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Algorithmic Fairness and Bias Mitigation for Clinical Machine Learning:
Insights from Rapid COVID-19 Diagnosis by Adversarial Learning

Jenny Yang, Andrew A. S. Soltan, Yang Yang, and David A. Clifton

Abstract— Machine learning is becoming increasingly promi-
nent in healthcare. Although its benefits are clear, growing at-
tention is being given to how machine learning may exacerbate
existing biases and disparities. In this study, we introduce an
adversarial training framework that is capable of mitigating biases
that may have been acquired through data collection or mag-
nified during model development. For example, if one class is
over-presented or errors/inconsistencies in practice are reflected
in the training data, then a model can be biased by these. To
evaluate our adversarial training framework, we used the statis-
tical definition of equalized odds. We evaluated our model for
the task of rapidly predicting COVID-19 for patients presenting to
hospital emergency departments, and aimed to mitigate regional
(hospital) and ethnic biases present. We trained our framework
on a large, real-world COVID-19 dataset and demonstrated that
adversarial training demonstrably improves outcome fairness (with
respect to equalized odds), while still achieving clinically-effective
screening performances (NPV>0.98). We compared our method
to the benchmark set by related previous work, and performed
prospective and external validation on four independent hospital
cohorts. Our method can be generalized to any outcomes, models,
and definitions of fairness.

Index Terms— machine learning, diagnosis, bias mitiga-
tion, algorithmic fairness, covid-19, adversarial learning

I. INTRODUCTION

A. Background

A fundamental observation in machine learning research is that
models are susceptible to biases present in training data, and that
these biases can lead to poorer model outcomes and unfair decision-
making. Here, an “unfair” decision refers to any outcome that
is skewed towards a particular group or population [1]. This is
particularly harmful in sensitive domains such as healthcare, as it
not only leads to inaccurate predictions, but also propagates existing
healthcare inequities and may compromise patient trust.

If a machine learning model acquires unintentional biases, it may
be unable to capture the true relationship between the features and
the target outcome, resulting in poorer model performance. Thus,
bias mitigation can help a model generalize better across different
populations and groups, resulting in a stronger classifier.

In addition to training a stronger classifier, bias mitigation is also
relevant for the purpose of model fairness. As achieving general-
izability often requires large datasets, many health-related projects
may integrate datasets from multiple hospitals or institutions in order
to increase the amount of data available for training. However,
even if each respective dataset contains the same features, there
is vast literature discussing minor and substantial disparities in
health and healthcare practice across different geographic regions.
Namely, disease prevalence/mortality, quality of healthcare services,
and specific devices used (e.g. blood analysis devices) varies widely
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across hospitals in different regions. This heterogeneity has been
acknowledged worldwide and has been examined for a range of
medical conditions and diseases [2]-[4], as well as different drivers of
healthcare quality [2], [5]. If these types of biases become reflected
in a model’s decisions, then certain hospitals could be unintentionally
isolated for exhibiting poorer outcomes, further widening interre-
gional and interhospital inequality gaps, and also adversely affect
model performance.

Health inequalities related to demographic biases such as sex,
gender, age, and ethnicity, can also exist. For example, in terms of
gender bias, physicians have been found to have an unconscious bias
for ascribing the symptoms of coronary heart disease (CHD) among
women to some other disorder [6]; and when the same proportion
of women and men presented with chest pain, an observational
study found that women were 2.5 times less likely to be referred
to a cardiologist for management [7]. Similarly, it was shown that
physicians tended to ask fewer diagnostic questions and prescribe
the fewest CHD-related medications to middle-aged women [8]. In
terms of ethnic bias, a systematic review of USA-based studies found
that in the emergency room, black patients were 40% less likely to
receive pain medication than white patients [9]. When such biases
are present in training data or acquired during training, models have
been found to perform unequally across different patient populations
[10], and even negatively impact those in underrepresented groups
[11]. For example, if a model was designed to determine who to
prescribe CHD-related medications, men might be selected to receive
the majority of them, further deepening inequities in healthcare.

