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Novelty statement 

What is already known? 

Comorbid T2D and MDD is associated with poorer diabetic control and worse prognosis. 

What this study has found? 
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We demonstrate a strong complex relationship between MDD and diabetic control, 

influenced by diabetic medication and baseline HbA1c levels. We showed that individuals 

who develop MDD after their T2D diagnosis have greater variability in HbA1c levels over 

time. 

What are the implications of the study? 

This study shows the importance of closer monitoring of HbA1c in individuals with both 

T2D and MDD, particularly those who develop MDD after diabetes, to improve diabetic 

control and reduce complications associated comorbid T2D and MDD.  

 

 

Abstract  

Aims 

The aim of this study was to evaluate longitudinal associations between the mean and 

variability of HbA1c levels in individuals with type 2 diabetes (T2D) and major depressive 

disorder (MDD). 

 

Methods 

Individuals with T2D from the UK Biobank with linked primary care records were analysed. 

An HbA1c measurement within +/- 6-months of T2D diagnosis was taken as baseline, with 

subsequent HbA1c measurements used as the outcome in generalised least squares regression 

to evaluate longitudinal associations with a three-level MDD diagnosis variable (MDD 

controls, pre-T2D MDD cases and post-T2D MDD cases).  

 

Results 

Using 7,968 T2D individuals, we show that MDD has utility in explaining mean HbA1c 

levels (p=6.53E-08). This is attributable to MDD diagnosis interacting with baseline T2D 

medication (p=3.36E-04) and baseline HbA1c (p=2.66E-05), but not with time- when all else 

is equal, the temporal trend in expected HbA1c did not differ by MDD diagnosis. However, 

joint consideration with baseline T2D medication showed that each additional medication 

prescribed was associated with a +4 mmol/mol (2.5%) increase in expected HbA1c across 

follow up for post-T2D MDD cases, relative to pre-T2D MDD cases and MDD controls. 

Furthermore, variability in HbA1c increased across time for post-T2D MDD cases but 

decreased for MDD controls and pre-T2D MDD cases. 
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Conclusions  

These findings suggest closer monitoring of individuals with both T2D and MDD is essential 

to improve their diabetic control, particularly for those who develop MDD after T2D 

diagnosis. 

 

Key words: type 2 diabetes, depression, HbA1c, longitudinal, epidemiology  
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Introduction 

  

Major depressive disorder (MDD) and type 2 diabetes (T2D) represent two huge global 

health burdens. The risk of these conditions are intertwined: a diagnosis of T2D increases 

MDD risk, and similarly, those diagnosed with MDD have an increased risk of T2D. These 

bidirectional MDD-T2D associations confer substantial increased risks, with a meta-analyses 

demonstrating that adults with MDD had a 37% increased risk of developing T2D1, and a 

15% increased risk of incident MDD in people with T2D at baseline2. There is limited 

evidence about the causal nature of these associations, with some evidence using genetic 

methods that MDD causes T2D3. Further research is required to fully elucidate these 

mechanisms.  

 

Comorbid T2D and MDD are also associated with poorer prognosis.  MDD is associated with 

elevated risk of diabetic complications4. There is also some evidence that comorbid MDD 

and T2D is associated with higher suicide risk5. This presents a major clinical challenge due 

to both diseases exacerbating each other. The underlying mechanisms between these 

disorders and outcomes are still poorly understood, but could include lifestyle factors, non-

adherence to T2D treatment, use of antidepressant medication or genetic factors6.  Recent 

studies have highlighted the potential importance of genetics in the MDD-T2D relationship, 

with shared genetic loci between MDD and T2D identified via the genome-wide association 

studies (GWAS) of both traits7,8. 

  

Monitoring blood glucose is essential in T2D, with glycated haemoglobin (HbA1c) 

representing a reliable measure of chronic glycemia. Higher HbA1c levels correlate well with 

increased risk of long-term diabetic complications. Standard T2D monitoring in the UK 

involves HbA1c measured by a general practitioner (GP) every 3-6 months9, enabling disease 

progression monitoring and treatment decisions. Initial interventions to lower HbA1c values 

after a T2D diagnosis usually include lifestyle changes and dietary advice. However, if 

HbA1c levels remain high, treatment with metformin, a glucose lowering drug, will be 

considered, followed by an escalation of treatment intensity with increased dosage or 

different medication combinations9.  

