

65 to 69 346 5195 12.3 24.3 11.9

70 to 74 250 3424 8.9 16 7.1

75 to 79 217 875 7.7 4.1 -3.6

03-Highest Education

01-College plus/profesh 776 11018 27.6 51.5 23.8

02-A Levels 693 2617 24.7 12.2 -12.4

03-O Levels/CSEs 676 4854 24.1 22.7 -1.4

04-Vocational/Other 35 1312 1.2 6.1 4.9

05-None 626 1387 22.3 6.5 -15.8

99-DNK/Refused 4 219 0.1 1 0.9

04-Disabled

01-Yes 152 183 5.4 0.9 -4.6

02-No 2657 21224 94.6 99.1 4.6

05-Employed

01-Yes 1579 8864 56.2 41.4 -14.8

02-No 1230 12543 43.8 58.6 14.8

06-Homemaker

01-Yes 170 762 6.1 3.6 -2.5

02-No 2639 20645 93.9 96.4 2.5

07-Retired

01-Yes 825 11985 29.4 56 26.6

02-No 1984 9422 70.6 44 -26.6

08-Student

01-Yes 20 79 0.7 0.4 -0.3

02-No 2789 21328 99.3 99.6 0.3
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09-Unemployed

01-Yes 39 126 1.4 0.6 -0.8

02-No 2770 21281 98.6 99.4 0.8

10-Volunteer

02-No 2809 20338 100.0 95 -5

11-Ethnicity

01-White 2515 20782 89.5 97.1 7.5

02-Mixed/Other 51 253 1.8 1.2 -0.6

03-Asian 163 215 5.8 1 -4.8

04-Black 80 119 2.8 0.6 -2.3

99-DNK/Refused 1 38 0.0 0.2 0.1

12-Own/Rent House

01-Own outright 1109 15711 39.5 73.4 33.9

02-Own with mortgage 904 4477 32.2 20.9 -11.3

03-Rent from LA 463 373 16.5 1.7 -14.7

04-Rent private 286 442 10.2 2.1 -8.1

05-Shared 19 44 0.7 0.2 -0.5

06-Rent free 27 88 0.9 0.4 -0.5

99-DNK/Refused 1 272 0.0 1.3 1.2

13-Income

01-Under 18k 412 2526 14.7 11.8 -2.9

02-18k to 31k 707 5454 25.2 25.5 0.3

03-31k to 52k 471 5872 16.8 27.4 10.7

04-52k to 100k 578 4254 20.6 19.9 -0.7

05-Over 100k 83 1177 3.0 5.5 2.5

06-DNK/Refused 558 - 19.8 - -

14-Occupation

01-manager 159 1450 5.7 6.8 1.1

02-professional 327 2154 11.7 10.1 -1.6

03-assoc professional 196 1667 7.0 7.8 0.8

04-admin 179 1195 6.4 5.6 -0.8

05-skilled trades 172 466 6.1 2.2 -3.9

06-personal service 158 470 5.6 2.2 -3.4

07-sales customer service 85 244 3.0 1.1 -1.9

08-industrial 133 262 4.7 1.2 -3.5
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09-elementary 169 265 6.0 1.2 -4.8

10-unemployed 1230 12543 43.8 58.6 14.8

99-DNK/Refused 1 691 0.0 3.2 3.2

15-Smoking status

01-Current 454 824 16.2 3.8 -12.3

02-Previous 994 7182 35.4 33.5 -1.9

03-Never 1360 13186 48.4 61.6 13.2

99-DNK/Refused 0 215 0.0 1 1

16-BMI Bucket

01-Underweight 15 141 0.5 0.7 0.1

02-Healthy 686 7942 24.4 37.1 12.7

03-Overweight 1045 8813 37.2 41.2 4

04-Obese 800 4013 28.5 18.7 -9.7

99-DNK/Refused 263 498 9.4 2.3 -7

17-Ever diagnosed high BP

01-Yes 864 4810 30.8 22.5 -8.3

02-No 1941 16096 69.1 75.2 6.1

03-DNK/Refused 5 501 0.2 2.3 2.2

18-Ever diagnosed diabetes

01-Yes 275 1101 9.8 5.1 -4.7

02-No 2532 20306 90.1 94.9 4.7

99-DNK/Refused 1 - 0.1 - -

4.2 Simulation results

Results from simulation studies are arranged by outcome of interest: total brain volume, asso-

ciation between total brain volume and ApoE, and population composition.

4.2.1 Total brain volume

Figure 1 shows the distribution of mean total brain volume in our random subsamples, All

samples have mean total brain volumes far below the true poplation value, showing that we

successfully induced selection bias.

Bias Figure 2 shows the bias in estimated total brain volume remaining after adjustment

across weighting methods and sample sizes. At the smallest sample size (208), the BART
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Figure 1: Histogram of mean total brain volume in simulated samples. The blue dotted line
represents the true population mean total brain volume.

Figure 2: Error by method and sample size in simulation studies

method produces the best estimate of population total brain volume, followed by stratification

and raking. BART produces unbiased estimates at larger sample sizes, until a slight dip when the

sample is a full 25% of the population. At larger sample sizes, 833 and above, post-stratification

performs at least as well as BART. The magnitude of the bias in the logit-weighted estimator

decreases consistently as sample size increases. Calibration, lasso and raking estimators are not

unbiased at any sample size.