For the purposes of our study, we developed two machine learn-
ing models that are unbiased towards different sensitive features –
hospitals in different geographic regions and patients of different
ethnicities. We focused on this problem in the context of rapid
COVID-19 diagnosis; however, the methods described can be ap-
plied to many other scenarios where machine learning model are
used to support decision-making. We compare our method to the
benchmark set by XGBoost-based models [12], [13], and evaluate
the generalizability of our models by performing prospective and
external validation across emergency admissions to four independent
UK National Health Service (NHS) Trusts.

B. Related Works

The COVID-19 pandemic has highlighted the importance of data
collaborations in order to rapidly respond to evolving and widespread
global challenges. Recently, researchers showed that federated learn-
ing (FL) could effectively predict clinical outcomes of COVID-19,
using combined data from multiple sites [14]. They found that FL
could achieve high performance while maintaining data anonymity.
Although FL can help remove some barriers to data sharing, it does
not guarantee privacy, as model parameter updates can be used to
infer sensitive information [15]. In our study, instead of focusing
directly on privacy preservation, we focused on model fairness and
bias mitigation. This is complementary to privacy preservation. For
example, some locations/datasets may have very few patients of a
given demographic, and thus, if a machine learning model is biased
against this group, there is an increased probability of identifying
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these patients. To train fair and unbiased models, we applied a
novel machine learning technique known as adversarial debiasing,
where a model is trained to learn parameters that do not infer
sensitive features. This technique has been used to develop models
that output fair predictions, and has previously been successful in
reducing gender (male versus female) bias in salary prediction [16],
[17] and ethnicity (black vs white) bias in recidivism prediction [18].
There is currently no published research on the utility of adversarial
debiasing in a clinical context. Additionally, all published adversarial
debiasing research, thus far, has focused exclusively on debiasing
binary attributes. However, in many real-world applications, it is
often necessary to preserve a higher degree of granularity, as binning
may not be biologically accurate and is heavily biased on the sample
population. Therefore, through our study, we hope to encourage and
demonstrate the effectiveness of adversarial debiasing on a wider
range of prediction tasks and demographic features. To summarize,
our main contributions in this paper are as follows:

• We propose a neural network-based framework based on ad-
versarial debiasing that is capable of effectively determining
COVID-19 status, while mitigating biases.

• We provide the first demonstration of adversarial debiasing in
a clinical context, and evaluate its effectiveness across two
different tasks - debiasing patient ethnicity and hospital location.

• We compare our results with the related previous work by Soltan
et al. (2022) and perform external and prospective validation
across four independent UK NHS hospital trusts, demonstrating
the generalisability of our method.

II. METHODS

We trained neural network models to predict the COVID-19 status
for patients attending hospital emergency departments (ED). Soltan et
al. (2021) previously introduced an XGBoost-based machine learning
pipeline for identifying patients with COVID-19 using blood tests,
blood gas testing, and vital signs. They found that machine learning-
based screening tests – CURIAL-1.0 [12] and CURIAL-Rapide/-Lab
[13] – could rapidly detect COVID-19 amongst patients presenting
to ED, and performed effectively as tests-of-exclusion (quick iden-
tification of patients who are most likely to test negative) during
external validation across three NHS trusts. We aimed to build upon
this existing work, developing the models with adversarial methods
to effectively accomplish the same task, with the added capability of
mitigating biases.

A. Feature Set and Model Architecture
To train and validate our models, we used clinical data with linked,

deidentified demographic information for patients across four hospital
groups – Oxford University Hospitals NHS Foundation Trust (OUH),
University Hospitals Birmingham NHS Trust (UHB), Bedfordshire
Hospitals NHS Foundations Trust (BH), and Portsmouth Hospitals
University NHS Trust (PUH). We performed prospective validation
for patients presenting to OUH, and external validation for patients
admitted to BH, PUH, and UHB.