  

Prior studies have shown clear support for the bidirectional association between MDD and 

HbA1c, but results are limited by the small effect sizes and study design10. Most studies are 
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cross-sectional, or only use a limited number of HbA1c measures, limiting the ability to infer 

temporality. Determining the impact of MDD on glycaemic control is crucial for ensuring 

appropriate clinical care is given to people with comorbid MDD and T2D. The UK Biobank 

(UKB) is a large multicentre study with phenotypic and genetic data collected in 500,000 

individuals. The availability of linked primary care data in the UKB provides a unique 

opportunity to perform extensive longitudinal modelling of HbA1c in people with T2D, with 

information on MDD diagnoses. We will investigate the impact of MDD on HbA1c levels in 

people with T2D using extensive follow-up, testing the following hypotheses: 

1. Is there any association between MDD and expected HbA1c? 

2. Do temporal trends in expected HbA1c differ by MDD status? 

3. Do any additional variables influence the relationship between MDD and expected 

HbA1c? 

4. Do temporal trends for within-subject variability of HbA1c differ by MDD status? 

Longitudinal modelling will include widely available sociodemographic and clinical factors, 

together with polygenic risk scores for MDD to assess the impact of genetic factors.  
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Methods 

Data 

The UKB is a prospective population study of ~500,000 individuals recruited in mid-life 

(aged 40-70 years) from across the United Kingdom between 2006 and 201011. Linked 

primary care records are available for ~230,000 individuals (46%) and include coded clinical 

events, routinely collected blood test results and drug prescriptions, providing patient 

information across time12. Ethical approval was granted by the NHS North West Research 

Ethics Committee (REC reference 11/NW/0382). Written informed consent was obtained 

from all participants. This study was restricted to UKB participants with primary care 

records, at least two valid HbA1c measurements, a T2D diagnosis and T2D diagnosis date 

(17,689 individuals, 302,663 HbA1c observations). Figure 1 shows how this sample was 

generated. Participants included in the longitudinal analysis of HbA1c required a baseline 

HbA1c measurement, occurring within a +/- 6-month window of T2D diagnosis (13,024 

individuals). In the primary analysis of HbA1c and MDD, we excluded MDD cases missing 

time of MDD diagnosis (7,968 individuals with 115,861 HbA1c observations). In the 

secondary analysis of HbA1c and MDD PRS, we excluded individuals missing PRS (9,365 

individuals with 141,095 HbA1c observations). 

 

Type 2 diabetes (T2D) 

T2D was defined as any two of the following: a primary care diagnosis code for T2D, an 

ICD9/ICD10 diagnosis code for T2D, any HbA1c measurement ≥ 48 mmol/mol (6.5%), any 

prescription for glucose lowering medication, or a self-reported diagnosis for T2D, with 

diagnosis date as the earliest occurrence. Diagnostic codes for primary care and hospital 

episodes statistics are given in Supplementary Tables (ST) 1 and 2. Details on exclusion 

criteria are shown in Supplementary Methods (SM) 1. Supplementary Figure 1 shows the 

contributions of each input phenotype for T2D, and their overlap. To validate this definition 

of T2D diagnosis, we tested whether polygenic risk scores (PRS) for T2D based on Scott et al 

(2017)18 predicted our T2D diagnosis (see SM 7). 

Diabetic medication 

We created a medication variable to define the type of glucose lowering medication a patient 

was using at the time of each HbA1c measurement (up to three months prior to the HbA1c 

measurement). This variable, included as a continuous covariate, ranged from 0-3 to indicate 

the intensity of treatment, with 0 defined as ‘no medication’, 1 as ‘metformin or a single 
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medication’, 2 as ‘two medications’, and 3 as either ‘3 or more medications’ or ‘insulin’. SM 

2 and ST 3 provides further detail on medication extraction.  