Design effect Figure 3 shows the design effect of each method across sample sizes. The

calibration and logit weights have considerably larger design effects, and design effects that are

themselves highly variable. The LASSO method has the smallest design effect across all sample

sizes. BART and raking have similarly small design effects, consistent across sample sizes, while

post-stratification has small design effects that increase slightly with sample size.

MSE Figure 4a shows the log MSE of total brain volume estimators as a function of the

proportion of the population sampled. The BART estimator has the lowest MSE for 1% and

2% of the population sampled, but is surpassed by post-stratification at larger sample sizes.

12



Figure 3: Log design effect by method and sample size in simulation studies

(a) MSE of total brain volume by proportion sam-
pled

(b) Log median design effect of weights by average
bias in total brain volume

The logit and raking estimators perform similarly, with a sharp drop in MSE as the proportion

sampled increases until 5%, then a steady decrease. Calibration and the LASSO have consistent,

high MSE compared to the other methods.

Bias and design effect The ideal estimator will eliminate bias without a introducing a large

design effect. Figure 4b shows the relationship between the log median bias and the log me-

dian design effect across methods (shown in color) and proportion sampled (size of each point).

We use log medians due to the large skew in the distributions of each variable. The LASSO

estimator has the smallest design effect, but hardly eliminates bias. Conversely, the logit effec-

tively eliminates bias as proportion sampled increases, but at the cost of a large design effect.

Calibration is clearly the worst performing, as it fails to reduce bias and also has a large design

effect. BART and post-stratification both effectively eliminate bias without a large design ef-

fect. BART has a small advantage at the smaller sample sizes, but post-stratification quickly

catches up.

Subgroup estimation Trends from the metrics discussed thus far persist at the subgroup

level. Figure 5 shows log MSE of total brain volume within key subgroups as a function of the
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Figure 5: Points represent the log MSE of total brain volume calculated for demographic sub-
groups, by the true proportion of the population made up by that subgroup. Lines are smoothed
estimates of the association between proportion of the population and MSE.

true size of the subgroup in the population. There is no clear difference in performance between

methods in the smallest subsets, however BART has the lowest MSE for larger subgroups in the

two smallest samples, slightly outperforming raking and post-stratification. Post-stratification

outperforms other methods in larger subgroups as sampled proportion increases. Calibration

consistently has the highest MSE, with the LASSO not far behind.

4.2.2 Age and total brain volume

For each sample, we regress total brain volume on age, once in a simple linear regression, and

once in a weighted linear regression for each adjustment method. We record the estimated

values of the intercept and age coefficient. Figure 6 shows the simulated selection bias in

the age coefficient from these regressions, estimated with the unweighted linear regression. The

histograms are distributions of the age coefficient, and the blue dotted line represents population

truth. We can see that there is a small amount of selection bias in the unadjusted age coefficients.

Figure 7 shows the bias in the age coefficient remaining after adjustment procedures were

applied. While it appears that all procedures are relatively unbiased, this is more a function of

the small amount of selection bias introduced (as a proportion of the total variation in the age

14



Figure 6: The distribution of estimates of the coefficient for age in a linear regression of total
brain volume on age. Regressions were estimated using unadjusted (selection-biased) sample
data. The blue lines represent the true population value of the age coefficient.

Figure 7: Bias in weighted estimate of age coefficient in regression predicting total brain volume.

coefficient) rather than performance of the methods. The logit approach seems to produce the

only truly unbiased estimator of the age coefficient, however we can see in Figure 8 that the

MSE oof the logit method is still quite high. Though BART and post-stratification don’t seem

to completely eliminate the selection bias in the estimate of the association between total brain

volume and age, they do so without introducting a large amount of variance, so on the whole

seem to perform slightly better than other methods.

4.2.3 Population composition

The last metric by which we evaluate adjustment methods is distribution bias (DB). Figure 9

shows the distribution of DB across simulations for each adjustment method by sample size.

Raking has the smallest DB across all sample sizes considered, and the DB decreased as sample

size grew. DB for the logit method was the most variable, but, on average, decreased the most

drastically with increases in sample size. DB for both post-stratification and BART was less

variable across simulation iterations, and consistent across sample sizes, but higher on average
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Figure 8: Log MSE as a function of proportion sampled.

in larger sample sizes than raking or logit.

Figure 9: Log distribution bias by method adjustment method and sample size.

4.3 Application to the UK Biobank

Table 2 gives adjusted estimates of prevalence for selected health outcomes from the UK Biobank

imaging cohort, related to unadjusted UK Biobank data and population estimates from the HSE.

Weighting generally seems to improve prevalance estimates for most health outcomes.

Take, for example, the proportion of the population estimated to be current smokers. The

HSE estimates that 15.1% of the population smokes, while only 3.9% of the subjects in the UK

Biobank imaging cohort report being current smokers. All methods of adjustment improve this

estimatet. BART and raking estimate that 7.4% and 7.6% of the population currently smokes,

while the lowest estimate is from the LASSO which estimates that 4.6% of the population

smokes.