For each of the models, a training set was used for model
development, hyperparameter selection, training, and optimization;
and after successful development and training, test sets were then
used to evaluate the performance of the final models. How the data
were split are detailed in following sections.

To better compare our results to the benchmark set by the CURIAL
models, we used a similar set of features to CURIAL-Lab, which used
a focused subset of routinely collected clinical features. These include
blood tests (FBC, U&Es, liver function tests, CRP) and vital signs,
excluding the coagulation panel and blood gas testing, which are not

TABLE I
Clinical predictors considered. (ALT=alanine aminotransferase.

CRP=C-reactive protein. eGFR=estimated glomerular filtration rate)
Category Features

Vital Signs Heart rate, respiratory rate, oxygen satu-
ration, systolic blood pressure, diastolic
blood pressure, temperature

Full Blood Count
(FBC)

Haemoglobin, haematocrit, mean cell
volume, white cell count, neutrophil
count, lymphocyte count, monocyte
count, eosinophil count, basophil count,
platelets

Urea & Electrolytes
(U&Es)

Sodium, potassium, creatinine, urea,
eGFR

Liver Function (LF)
Tests & CRP

Albumin, alkaline phosphatase, ALT,
bilirubin, CRP

performed universally and are less informative [13]. However, unlike
CURIAL-Lab, we did not include the type of oxygen delivery device
as a feature. This was because it was not ranked as highly important
for COVID-19 prediction, as determined by SHAP analysis [12] and,
as neural networks evaluate features heavily on their variability with
respect to other variables, we wanted to use a feature set consisting
of entirely continuous variables to avoid potential optimization and
convergence issues. Table I summarizes the final features included.

The adversarial debiasing architecture consists of two individual
networks – a predictor network, P , and an adversary network, A
(Fig. 1). P and A are each a multilayer perceptron (MLP) – the
simplest form of a neural network. Here, P is trained to predict
COVID-19 status, given a set of clinical features. Its raw output, ŷ
– the predicted probability score, and the true label, y, are then used
as the input to A, which tries to predict z. For our purposes, z is
either hospital location or ethnicity (in machine learning literature, z
is often referred to as the “protected feature”).

Our goal is to train P to predict y effectively, regardless of the
demographic membership of z. Thus, we want P to be able to
accurately predict y, and A to poorly predict z, as this suggests that
P has been trained in such a way that debiases ŷ with respect to
z. We use cross-entropy loss (and binary cross-entropy loss when
the feature is binary), where LP represents the loss for P , and LA

represents the loss for A.
For P to be good at predicting y while being unbiased towards z,

P is typically trained to balance the trade-off between the two losses.
This is achieved using the combined loss function:

L = LP –αLA, (1)

where α is an adjustable hyperparameter that signifies the importance
of debiasing with respect to the protected feature, z. This combined
function encourages P to minimize LP while maximizing LA.
However, to ensure that P never propagates in a direction that helps
A, we modified the combined loss function to include a correction
term. This is similar to the projection term previously introduced by
Zhang et al. [17], which ensured that P never helped A decrease its
loss. This projection term is the vector projection of the gradient of
LP onto the gradient of LA. Instead of modifying the gradients, we
directly modified the loss function itself, such that the modified loss
function for P becomes:

L = LP − LP

LA
–αLA (2)

Under the assumption that LA starts small (i.e. A is able to
accurately predict z), the correction term, LP

LA
, ensures that P

propagates in the correct direction at the beginning of the training
process.
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Fig. 1. Adversarial training architecture.

For P , the sigmoid activation function is used in the output layer;
and for A, the softmax activation function is used instead.

Using this framework, we developed two models: one for mitigat-
ing hospital location biases and one for mitigating patient ethnicity
biases.

B. Pre-Processing
Consistent with Soltan et al. [13], we addressed the presence of

missing values by using population median imputation, then matched
every positive COVID-19 presentation in the training set to a set of
negative controls based on age, using a ratio of 20 controls:1 positive
presentation.