 

Outcome 

The outcome measure was HbA1c (mmol/mol). We considered all UKB participants with 

T2D, primary care records and at least two valid HbA1c measurements (see SM 3, with 

HbA1c codes provided in ST 4). Longitudinal modelling for HbA1c required individuals to 

have a baseline HbA1c measurement, occurring within a +/- 6-month window of T2D 

diagnosis. This baseline measurement was included as a covariate, with subsequent HbA1c 

measures used as outcome variables. Time was defined as time since baseline (approximate 

T2D diagnosis date). All HbA1c measurements were standardised using the baseline sample 

mean and SD. 

 

MDD 

A MDD factor with three-levels, incorporating timing of onset in relation to T2D diagnosis, 

was the main variable of interest in the primary analysis. MDD was defined based on Fabbri 

et al (2021)15 (SM 4). Within the analysis sample, there were 1,729 MDD cases and 7,781 

MDD controls. MDD status and diagnosis date were then used to create the following three 

groups:  

1. MDD Controls (individuals with T2D without MDD)  

2. A pre-T2D MDD group (individuals with T2D and MDD prior to their T2D diagnosis) 

3. A post-T2D MDD group (individuals with T2D and MDD after their T2D diagnosis).  

Within the secondary analysis, MDD PRS was the main variable of interest. MDD PRS were 

created from MDD GWAS summary statistics using PRS-CS16, as described by Pain et al 

(2021)17.  

 

Covariates 

In both the primary and secondary analyses, additional covariates include: time since baseline 

for each HbA1c measure (time), assessment centre, sex, year of birth, age at baseline, year of 

baseline measurement, baseline HbA1c, baseline medication and change in medication from 

baseline, with baseline referring to approximate T2D diagnosis date. To allow for a non-

linear relationship with HbA1c, time was modelled using a restricted cubic spline with four 

knots (SM 9). ST 5 details all included covariates.  
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Statistical analysis 

Primary analysis 

Longitudinal modelling of HbA1c was performed using generalised least squares (GLS) 

regression, a type of growth curve model which extends the linear model to allow within-

subject dependence20. GLS regression jointly estimates a mean model and a covariance 

model, which allowed us to test our four primary hypotheses (outlined below). MDD 

diagnosis group was fitted in the mean model as a main effect (2 df), and in two-way 

interactions with five covariates: sex (2 df), baseline HbA1c (2 df), time (6 df), baseline 

medication (2 df) and medication change from baseline (2 df). The MDD control group (T2D 

with no MDD) was used as the reference. To account for correlation between repeated 

HbA1c measures in the same individual we used a continuous-time autoregressive 1 error 

structure. Within-subject variance at a given observation was modelled as a function of time, 

which could vary by MDD diagnosis group. Full details of the GLS modelling are in SM 8. 

Hypotheses 1-3 utilised Wald chi-square tests to assess the evidence that various MDD-

related mean model parameters in the unrestricted/full model can be constrained to zero. 

Hypothesis 4 used likelihood ratio tests to compare the goodness of fit of nested GLS 

covariance models. Analysis was performed using R version 4.4.1, with the rms package21 

used for GLS modelling and ggplot222 for graphics. In total, across all four primary 

hypotheses, 25 tests were performed, therefore a Bonferroni-corrected significance threshold 

of 0.05/25=0.002 was used. 

Hypothesis 1: Any association between MDD and expected HbA1c? This was tested using the 

joint null of all MDD diagnosis group-related effect sizes (main and interactions) in the mean 

model being equal to zero (16 df).  

Hypothesis 2: Do temporal trends in expected HbA1c differ by MDD group? This was tested 

using the joint null of no interaction between time and the MDD diagnosis groups (6 df).  

Hypothesis 3: Do any additional variables influence the relationship between MDD and 

expected HbA1c? In addition to time, the mean model contained interactions between MDD 

diagnosis group and sex, baseline HbA1c, baseline medication and change in medication 

from baseline. Each of these four interactions were tested in turn using the joint null of no 

interaction (four tests, each with 2 df).  

Additional mean model hypothesis tests. The above are all joint hypothesis tests with effect 

size estimates for the pre-existing and the post-T2D MDD groups being tested together. To 

assess if associations are MDD diagnosis group-specific we performed univariate testing of 
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no effect for each MDD diagnosis group-related model parameter in turn (main effects and 

interactions) via 16 two-sided t-tests.  