Similarly, for obesity, BART estimates that 24.2% of the population is obese, compared to
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28.5% in the HSE, while the unadjusted estimate is only 18.7%. Other methods improve on

the unadjusted estimate, however none so much as BART. Stratification also seems to drasti-

cally improve estimates of these health quantities, while other methods, like the LASSO and

logit, seem to lag behind. It is important to note that while these estimators improve on the

unadjusted estimator, even the best-performing are not able to completely eliminate selection

bias.

UK Biobank adjusted (%)

Level HSE % UKB Raw % Rake Strat Calib LASSO Logit BART

ApoE Phenotype
01-e4/e4 - 2.2 1.7 1.9 1.8 2.1 2.2 1.8
02-e3/e4 - 23 23.3 23.4 23.1 22.9 23 23.5
03-other - 74.8 74.9 74.7 75 75 74.8 74.6

BMI Bucket
01-Underweight 0.6 0.7 0.7 0.8 0.5 0.7 0.7 0.7
02-Healthy 24.6 37 32.6 31.9 32.9 36 36.7 33
03-Overweight 37.9 41.2 40.7 41.5 41.6 41.5 41.2 40.2
04-Obese 28.5 18.7 24.1 23.6 22.9 19.4 19.1 24.2
99-DNK/Refused 8.6 2.4 1.9 2.2 2.1 2.3 2.3 1.9

Diabetes Ever
01-Yes 10.4 5.1 6.5 7.1 5.5 5.2 5.3 6.3
02-No 89.6 94.9 93.5 92.9 94.5 94.8 94.7 93.7
99-DNK/Refused 0.1 - - - - - - -

Smoking Status
01-Current 15.1 3.9 7.6 6.2 6.9 4.6 4.1 7.4
02-Previous 36 33.6 32.3 34.7 31.1 32.8 33.5 33.1
03-Never 48.8 61.6 59.6 57.9 59.6 61 61.4 59.1
99-DNK/Refused - 1 0.5 1.2 2.4 1.6 1 0.4

Table 2: Weighted estimates of prevalence health outcomes from the UK Biobank imaging
cohort data, compared to our target population, the HSE.

Table 3 gives weighted estimates of total brain volume relative to the unweighted estimate

from the UK Biobank imaging cohort. The weighted estimates have hardly changed from the

unweighted estimate (the largest difference is from BART, which changes only by about 1% of

the unweighted total brain volume estimate).

Table 4 shows the deisign effect, distribuion bias and estimated age coefficient for each

method. The results are in-line with simulation studies. Raking is the best at matching pop-

ulation totals of auxiliary variables (as measuured by the lowest DB), with BART and post-

stratification performing almost as well. Calibration matching population totals reasonably

well, but has the largest design effect. The logit approach does not reduce distribution bias

from the unweighted estimate, which is consistent with the known shortcomings of the method.

BART, as a regression-based approach, improves considerably on the logit baseline.
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Method Distribution Bias deff βage

Unadjusted 0.57 1 -5316

BART 0.06 5.85 -5018
Calib 0.11 7.89 -4915
LASSO 0.29 1.78 -5047
Logit 0.49 1.03 -5269
Rake 0.01 6.77 -5092
Strat 0.10 4.8 -5252

Table 3: Adjusted estimates of total brain volume from the UK Biobank imaging cohort

Method Distribution Bias deff

Unadjusted 0.57 1
BART 0.06 5.85
Calib 0.11 7.89
LASSO 0.29 1.78
Logit 0.49 1.03
Rake 0.01 6.77
Post-srtat 0.10 4.8

Table 4: The distribution bias (DB) and design effect (deff) of each adjustment method relative
to unadjusted estimates.

Age coefficients are adjusted down from the unweighted estimator, but not to a significant

degree. There is not much differentiation in estimated association between age and total brain

volume across adjustment methods.

5 Discussion

The simulation studies revealed BART and post-stratification to be the most effective at re-

ducing bias without introducing much additional variance. BART slightly outperformed post-

stratification in the smallest samples, likely the more realistic scenarios than observing 25% of

the target population. BART, however, only did a mediocre job of matching sample marginal

distributions to those of the population. This is likely due to the fact that raking variables

were selected based on which were the most important predictors of selection, and not based

on which represented the largest subgroups in the population. Altering this selection criterion

could improve BART’s performance along this metric.

Calibration performed almost remarkably poorly, failing to reduce bias while drastically

increasing variance compared to other methods. It performed far worse than raking, to which

its closely related, except that calibration included constraints based on the continuous form
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of age, while raking relied on only the discrete specification of age. It is possible that since

we only calculated performance of methods using categorical forms of variables, our assessment

did not fully capture advantages of calibration. This could also be due to poor specification of

algorithm parameters, and warrants further examination.

That LASSO performed poorly was also surprising, as it is simply raking with a variable

selection step. It may be that the LASSO is not able to reliably select the most important

variables for adjustment, or that our method of creating tiers of variables for sequential raking

is not the optimal strategy for handling a large number of selected variables.