We standardized all features in our data to have a mean of
0 and a standard deviation of 1. We also used the Synthetic
Minority Oversampling Technique (SMOTE) [19] combined with
Edited Nearest Neighbours sampling [20] to expand the minority
class during training and remove any noisy or ambiguous samples,
respectively. Implementation details can be found in Appendix I of
the Supplementary Material.

C. Hyperparameter Optimization
To estimate which hyperparameters would perform best for our

task, we performed 5-fold cross-validation using the training data.
We performed a grid search for different values of learning rate,
number of hidden layer nodes in both the predictor and adversarial
networks, and the dropout ratio. Details about the final hyperparam-
eter values chosen for each model can be found in Appendix I of the
Supplementary Material.

D. Training Outline
The CURIAL models provided a benchmark to which we could

compare our proposed models against. This allowed us to evaluate
whether a neural network-based model (rather than a tree-based one)
could effectively accomplish the main task, as well as ensure that
we trained a strong classifier prior to the addition of any adversary
component.

We began by training a predictor network without any adversary
component. This was then used as a baseline to compare the relative
effects of adversarial training. Thus, we trained a set of two models
– a basic (standalone predictor) model and an adversarial model
– for each of the protected attributes. Models were optimized to
sensitivities of 0.9 to ensure that the model would be able to detect
positive COVID-19 cases (this threshold was also used for the
CURIAL models, allowing for direct comparison of results).

For the main task of predicting COVID-19 status in patients,
we report sensitivity, specificity, positive and negative predictive

values (PPV and NPV), and AUROC, alongside 95% confidence
intervals (CIs) based on standard error. CIs for AUROC are calculated
using Hanley and McNeil’s method [21]. Results are based on the
evaluation of final, held-out test sets.

We evaluated the fairness of our models using the statistical
definition of equalized odds, which states that a classifier is fair
if true positive rates are equal and false positive rates are equal
across all possible labels of the protected variable [22]. To assess
multiple labels, we used the standard deviation (SD) of true positive
and false positive scores. SD scores closer to zero suggest greater
outcome fairness. The equations used to calculate true positive and
false positive SD scores are as follows:

SDTP =SD({P (Ŷ = 1|y = 1, Z = zi), P (Ŷ = 1|y = 1, Z = zi+1),

... , P (Ŷ = 1|y = 1, Z = zN )})

=SD({
TPi

TPi + FNi
,

TPi+1

TPi+1 + FNi+1
, . . . ,

TPN

TPN + FNN
}),

(3)

SDFP =SD({P (Ŷ = 1|y = 0, Z = zi), P (Ŷ = 1|y = 0, Z = zi+1),

... , P (Ŷ = 1|y = 0, Z = zN )})

=SD({
FPi

TPi + FNi
,

FPi+1

TPi+1 + FNi+1
, . . . ,

FPN

TPN + FNN
})

(4)

III. DEBIASING ETHNICITY

A. Patient Populations
For consistency, we trained our models using the same cohorts as

those used to train and test CURIAL-Lab. We trained and optimized
our model using 114,957 COVID-free patient presentations from
OUH prior to the global COVID-19 outbreak, and 701 patient
presentations during the first wave of the COVID-19 epidemic in
the UK that had a positive PCR test for COVID-19. This ensured
that the label of COVID-19 status was correct during training. We
then validated the model on 72,223 admitted patients (4,600 COVID-
19 positive with confirmatory testing) across four validation cohorts.
A summary of each respective cohort is in Table II.

From Fig. 2, we can see that ethnicity is heavily skewed in
our training dataset, making it a possible source of bias. Although
“Unknown,” “Other,” and “Mixed” are ambiguous, we kept them in
both our training and validation datasets, as they constituted a high
number of total cases.

Fig. 2. Distribution of patient ethnicities in OUH training cohort.
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TABLE II

Summary population characteristics for OUH training cohorts, prospective validation cohort of patients attending OUH during the second wave of the UK
COVID-19 epidemic, independent validation cohorts of patients admitted to three independent NHS Trusts.