Hypothesis 4: Do temporal trends in within-subject variability of HbA1c differ by MDD 

group? The covariance model allows within-subject variability in HbA1c to change over 

time. This trend can differ by MDD diagnosis group, with separate covariance model 

parameters being estimated for each group (MDD controls, the pre-T2D MDD group and 

post-T2D MDD group). To assess whether within-subject variability across time differed by 

MDD diagnosis group we tested three hypotheses- that there was no difference in the trend in 

variability across time between MDD diagnosis groups (all parameters equal versus 

otherwise), that the MDD post-T2D group had a different trend compared to the other two 

groups pooled, and similarly for the MDD pre-T2D group. Full details are provided in SM 

8.1.3. 

  

A sensitivity analysis, treating MDD diagnosis as a time-varying covariate, was performed to 

ensure that results were not driven by the three-level MDD definition used. We defined 

prevalent MDD as present/absent at each HbA1c observation, so that the post-T2D MDD 

group were classified as MDD cases from their MDD diagnosis date, and not from T2D 

diagnosis date. Results support the primary analysis and are therefore not discussed further. 

Full details are given in Supplementary Analyses note.   

 

Secondary analysis 

GLS regression was also used to assess associations between MDD PRS and HbA1c using 

the available longitudinal sample. The analysis followed parallel to the structure of the four 

hypotheses tested in the primary analysis but using the continuous MDD PRS instead of 

MDD diagnosis groups. Further details are provided in SM 8.2.   
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Results 

 

The UKB sample consisted of 17,689 individuals with T2D and at least two HbA1c 

measurements (39% female, mean age of 59 years (SD: 7 years) at first observation). The 

average age at T2D diagnosis was 57 years (SD: 10 years). The sample was split into three 

MDD diagnosis groups (N control: 6,523, N pre-T2D MDD: 1,144, N post-T2D MDD: 301). 

The post-T2D MDD group had on average more HbA1c measurements, higher average 

HbA1c and an earlier age at T2D diagnosis (Table 1). PRS for T2D predicted T2D diagnosis 

based on the previously described definition (p<5.95E-188, R2 ~2%, ST 6). 

 

Primary analysis 

MDD diagnosis is associated with HbA1c (hypothesis 1)  

GLS mean model results show strong evidence of association between MDD diagnosis group 

and expected HbA1c, demonstrated by significant evidence against the composite null of no 

MDD diagnosis group effect (p=6.53E-08; Table 2).  

 

Temporal trends in expected HbA1c do not differ by MDD diagnosis (hypothesis 2)  

When all else is equal, the trend in expected HbA1c over time does not differ by MDD 

diagnosis group, demonstrated by no evidence against the null that the model parameters for 

the time-by-MDD diagnosis group interaction equal zero (p=7.43E-01; Table 2). Expected 

HbA1c had a non-linear relationship with time (p<1E-266), including significant interactions 

between time and baseline HbA1c (p<1E-266), baseline medication (p=3.49E-07) and 

medication change since baseline (p<1E-266). See ST7 and Supplementary Figures 2-4 for 

details. 

 

The impact of MDD diagnosis on expected HbA1c is driven by interactions with 

baseline medication and baseline HbA1c (hypothesis 3)  

The interaction between MDD diagnosis group and baseline medication is useful in 

explaining expected HbA1c levels (p=3.36E-04, Table 2). This result is driven by the post-

T2D MDD group, which had a significant increase in expected HbA1c relative to the control 

MDD group (effect size: 0.22, 95% CI: [0.10, 0.34], p=3.19E-04). In contrast, the pre-T2D 

MDD group did not differ from the controls (effect size: -0.06, 95% CI: [-0.14, 0.02], 

p=1.57E-01). Results suggest a 0.22 increase in expected standardised HbA1c from each 
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additional medication at baseline compared to the controls and pre-T2D MDD cases. This is 

equivalent to a 4 mmol/mol (2.5%) increase in unstandardised HbA1c (Figure 2). 