From an implementation standpoint, BART has two main advantages over other methods:

variable selection is done automatically, and complex interactions are implicitly considered

without the need to enumerate all of them. LASSO and logit include a mechanism for variable

selection, but seem to lack the power that BART has to identify critical variables in small

samples. They also both select interactions only from a set previously specified by the researcher,

which limits the degree of interactions that can be considered before hitting computation time

and memory errors. Post-stratification, in the way we have implemented it here, also considers

interactions and has an automatic variable selection feature, likely why it performs similarly to

BART. However, in small samples, there is a limit to the number of variables that can be used

for post-stratification before strata become too small. BART has no such limitation, likely why

it outperforms post-stratification in smaller samples. In large samples, post-stratification can

consider high-degrees of interactions, and will dominate performance.

Logit adjustment is the only method without specific constraints of matching weighted

sample marginal distributions to population distributions, however, in small samples had a DB

on par with other methods, on average, and in larger samples had some of the lowest DB of any

method. One caveat is that though the DB was low on average, it was highly variable.

It is important to note that most of the methods that we consider here require access not

only to external population data, but specifically to individual-level population data, which

is not always available. Our best-performing methods, BART and post-stratification, are not

possible without access at least to joint distributions of auxiliary variables. Other methods, like

raking and calibration, though they perform worse in this setting are still highly useful in other

scenarios.

In the application of these methods to real UK Biobank data, we observed that they were

able to improve estimates of prevalence of smoking, diabetes, obesity and high blood pressure
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relative to population estimates from the HSE. BART and post-stratification exhibited the

largest improvements over the unweighted estimators, though were still unable to eliminate

selection bias completely.

There are numerous caveats and limitations of the results presented here. First, the data

we use as the target population is itself a study based on a population sample, so the popu-

lation quantities that we treat as true are in fact uncertain. Unusually, the target population

is also much smaller that the UK Biobank imaging cohort, adding additional uncertainty to

the analysis. Furthermore, bias that we attribute here to preferential selection may be from

another source, like measurement error. For example, the HSE and UK Biobank have different

questionnaires, and, for example as respondents to report education level in slightly different

ways. While care has been taken here to standardize the responses across sources, there is likely

some lingering discrepancy.

Second, the crucial assumption underlying all adjustment procedures tested here is that we

have correctly identified an admissible set. While we introduce the concept of an admissible

set and criteria necessary for recovering from selection bias, we do not actually identify such

a set in the UK Biobank. We also limit our analysis only to auxiliary variables for which we

have external population data readily available, when that is not a requirement for recovery in

all cases. Furthermore, there is a wealth of data available in the UK Biobank that we fail to

leverage, perhaps most obviously spatial data.

The third major limitation involves our treatment, or lack thereof, of variance of estimators

or statistical significance of results. We only evaluate relative performance based on visual

assessments, not based on statistical tests, so cannot make any claims about a method having

significantly better performance than another.

Lastly, we only perform simulation studies in which the missingness mechanism is static.

Adjustment methods that performed well could be particularly suited to the characteristics of

the missingness used here.

There are many possible avenues for future research. First, we could continue to explore

and refine various adjustment procedures. For example, we could adapt calibration and rak-

ing to better handle larger numbers of variables. We could also expand our analysis to con-

sider methods that directly model the outcome of interest, like Multilevel Regression and Post-

stratification, or MRP park2004bayesian. We could explore tuning parameters for the BART

and LASSOs.
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Second, we could incorporate additional auxiliary variables, like spatial data, into weighting

procedures. As discussed, many weighting procedures suffer from an inability to handle a

large number of auxiliary variables, requiring the researcher to manually select variables and

interactions they think will be important

Another direction for future research is incorporating computation time into overall analysis

of estimators. BART, for example, performs well, but also takes much more computation time

than post-stratification, for example.

6 Code and Data Availability

All code is publicly available at https://github.com/vcbradley/ukb-selection-bias.

This analysis sources data from the UK Biobank and the 2016 Health Survey for Eng-

land (HSE). UK Biobank data is publicly accessible upon approval of an application through

https://bbams.ndph.ox.ac.uk/ams/signup. HSE data was accessed via the UK Data Service at

https://ukdataservice.ac.uk.

The UK Biobank is the selection-biased data that we would like to adjust, and the 2016 HSE

is our target population. As we aim to directly compare demographic and health metrics from

the UK Biobank to those from the HSE, we recode relevant variables to match across sources as

closely as possible. For example, this may include collapsing levels of a certain variable in the

UK Biobank because the corresponding variable was collected at a higher level of aggregation

in the HSE. We will describe a few such cases in the rest of the section, but full recodes can be

found in the paper’s GitHub repository.
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Appendix

A Data

Demographic variables, like household income and highest education level, were collected once

at baseline, and again at the time of the imaging assessment. As we are interested in correcting

potential selection bias in brain MRI data with auxiliary demographic variables, we take the

value collected at the time of imaging wherever available. If missing, we take the next most

recent observation.

Some variables, like income and home ownership, contain observations where the respondent

refused to respond or was unsure of the correct response. We code those cases as “Do not

know/Refused” and do not impute response values, and do not exclude them from the data, as

doing so may introduce additional bias. The HSE also contains “Do not know/Refused” values

for these variables, so there is a subset for comparison, though the pattern of refusals may be

different across the two studies.