*indicates merging for statistical disclosure control.
Training Prospective vali-

dation
External Validation (Admissions)

Oxford University Hospitals NHS
Foundation Trust (pre-pandemic &
wave 1 cases, to 30 June 2020)

Oxford University
Hospitals NHS
Foundation Trust

Portsmouth
Hospitals
University NHS
Trust

University
Hospitals
Birmingham
NHS Foundation
Trust

Bedfordshire Hos-
pitals NHS Foun-
dation Trust

Cohort Pre-pandemic co-
hort

COVID-19-cases
cohort

October 1, 2020 –
March 6, 2021

March 1, 2020 -
February 28, 2021

December 1, 2019
- October 29, 2020

January 1, 2021 -
March 31, 2021

n, patients 114,957 701 22,857 37,896 10,293 1,177
n, COVID-19 PCR /
genome test positive

0 701 2,012 2,005 (5.29%) 439 (4.27%) 144 (12.2%)

Sex:
Male (%) 53,370 (46.43) 376 (53.64) 11,409 (49.91) 20,839 (54.99) 4,831 (46.93) 627 (53.27)

Female (%) 61,587 (53.57) 325 (46.36) 11,448 (50.09) 17,054 (45.0) 5,462 (53.07) 549 (46.64)
Age, yr (IQR) 60 (38-76) 72 (55-82) 67 (49-80) 69 (48-82) 63 (42-79) 68 (48-82)
Ethnicity:
White (%) 93,921 (81.7) 480 (68.47) 17,387 (76.07) 28,704 (75.74) 6,848 (66.53) 1,024 (87.0)

Not Stated (%) 13,602 (11.83) 128 (18.26) 4,127 (18.06) 8,389 (22.14) 1,061 (10.31) ≤ 10
South Asian (%) 2,754 (2.4) 22 (3.14) 441 (1.93) 170 (0.45) 1,357 (13.18) 71 (6.03)
Chinese (%) 284 (0.25) * 51 (0.22) 42 (0.11) 41 (0.4) ≤ 10
Black (%) 1,418 (1.23) 25 (3.57) 279 (1.22) 187 (0.49) 484 (4.7) 36 (3.06)
Other (%) 1,840 (1.6) 34 (4.85)* 410 (1.79) 269 (0.71) 333 (3.24) 29 (2.46)
Mixed (%) 1,138 (0.99) 12 (1.71) 162 (0.71) 135 (0.36) 169 (1.64) 13 (1.1)

Fig. 3. Performance of basic and adversarial models (blue and red, respectively) during prospective validation and external validation for ethnicity-
based adversarial training. All models were optimized during training to achieve sensitivities of 0.9. Error bars show 95% confidence intervals.
Numerical results are shown in Supplementary Table S3.

B. Results

We prospectively and externally validated our models across four
hospital cohorts. Using a sensitivity configuration of 0.9, AUROC
scores for predicting COVID-19 status stayed consistent across both
basic and adversarial models for each cohort, achieving the highest
performance on the BH cohort (OUH: AUROC range 0.771-0.777 [CI

range 0.759-0.789]; PUH: 0.744-0.765 [0.731-0.777]; UHB: 0.774-
0.782 [0.748-0.808]; BH: 0.835-0.836 [0.793-0.878]). These were
lower than the benchmark set by CURIAL-Lab (Soltan et al., 2021)
(OUH: AUROC 0.878; PUH: 0.872 [CI 0.863 - 0.882]; UHB: 0.858
[0.838 - 0.878]; BH: 0.881 [0.851 - 0.912]). The optimized threshold
also resulted in consistent scores for sensitivity across all models and
cohorts (sensitivity range 0.844-0.868 with CI range 0.814-0.912).
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TABLE III

Change in equalized odds during prospective validation and external validation for ethnicity-based adversarial training. Results reported as changes in SD of
true positive and false positive rates after the addition of adversarial training.