 

A significant interaction between MDD diagnosis group and baseline HbA1c was also 

observed in the mean model for HbA1c (p=2.66E-05, Table 2). Statistical significance here is 

attributable to the pre-T2D MDD group (p=3.46E-05), with no difference observed between 

the post-T2D MDD group and MDD controls (p=2.14E-02). However, the effect size 

estimates are similar for the two MDD groups (0.052, 95% CI: [0.03-0.08] for the pre-T2D 

MDD group; 0.048, 95% CI: [0.01-0.09] for the post-T2D MDD group), implying that the 

non-significant post-T2D MDD result may be driven by this groups lower sample size. The 

model suggests that a 1 unit increase in standardised baseline HbA1c is associated with a 0.88 

mmol/mol (2.2%) increase in expected HbA1c for pre-T2D MDD cases compared to 

controls, and a 0.81 mmol/mol (2.2%) increase for post-T2D MDD cases.  

 

Residual variability in HbA1c increased across time for post-T2D MDD cases 

(Hypothesis 4) 

There was strong evidence that the residual variability in HbA1c differed by MDD group 

(p=8.33E-185). Results show that variability increased across time for post-T2D MDD group 

(effect size 0.028, 95% CI [0.025,0.031]). In contrast, no differences between the pre-T2D 

MDD cases and T2D MDD controls were observed (ST 8A-B), with variability estimated to 

decrease over time for these patients (effect size –0.007, 95% CI [-0.008, -0.006]). These 

covariance model results are presented in Figure 3. 

 

 

Secondary analysis 

In the secondary analyses, parallel modelling for hypotheses 1-4 were performed using MDD 

PRS instead of the three MDD groups. The sample size available for this analysis was 9,395, 

and a Bonferroni-corrected p-value threshold of 0.05/11=0.0045 was utilised to correct for 

multiple testing. There was no evidence for any association between the MDD PRS and 

expected HbA1c (p=6.06E-02, hypothesis 1) or of a temporal association with expected 

HbA1c via an interaction between MDD PRS and time (p=1.57E-01, hypothesis 2). No 

significant interactions were observed between MDD PRS and additional covariates in the 

mean model (hypothesis 3; Table 3 and ST 9). The analysis of a temporal association 

between the MDD PRS and residual variability in HbA1c (hypothesis 4) showed evidence 
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that variability in HbA1c is a function of MDD PRS in addition to time (p=6.30E-06). 

Residual variability within an individual is expected to decrease over time, and this decrease 

is estimated to be faster for individuals with higher MDD PRS values (see ST 10 and 

Supplementary Figure 5).   

 

Discussion 

 

To test the hypothesis that people with both T2D and MDD have poorer diabetic control, and 

therefore a higher likelihood of further complications, this study examined whether T2D 

patients with MDD have higher, and more variable, HbA1c values over time compared to 

T2D MDD controls. Based on our longitudinal modelling, we show that there is a strong, 

complex relationship between MDD and expected HbA1c in T2D patients, driven primarily 

by interactions between MDD and both the type of diabetic medication at baseline and 

baseline HbA1c. Given the mean model, the within-subject variability in HbA1c decreases 

over time for MDD controls and pre-T2D MDD cases, whilst the variability in post-T2D 

MDD cases increases over time. 

 

In this study we have fitted complex longitudinal models to model the role of MDD in 

glycaemic control. We demonstrate that considering the timing of MDD onset relative to T2D 

is crucial. Our models suggest greater variability in HbA1c measures in individuals 

diagnosed with MDD post T2D onset. Higher HbA1c variability is associated with higher 

likelihood of adverse outcomes, including microvascular disease23. These findings therefore 

have important clinical implications and need to be further investigated to ensure public 

health and clinical advice for patients is tailored appropriately. Future work will focus on 

using a continuous measure capturing the time between the MDD and T2D onset to enable a 

more thorough understanding of its role in glycaemic control. This will provide more 

nuanced messaging for clinicians to determine if all patients diagnosed with MDD post T2D 

onset need closer monitoring or whether there is a more specific time window which is 

crucial for glycaemic control.    