Some variables, like age and ethnicity, are coded in multiple ways - once at the most granular

level for use in simulation studies, and once at a higher level of aggregation to match the way

the information is collected in the HSE. Age, for example, is collected in the UK Biobank

as a combination of month and birth year. We impute continuous age as the “age in years”

from the 15th of the observed birth month and the date of the imaging appointment. In the

simulation studies, we use a continuous version of age, however, the HSE only reports age in

5-year increments. Therefore, we create a discrete version of UK Biobank age to match the

HSE variable which is used to weight the Biobank data. In the UK Biobank, subethnicity, like

“White Irish” and “Black African” is collected in addition to the larger ethnicity categories:

white, black, Asian, mixed, other, and no response. However only the major categories were

collected by the HSE. Therefore, we code ethnicity two ways: one at the most granular level to

use in simulation studies and one at the higher level of aggregation for weighting to the HSE.

We also consider a small selection of health outcomes:

• Smoking status (4 categories): current, previous, never, do not know/refused

• BMI category (5 categories): underweight (< 18.5), healthy (18.5 − 24.9), overweight

(25− 29.9), obese (> 29.9), do not know/refused
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• Ever diagnosed with diabetes by a doctor (3 categories): yes, no, do not know/refused

• Ever diagnosed with high blood pressure (3 categories): yes, no, do not know/refused

These variables were selected because the HSE collects similar outcomes, giving high-quality

population prevalence estimates for comparison. These health outcomes were not used in the

simulation studies, or to weight the UK Biobank data, but serve as benchmarks for how much

healthy volunteer selection bias exists in the UK Biobank and how well weighting methods are

able to adjust for it.

A.0.1 UK Biobank Imaging Data

In the UK Biobank, there are 20,827 subjects that have a recorded MRI brain volume, and will

serve as the population for these simulations. We observe the following demographic data for

each subject:

• Age measured at time of imaging appointment

– continuous: 40 - 79

– squared: 402 - 792

– discrete (7 categories): 45-49, 50-54, 55-59, 60-64, 65-69, 70-74, 75-79

• Sex (2 categories): Female, Male

• Ethnicity (12 categories): White, White Irish, White other, Asian Indian, Asian Pak-

istani, Asian Bangladeshi, Asian Other, Black Caribbean, Black African, Mixed, Other,

do not know/refused

• Employment (8 categories): employed, retired, homemaker, disabled, volunteer, student,

unemployed, do not know/refused

• Occupation (SOC2010, 11 categories): manager, professional, associate professional,

administrative, skilled trades, personal service, sales or customer service, industrial, ele-

mentary, unemployed, do not know/refused

• Highest level of education (6 categories): college or above (including professional

degree), A-levels (or equivalent), O-levels or CSEs, vocational or other, none, do not

know/refused
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• Household income (£1000s, 6 categories): Under £18, £18-£31, £31-£52, £52-£100,

Over £100, do not know/refused

• Household size (6 categories): 1, 2, 3, 4, 5 or more, do not know/refused

• Home ownership (6 categories): Own outright, own with a mortgage, rent from LA,

rent from a private landlord, rent free, do not know/refused

• Home type (3 categories): house, flat/apartment/temporary accommodation, do not

know/refused

B Adjustment methods

B.1 Post-stratification

One of the main disadvantages of post-stratification is the need for the researcher to select

variables with which to strata for weighting that capture as much of the missingness mechanism

as possible without resulting in tiny cells that contain few or no observations. This is typically

a manual process that relies on domain knowledge, however, that is impractical in this setting.

We use a random forest to simulate the domain knowledge typically used for variable selection.

Specifically, we use a random forest (from the randomForest package in R) to predict the

vector of selection indicators s using the discrete Zk in their categorical (not binary indicator)

forms. We exclude the continuous Zk as post-stratification can only use discrete variables, and

implicitly considers variable interactions, so there is no need to explicitly specify them in the

random forest.

The random forest generates a measure of variable importance. Beginning with the variable

deemed most important, we add on additional variables of decreasing importance until the joint

distribution of the selected variables creates cells that have no observations in the sample and

make up, in aggregate, no more than 1% of the population. For example, consider if the two

most important variables were age buckets and gender and no cells based on the interaction of

the two variables were empty in the sample. We would add the next important variable, say

income, and re-calculate the number of observations in each cell of the joint distribution of all 3

variables. Say that there are 2 cells for which we lack sample observations, but combined, they

make up only 0.5% of the population. This is acceptable, and we move on to consider the next

most-important variable, employment status. The joint distribution of all 4 variables contains
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10 empty sample cells, which make up 1.5% of the population, which is over out threshold.

Therefore, we eliminate the 4th variable and proceed to post-stratification with the first three.

B.2 Calibration

Calibration minimizes the distance between prior weights, set to 1 here, and new weights that

satisfy a set of constraints. Constraints are defined as functions of auxiliary variables, often

population totals. Here we consider 3 sets of constraints:

• Population size in the form of N =
∑n

i=1wi

• Sums of continuous variables (age and age2) in the form of
∑N

j=1 zj =
∑n

i=1wizi

• Counts across levels of the 10 categorical variables. For this constraint, we transform

categorical variable Zk that has Lk levels into Lk − 1 binary indicator variables, dropping

one level per variable to avoid collinearity. Constraints take the form

N∑
j=1

I{zj = lk} =
n∑

i=1

wiI{zi = lk}

for all l ∈ (1, . . . , Lk−1) levels of Zk, and all Zk in the k ∈ (1, . . . , 10) categorical variables.