Prospective Valida-
tion

External Validation (Admissions)

Cohort Oxford University
Hospitals

Portsmouth
University Hospital
NHS Trust

University Hospitals
Birmingham NHS
Foundation Trust

Bedfordshire Hospi-
tals NHS Foundation
Trust

n=22,857,
prevalence=8.80%

n=37,896,
prevalence=5.29%

n=10,293;
prevalence=4.27%

n=1,177;
prevalence=12.2%

Basic Adv Basic Adv Basic Adv Basic Adv
True Positive
Rate SD

0.0387 0.0224 0.0490 0.0480 0.0985 0.0975 0.0964 0.0954

False Positive
Rate SD

0.0574 0.0539 0.0361 0.0361 0.0510 0.0387 0.1039 0.0970

And, consistent with CURIAL-Lab, our models also achieved high
prevalence-dependent NPV scores (>0.98), demonstrating the ability
for a neural network to exclude COVID-19 with high-confidence.

Although adversarial training only had a small effect on the
overall performance of predicting COVID-19, relative to the basic
model, it significantly changed the predicted probability outputs of
the predictor in the adversarial model (Wilcoxon Signed Rank Test,
p < 0.05 for all validation cohorts [Supplementary Table S5]).

For all validation cohorts, SD scores for true positive and false
positive rates decreased when using an adversarial network (except
for PUH, where the false positive rate remained the same). Overall,
equalized odds were demonstrably improved through adversarial
training, with only a slight trade-off in performance (AUROC de-
creased between 0.002-0.008 across OUH, PUH, and UHB cohorts).

Complete performance and fairness metrics are shown in Fig. 3
and Table III (numerical results are shown in Supplementary Table
S3).

IV. DEBIASING HOSPITAL GROUP

A. Patient Populations
To further demonstrate the utility of our proposed method, we also

trained a COVID-19 prediction model that is unbiased towards the
hospital a patient attended. In order to evaluate bias related to hospital
location, presentations from multiple sites needed to be present in
the training data. Thus, we combined presentations from all hospital
cohorts previously described (Table II), and used an 80:20 split to
separate the data into training and test sets, respectively, stratified
based on COVID-19 status and hospital cohort. This resulted in
150,304 presentations (4,249 COVID-19 positive) for training and
optimization and 37,577 presentations (1,052 COVID-19 positive)
for testing (Table IV).

As previously shown with ethnicity, we can see that the number
of presentations available from different hospital cohorts is heavily
skewed in our training dataset (Fig. 4), making it another possible
source of bias.

Additionally, we used t-SNE to visualize a low-dimensional rep-
resentation of all positive COVID-19 presentations in our training
data (Fig. 5). From the results, we can see a distinct cluster (purple),
which corresponds to a subset of the presentations from OUH. This
suggests that the training data can be clustered by specific hospital
groups (and thus, is biased), making this factor is an important and
appropriate choice for bias mitigation.

TABLE IV
Training and test set distributions used for hospital-based adversarial

training.
Training Test

n, patients 150,304 37,577
n, COVID-19 positive 4,249 (2.8%) 1,052 (2.8%)
Hospital:
OUH (%) 110,906 (73.8%) 27,609 (73.5%)

UHB (%) 8,224 (5.5%) 2,069 (5.5%)
BH (%) 930 (0.6%) 247 (0.7%)
PUH (%) 30,244 (20.1%) 7,652 (20.4%)

Fig. 4. Distribution of hospital groups in training cohort.

Fig. 5. t-SNE plot of training data, labeled by hospital group.
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B. Results

We validated our models on a held-out set which included patient
presentations from all four hospital cohorts. Using a sensitivity
configuration of 0.9, model performance for predicting COVID-19
status was virtually the same for both the basic and adversarial
models (AUROC 0.818 [CI 0.802-0.834]). This was lower than the
benchmark set by CURIAL-Lab (Soltan et al., 2021) (AUROC range
0.842-0.868), however it was higher than the results achieved when
attempting to mitigate ethnicity biases. Again, both models achieved
high prevalence-dependent NPV scores (>0.99), demonstrating the
ability for a neural network to exclude COVID-19 with high-
confidence.