 

Our findings suggest that for those diagnosed with MDD post T2D who are on more diabetic 

medication at baseline, their HbA1c increases, compared to pre-T2D diagnosis of MDD or 

controls (Figure 2). This suggests that individuals with less well controlled T2D (i.e. taking 

more medications) who are subsequently diagnosed with MDD need more careful monitoring 
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of their blood glucose and management strategies to help alleviate any adverse consequences 

of the MDD diagnosis. Further we demonstrate that a prior diagnosis of MDD and higher 

baseline HbA1c results in higher expected HbA1c values compared to T2D patients without 

MDD. This may suggest that individuals with pre-existing MDD and poorer glycaemic 

control at baseline (demonstrated by higher HbA1c) will have higher HbA1c values over time 

compared to non-depressed T2D patients with equally poor glycaemic control. These 

individuals would therefore benefit from closer monitoring for T2D onset and/or potential 

interventions and education to lower their risk of developing T2D.  

 

The relationship between MDD and T2D is highly complex, especially when the temporality 

is considered, with prevalent MDD episodes hypothesised to have a greater effect on 

glycaemic control. These results confirm this by showing greater within-subject variability in 

the post-T2D MDD group. While we cannot make any definitive claims about whether these 

individuals were in a prevalent depressive episode during the HbA1c measurement, they did 

visit their GP after their T2D diagnosis and had a MDD code recorded, indicating some level 

of elevated depressive symptoms. There are multiple pathways that could (partly) explain this 

association, in particular behavioural pathways. Several studies have shown that patients with 

both MDD and T2D have worse T2D self-management, are less able to keep the medical 

appointments, are physically less active and unable to adhere to dietary requirements, 

possibly leading to hyperglycaemia24–26. Our study goes beyond previous studies to highlight 

the importance of the timing of diagnoses, highlighting the possible need for targeted 

interventions based on clinical history. Our findings suggests that patients with poorly 

controlled/highly medicated T2D need closer monitoring for the onset of MDD, which could 

exacerbate glycaemic control further and increase the likelihood of adverse downstream 

outcomes.  

 

The lack of association between the MDD PRS and diabetic control could be due to several 

reasons. While it is possible there truly is a limited genetic effect, which would support a 

more behavioural pathway between MDD and diabetic control, it is more likely due to a lack 

of power to detect an effect in this relatively small sample. One should therefore interpret 

these results with caution and perform replication in future studies with larger sample sizes 

prior to drawing any conclusions. 
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There are several limitations with this study design. Firstly, primary care data, such as used in 

this study, are collected as and when patients visit their GP, which could lead to an 

overrepresentation of less healthy individuals. However, this study focusses on individuals 

diagnosed with T2D who are regularly seen by their GP and will therefore have similar 

amounts and types of data recorded.  

 

A further limitation relates to the validity of the age at MDD onset variable. Here, this 

variable is based on the date of the first record with a MDD diagnostic code. The average 

MDD onset is around 30 years, therefore the lack of records before 1990 means that for older 

individuals the validity of their MDD onset cannot be ensured. This study should therefore be 

replicated in a different sample, such as the Clinical Practice Research Datalink, which has 

GP records going back to 1987 and does not have a specific age range27, although it lacks 

genetic data which means any genetic analysis could not be replicated.  

 

Our approach here did not enable causal inference, but future work should use genetic 

approaches to tease apart the causal role of MDD on T2D and vice versa in more detail. For 

example, testing if MDD causes a greater variability in HbA1c over time in individuals with 

T2D.  

 

HbA1c is not only influenced by one’s history of MDD or being a prevalent MDD case, but 

one’s current MDD status as well. While the current study did not focus on current MDD 

status per se, this work could be used in future to examine the impact of an active MDD 

episode on variability in HbA1c. Previous research has shown that antidepressant medication 

can lead to weight gain28, which can in turn negatively affect HbA1c levels29. It is therefore 

highly relevant to also include antidepressant medication in any follow up analysis, to test 

whether this could lead to increased variability in HbA1c levels. 