In total, there are (1×population total+2× age totals+6× age categories+1× sex+11×

ethnicity, 7×employment+10×occupation+5×education+5×income+5×household size+5×

home ownership + 2× home type) = 60 constraints to consider in each calibration estimation.

With so many constraints, calibration can perform poorly - either by producing extreme

weights, or by failing to converge altogether. In order to prevent this, we eliminate constraints

that apply to levels of discrete variables that make up less than 2% of the sample or the popula-

tion. By eliminating these constraints, we effectively pool these small levels with the reference

level for that categorical variable, which has been chosen somewhat arbitrarily. Generally in

a real application setting, the researcher would manually pool small strata based on domain

knowledge.

The second step we take to aid convergence is calibrating in two stages. We split the

constraints into two groups based on the number of observations in the population that are

represented by that level, and calibrate the sample first with the constraints for smaller pop-

ulation subgroups, then use the resulting weight as the prior weight for a second round of

calibration with the larger constraints. We calibrate the smaller groups first so that the final
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weighted sample exhibits less overall error in marginal distributions of auxiliary variables. This

approach is ad-hoc, and should be tested against other methods for dealing with a large number

of constraints in future research.

The last step we take to aid convergence in calibration is the specification of algorithm

parameters - namely the tolerance threshold and the maximum number of iterations that the

algorithm will be allowed. The tolerance threshold ϵ is the threshold that determines when the

weighted sample total matches the population total:

∣∣∣ N∑
j=1

I{zj = lk} −
n∑

i=1

wiI{zi = lk}
∣∣∣ < ϵ

By default, ϵ is set to 1e − 7 ∗ N , however we raise this threshold to ϵ = 0.0003 ∗ N . This is

primarily based on anecdotal observations of cases when calibration failed to converge despite

other precautions taken. Further research should explore performance of calibration weights as

a function of this tolerance. Lastly, the maximum number of iterations was increased from the

default of 50 to 5000.

We used the calibrate function from the survey package in R to fit calibration weights.

B.3 Raking

As discussed in Section ??, raking is a specific form of calibration in which the constraints are

marginal distributions of categorical variables. As in calibration, raking will fail to converge

when there are a large number of constraints or when constraints include discrete variables

with levels representing small population subgroups. In order to avoid this, we eliminated

members of the population that were absent in the sample, as is standard practice in post-

stratification. For example, if the sample contained no observations with ages between 40 and

45, we eliminated all members of the population between those ages, and calculated target

population marginal distributions based on the remaining members of the population. This

clearly presents a problem if we are forced to drop small, but potentially important, population

subgroups to fit rake weights. In most real applications, the researcher would pool levels of the

population that were missing from the sample with other levels based on domain knowledge.

However this is a manual process, and a large drawback of raking, which we would like this

simulation to capture.

We used the rake algorithm in the survey package in R to fit rake weights. This imple-
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mentation allows for the specification of a tolerance threshold ϵ and of a maximum number of

iterations. As in calibration, we set the tolerance threshold to be 0.0003, and the maximum

number of iterations to be 5000.

B.4 Raking with LASSO variable selection

This method approaches adjustment as a variable selection problem. Raking can consider

a large set of auxiliary variables, while post-stratification quickly becomes impossible when

more than a few auxiliary variables are considered. On the other hand, post-stratification can

account for interactions in the missingness mechanism, while raking only adjusts the marginal

distributions of the auxiliary variables. This method attempts to leverage the advantages of

each raking and post-stratification by adjusting on the minimum set of interactions significantly

related to the outcome, in this case total brain volume, or probability of selection. LASSOs

are used to select significant predictors of brain volume or selection, and then the sample is

raked only to the marginal distributions of those variables. We excluded age and age2 from

consideration, as we cannot rake to the population margins of continuous variables. This left

K = (69− 2) +
(
69−2
2

)
= 2278 possible predictors.

For the LASSO predicting selection, we use all 20,827 observations in the population and

predict the binary outcome sj which is 1 if the jth observation was selected in the sample, and

0 otherwise. For the outcome LASSO, we restrict the training data to the sample and assume

that the outcome, brain volume, is normally distributed conditional on covariates X. We use

cv.glmnet from the glmnet package in R, and 5-fold cross-validation.

In practice, there are a few challenges to address. First, any variable selected by one of the

LASSOs will be used in raking, so there must be enough observations of each level in both the

sample and population. We set that threshold to be 1%, thus eliminating any variables that

create population or sample cells below this threshold.

Second, in order to decrease the computation required to fit each LASSO, we reduce the

number of λ penalty values considered. By default, cv.glmnet considers 100 values of λ from

λmin to λmax, equally-spaced on the log scale. λmax is set such that when λ > λmax, all

coefficients are 0. Friedman et al. (2010) show that βk will be 0 if 1
N |⟨xk, y⟩| < λα, and

therefore all coefficients will be 0 when Nλmax = maxk |⟨xk, y⟩|. λmin is set to 0.001λmax. We

take a similar approach but consider only 20 values between λmin and λmax instead of 100. The

final set of variables was selected using the largest λ such that the cross-validated error lies
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within 1 standard deviation of the minimum cross-validated error. This criterion is often used

to prevent overfitting (Friedman et al., 2010).