 

To conclude, in this study we utilised primary care records in the UKB to look at HbA1c 

levels over time to test the longitudinal association between MDD and T2D. We found a non-

linear trend in HbA1c over time and showed interactions between baseline medication and 

MDD as well as baseline HbA1c and MDD. People with MDD after T2D onset had greater 

variability in HbA1c over time. Our findings not only suggest that closer monitoring of 

individuals with comorbid MDD and T2D is essential, as they have poorer glycaemic control 

than non-depressed individuals, but also highlight the need for considering the relative timing 
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of T2D and MDD onset. Regular monitoring and education of individuals with a) T2D for 

MDD onset and b) MDD for T2D onset may help to reduce comorbid T2D and MDD. Future 

work needs to develop strategies to improve diabetic control in individuals with MDD, 

possible via behavioural changes to diet and lifestyle, thus improving their quality of life. 
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Table 1. Descriptive statistics, stratified by diagnosis of depression  

 Full  
sample 

Analysis 
sample 

No 
depression 

Pre-
diabetes 

depression 

Post-
diabetes 

depression 

N 17,689 7968 6523 1144 301 

Mean age at first 
observationa (years) 
(SD) 

57.22 (7.78) 60.56 (7.81) 60.87 (7.82) 59.85 
(7.38) 

55.64 (7.47) 

% female 
 

39% 36% 32% 56% 47% 

Mean number of HbA     
1c measurements (SD) 

     22 (16) 13 (10) 13 (10) 13 (10) 21 (11) 

Mean HbA1c value 
(mmol/mol) (SD) 

55.17 (10.62) 54.08 (10.13) 53.98 (10.03) 53.49 
(10.04) 

56.83 
(11.08) 

Mean time difference 
between measurements 
(weeks) 

41 (48) 29 (16) 29 (17) 27 (14) 27 (9) 

Mean age at T2D 
diagnosis (years) (SD) 

57.36 (9.66) 59.68 (7.77) 59.99 (7.79) 59.14 
(7.33) 

54.89 (7.45) 

Mean HbA1c at T2D 
diagnosis (mmol/mol) 
(SD) 

58.35 (18.24) 55.60 (16.71) 55.75 (16.85) 54.08 
(15.15) 

55.92 
(16.87) 

Mean follow-up time 
since baseline (years) 
(SD)b,c 

9.66 (7.46)d 6.93 (4.23) 6.91 (4.22) 6.19 (4.00) 10.10 (3.83) 

a: First observation relating to the first Hba1c measure of an individual in the dataset. b: baseline 
refers to approximate time of T2D diagnosis. c: for reliability of modelling (due to data availability) 
plots included in this study only include the first 10 years of follow-up. d: the mean follow-up time is 
based on 17,335 individuals, this reduction occurs after removing observations with a minimum 
follow-up >= 0 (at or after T2D diagnosis), and those with < 2 observations. 
 
Table 2. Depression diagnosis group parameter estimates and hypothesis tests for the GLS 
mean model of HbA1c. Depression controls are the reference group. 
    Joint 

p-valuec Terma Estimate (95% CI) p-valueb 

Main effect  
Pre-existing depression 0.00 (-0.07,  0.06) 9.38E-01  

Post-diabetes depression -0.10 (-0.22, -0.01) 8.48E-02  
Sex interaction 5.45E-02 

Pre-existing depression 0.04 (-0.01,  0.09) 9.24E-02  
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Post-diabetes depression 0.08 ( 0.00,  0.17) 6.19E-02  
Time interactions 7.43E-01 
Time function 1 interaction  

Pre-existing depression -0.01 (-0.05,  0.02) 4.31E-01  
Post-diabetes depression 0.03 (-0.03,  0.09) 3.08E-01  

Time function 2 interaction  
Pre-existing depression 0.08 (-0.10,  0.26) 4.00E-01  

Post-diabetes depression -0.08 (-0.41,  0.24) 6.05E-01  
Time function 3 interaction 

Pre-existing depression -0.16 (-0.55,  0.23) 4.21E-01  
Post-diabetes depression 0.14 (-0.56, 0.84) 6.98E-01  

Baseline HbA1c interaction 2.66E-05 
Pre-existing depression 0.05 ( 0.03,  0.08) 3.46E-05  

Post-diabetes depression 0.05 (0.01,  0.09) 2.14E-02  
Medication at baseline interaction 3.36E-04 

Pre-existing depression -0.06 (-0.14,  0.02) 1.57E-01  
Post-diabetes depression 0.22 ( 0.10,  0.34) 3.19E-04  

Medication change from baseline interaction 4.79E-02 
Pre-existing depression 0.01 (0.00, 0.02) 2.84E-01  