Last, the LASSOs frequently identified 30 or more significant variables, which, when con-

sidered all at once, caused the raking algorithm to fail to converge. To prevent this, we capped

the number of raking variables at 50 and then raked using sets of 20 variables at a time, from

least important to most important. On each raking iteration, the weights from the previous

iteration were used as the prior weights. Variable importance was determined first by whether

the variable appeared in one or both LASSOs, and second by the relative importance of the

variable within the LASSO. Due to the difference in the scale of the outcomes across the two

LASSOs, we relied on relative coefficient size rather than absolute coefficient size.

Once raking variables and groups were identified, we implemented raking using the same

settings as the straight raking approach described above.

B.5 Logistic regression

Logistic regression for selection bias adjustment takes a different approach than the previous

methods by attempting to directly estimate the probability of selection instead of attempting

to make the sample margins match the population margins. In fact, this method makes no

attempt to match population margins.

We use a logistic regression LASSO for variable selection. Similarly to the LASSOs used

in the previous method, we used cv.glmnet with 5-fold cross-validation and custom values

of λ. The optimal λ was selected using the 1 standard deviation criterion, and the model

was then re-fit using only significant predictors and no penalty parameter to avoid coefficient

shrinkage in the final predictions. Occasionally, the LASSO would fail to select any significant

variables. In that case, a simple logistic regression was fit using all 69 first-order predictors and

no interactions.

The weights from the resulting logistic regression are 1/p̂j where p̂j is the modeled probability

of selection.

B.6 BART and raking

BART and raking is similar to the previous method in that it attempts to directly estimate

the probability of selection. The additional raking step is then ensures that sample marginal

distributions of key variables match those of the population.
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We use the BayesTree package in R to fit the BART on all 69 first-order terms, including

age and age2. BARTs naturally consider non-linearities and interactions between predictors, so

there is no need to manually pre-specify them. We fit a categorical BART with 25 trees, and

the estimate the probability of selection for each subject with the mean of 1000 samples from

the posterior of the model.

The BART-estimated probabilities serve as our prior probabilities in raking. To avoid over-

raking, and potentially increasing the variance unnecessarily, we select a subset of variables for

raking. The BayesTree implementation of BART does not have a variable importance metric,

so we fit a simple random forest from the randomForest package to the same data using the 8

categorical covariates instead of the 67 binary covariates, and select the top 5 most important

variables from that model for raking. Raking settings were the same as those used for simple

raking, described above.

Other considerations

For all methods, weights were re-scaled to have mean 1 to simplify comparison across methods.

Occasionally methods would fail to converge despite precautions taken. In that case, a weight

of 1 was assigned to all sampled units.

B.7 Application to the UK Biobank

With an understanding of the relative benefits of various adjustment procedures from the previ-

ous section, we will then apply them to the actual UK Biobank imaging data. We will attempt

to estimate the following population characteristics:

• Prevalence of smoking

• Prevalence of obesity

• Prevalence of ApoE e4/e4 phenotype

• Population mean total brain volume

• Association between age and total brain volume

This list of outcomes represent two broad categories of outcomes with different levels of

strictness of conditions for recovery that are both of interest in studies like the UK Biobank:

prevalence P(Y) and association P(Y|X). Second, these outcomes have been widely studied,
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so the literature provides a strong benchmark by which to evaluate our adjustment procedures

(Brandon et al., 2018; Fotenos et al., 2008).

To estimate these outcomes, we will apply each of the weighting methods under consideration

to the UK Biobank imaging cohort using the 2016 Health Survey for England (HSE) as our

target population to define population totals of auxiliary variables. Then, we will calculate

weighted estimators of each quantity. As in the simulation study, the association between total

brain volume and age will be calculated using weighted linear regressions.

We will calculate the design effect of each set of weights, and compare estimates to population

quantities from the 2016 HSE.

C Simulation

C.1 Probability of missingness

The simulation requires generation of a missingness mechanism, or a linear combination of de-

mographic variables Z and randomly-drawn coefficients β that is used to estimate a probability

of selection p for each subject in the population, pj = logit(βZj).

We generate a single set of coefficients β, which we would like to be 1) perfectly recoverable,

2) create significant bias in estimates of outcomes and 3) be realistically complex.

In order to ensure the first criterion, probability of missingness is a function only of variables

Z that can be considered by the weighting procedures (listed in the previous section). For the

second criterion, we always include age in the missingness function, which is well-known to be

correlated with brain volume. In the UK Biobank imaging data, age and brain volume have a

correlation of -0.55.

The third criterion stems from the result shown in Equation ??. We know that if we observe

all variables Z that d-separate Y and S, and can estimate ŷ in each cell defined by the joint

distribution of Z, we will always be able to unbiasedly recover the quantity of interest using

post-stratification, and post-stratification will dominate other methods (Caughey and Hartman,

2017). However in most practical applications, Z is large or includes a continuous variable,

making it impossible to estimate ŷ in all cells formed by the joint distribution of Z.

We seek to evaluate adjustment methods under realistic conditions, so would like Z to be

large and contain continuous variables. Age will always be included in order to induce bias

(criterion 2). We also ensure that Z is complex by considering each level of each discrete
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variables separately by coding all categorical variables as a set of indicator variables, without

removing a default reference value. For example, home type is coded as 3 variables, each

corresponding to one of the levels (example shown in Table 5).