Post-diabetes depression 0.01 (0.00, 0.02) 1.76E-01  
     
Any depression diagnosis group effect (main effects and interactions) 6.53E-08 
a: GLS model adjusts for the following main effects and two-way interactions: sex, assessment centre, year of 
birth, year of T2D diagnosis, age at T2D diagnosis, time (restricted cubic spline, 4 knots), baseline HbA1c 
(hba1c_base), medication at baseline (med_base), change in medication from baseline (med_change), 
sex*hba1c_base, sex*time, hba1c_base*time, hba1c_base*med_base, hba1c_base*med_change, 
time*med_base and time*med_change. b: two-sided t-test with null ��: �� � 0 (single parameter tested). c: 

joint null hypothesis ��: � � 0  versus ��: � � 0   (multiple parameters tested) outputted from anova function 

within rms. P-values in bold are < 0.05/25. 
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Figure 2. GLS mean model interaction between diabetic medication at baseline and 
depression diagnosis group. Assuming all else is equala, this figure plots expected HbA1c 
across time stratified by sex, MDD diagnosis group and medication at baseline, and shows 
that individuals diagnosed with depression after their T2D diagnosis who received any 
diabetes medication at baseline are expected to have higher HbA1c values across follow-up 
compared to T2D patients with no, or a pre-existing depression diagnosis, also prescribed 
medication at baseline. This relationship is more pronounced for males than for females and 
is not observed for individuals who received no diabetes medication at baseline.  
a. Additional covariates fixed in plot: assessment centre at centre 11010 (mode), year of birth at 1948 
(median), year of baseline at 2009 (median), age at baseline at 59.7 years (median), HbA1c at baseline 
at 52 mmol/mol (median) and no change in medication from baseline. 
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Figure 3. Within-individual variability in standardised HbA1c (Variance) across time since 
baseline, by MDD diagnosis group (primary analysis) with 95% CIs (shaded region).  

Variance = ��	
� �2���1 � �������	
��� 	
� �2����������	
��� , where � is time since baseline (years), 

�������	
 is an indicator variable which equals 1 for group of interest is the post-T2D MDD group, and 0 

otherwise, � is the residual standard error, �� is the covariance model parameter for controls and pre-T2D MDD 
group, and �� is the covariance model parameter for the post-T2D MDD group (see Supplementary Methods 8 

for details). Estimated model parameters: ���, ���, ����=�0.778, �0.007, 0.028�. 

 
 
Table 3. Polygenic risk score (PRS) parameter estimates and hypothesis tests for the GLS 
mean model for HbA1c. 
    Joint 

p-valuec Terma Estimate (95% CI) p-valueb 

Main effect  
MDD PRS -0.01 (-0.03,  0.01) 4.77E-01  

Interaction between MDD PRS and Time: 1.57E-01 
Time function 1 interaction 0.01 ( 0.00, 0.02) 1.69E-01  
Time function 2 interaction -0.02 (-0.07, 0.04) 4.86E-01  
Time function 3 interaction 0.03 (-0.08, 0.15) 5.73E-01  
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Interaction between MDD PRS and:  
Sex -0.01 (-0.02,  0.01) 2.37E-01  

Baseline HbA1c 0.00 (-0.01,  0.00) 5.52E-01  
Medication at baseline 0.02 ( 0.00,  0.04)  1.16E-02  

Medication change from baseline 0.00 ( 0.00,  0.00) 3.18E-01  
     
Any MDD PRS association (main effect and interactions) 6.06E-02 
a: GLS model adjusts for the following main effects and two-way interactions: sex, assessment centre, year of 
birth, year of T2D diagnosis, age at T2D diagnosis, time (restricted cubic spline, 4 knots), baseline HbA1c 
(hba1c_base), medication at baseline (med_base), change in medication from baseline (med_change), 
sex*hba1c_base, sex*time, hba1c_base*time, hba1c_base*med_base, hba1c_base*med_change, 
time*med_base and time*med_change. b: two-sided t-test with null ��: �� � 0 (single parameter tested). c: 

joint null hypothesis ��: � � 0  versus ��: � � 0   (multiple parameters tested) outputted from anova function 

within rms. There are no significant p-values (< 0.05/10). 

 
 