Home type house flat or apartment refused

House 1 0 0
Flat or apartment 0 1 0

Do not know/refused 0 0 1

Table 5: Example of variable coding for simulating the probability of missingness.

This clearly creates collinearity between predictors, and we will rely on the sparsity of the

simulated β to ensure that not all levels of a single categorical variables are included in a single

function. Furthermore, even if by chance all levels of a variable were included, since we are

simply simulating a function for p and not estimating it in a regression, one of the levels could

be considered an intercept term.

Real missingness mechanisms are often non-linear. We introduce non-linearity here by in-

cluding age2 in Z and by considering all two-way interactions of demographic variables. We

have (age, age2, 7× age categories, 2× sex, 12× ethnicity, 8× employment, 11× occupation, 6×

education, 6 × income, 6 × household size, 6 × home ownership, 3 × home type) = 69 first-order

predictors. Considering two-way interactions introduces an additional
(
69
2

)
= 2346 predictors,

for a total of K = 2415 possible predictors. While this may seem extensive, we have only

considered a small fraction of the variables available in the UK Biobank, and only one type of

non-linearity.

We use a spike-and-slab distribution to simulate the missingness coefficient βk for all k ∈

(1, . . . ,K) predictors. The spike and slab distribution is a mixture model, using a Bernoulli

distribution to model the probability that random variable is non-zero (the “spike”) and a

Normal distribution to model the value of the variable given that it is different from 0 (the

“slab”). The parameters of the distribution are λk, the probability that βk is non-zero, and

µk and σ2
k, the mean and variance of the Normal distribution that βk follows if non-zero. The

hyperparameter αk indicates if βk is non-zero.
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λk =



1 for age

0.75 for age2

0.5 for continuous variables

0.25 for first-order binary indicator variables

0.003 for interaction variables

αk ∼ Bern(λk)

βk ∼ αkN (µk, σ
2
k)

The sampled values of β used in the simulation study are given in Table 6 in the Appendix.

As described in Algorithm 1, once the β = (β1, . . . , βK) have been sampled, we calculate pj

for all j ∈ (1, . . . , N) as pj = logit(Zjβ). Then, holding the sample size nsim = Nπobs fixed, we

draw a sample from the population. Let sj be the indicator for the jth person being sampled,

then sj ∼ Bern(pj |nsim). We consider a range of proportions observed πobs from 0.01 to 0.25

in order to evaluate how the performance of adjustment procedures varies with the amount of

data available.

C.2 Distribution Bias

Distribution bias measures how closely they estimate the population marginal distributions

of auxiliary variables used in weighting. For example, consider an auxiliary variable Z with

levels l = (1, . . . , Lz), and corresponding population totals tz1 , . . . , tzl , . . . , tzLz
, where tzl =∑N

j=1 I{zj = l}. Then, the proportion of the population made up by level l of Z is pzl =

tzl/
∑Lz

l=1 tl. The weighted estimator for pzl is

p̂wzl =

∑n
i=1wiI{zi = l}∑n

i=1wi

for a sample of units i ∈ (1, . . . , n).

We will define the distribution bias (DB) for a set of weights to be the sum of the squared
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Z βz

age 2.2362584
demo sexMale -2.3681210
demo age bucket60 to 64 -0.5221229
demo ethnicity full99-DNK/Refused -0.3310816
demo empl retired -0.6548054
demo empl unemployed 1.0396497
demo empl student -1.2736848
demo occupation04-admin 1.0748084
demo occupation99-DNK/Refused -0.6608140
demo educ collegeplus -0.7038866
demo educ highest full02-A Levels 1.8571014
demo educ highest full03-O Levels -0.6431069
demo educ highest full07-None 0.5751345
demo income bucket04-52k to 100k 2.3920356
demo hh size4 0.5362810
demo hh ownrent02-Own with mortgage -0.6211912
demo hh ownrent99-DNK/Refused 0.8182660
age sq 0.0915620
age:demo ethnicity full04-Mixed -1.6169544
demo age bucket50 to 54:demo empl disabled -0.7442275
demo ethnicity full05-Asian Indian:demo empl volunteer 2.0003787
demo ethnicity full06-Asian Bangladeshi:demo hh ownrent06-Rent free -2.2941626
demo empl retired:demo hh ownrent06-Rent free -1.1010164
demo empl disabled:demo occupation07-sales customer service 0.7285372
demo empl disabled:demo hh ownrent03-Rent from LA 1.5001765
demo occupation08-industrial:demo hh ownrent04-Rent private 1.7046601

Table 6: Missingness coefficients used in the simulation study.

bias of p̂wzl across all levels of all auxiliary variables:

DB(p̂wz) =
∑
z∈z

Lz∑
l=1

bias(p̂wzl)
2 (6)
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D Additional Figures and Tables

Figure 10: Bias in total brain volume. The x-axis shows the actual selection bias in the sample,
the y-axis shows the remaining bias once each adjustment procedure was applied.
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Figure 11: Bias of total brain volume by proportion sampled

Figure 12: Log median design effect of weights by average bias in total brain volume
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