Relative to the basic model, adversarial training did not appear to
affect the performance of predicting COVID-19 status. However, in
terms of the output distribution, it significantly changed the predicted
probability outputs between the two models. (Wilcoxon Signed Rank
Test, p < 0.05 [Supplementary Table V]).

This affected the SD scores for both true positive and false positive
rates, as both decreased with the addition of adversarial training.
Thus, the adversarial model was able to improve equalized odds for
hospital cohort, while maintaining its ability to perform the main
task.

Complete performance and fairness metrics are shown in Fig. 6
and Table V (numerical results are shown in Supplementary Table
S4).

Fig. 6. Performance of basic and adversarial models during prospective
validation and external validation for hospital-based adversarial training.
All models were optimized during training to achieve a sensitivity of 0.9.
Error bars show 95% confidence intervals. Numerical results are shown
in Supplementary Table S4.

TABLE V
Change in equalized odds during validation for hospital-based

adversarial training. Results reported as changes in SD of true positive
and false positive rates after the addition of adversarial training.

Basic Adv
True Positive Rate SD 0.0200 0.0173
False Positive Rate SD 0.0529 0.0480

V. DISCUSSION

The use of data-driven machine learning models is becoming
increasingly prominent in healthcare settings. Thus, it is essential
that these systems do not incorporate or reflect any discrimina-
tory biases towards certain groups. In this study, we investigated
a straightforward and effective method for training fair, unbiased
machine learning models. We introduced an adversarial framework,
and applied it to the main task of screening for COVID-19, while
attempting to mitigate against hospital location and patient ethnicity

biases. We also compared our method to the benchmark set by
CURIAL-Lab.

Using the data visualization tool, t-SNE, we showed that variations
between hospitals can be reflected by the data. These differences may
be a result of different population distributions or lab analyzer brands
used at each location. Thus, as machine learning datasets continue
to expand, especially through collaborative efforts, greater attention
needs to be given to bias mitigation, as different protocols and meth-
ods used to collect, process, and organize data can unintentionally
encode biases.

We found that our basic neural network, trained independent of any
adversary component, achieved slightly lower AUROCs compared to
the benchmark set by CURIAL-Lab for ethnicity-based and hospital-
based training (AUROC range 0.765-0.835 [CI range 0.828-0.873]
and AUROC 0.818 [CI 0.802-0.834], respectively, versus AUROC
range 0.858-0.881 [CI range 0.838-0.912]). However, this decrease in
performance is reasonable, as neural networks can easily be overfit
on training data and thus require very large amounts of balanced
data to train, whereas XGBoost is known to be robust for rule-based
classification tasks, even with smaller amounts of data present. This
also explains why the basic network achieved better performance
during the hospital-based bias mitigation task (compared to the
ethnicity-based bias mitigation task), as a greater amount of combined
data was used in training, further emphasizing the importance of col-
laborative approaches. In general, our neural network-based models
still achieved high, clinically effective performances (NPVs > 0.98
at low prevalences). And, although AUROCs were slightly lower, a
neural network-based model is advantageous in that it can be used in
the adversarial framework outlined. This framework can be used with
any model, regardless of complexity, as long as it is gradient descent-
compatible. Thus, performance may be improved by alternative model
architectures.

When an adversary network was trained against the main network,
we found that the overall AUROCs achieved were consistent with
those achieved by the basic model (average AUROC of 0.795 (0.030)
and 0.790 (0.037) for basic and adversarial models, respectively).
Additionally, in both cases, we found that the adversarial models
were less biased than the basic one; thus, demonstrating that bias
can be mitigated with minimal effect on performance. Although bias
generally decreased, our models did not achieve complete equalized
odds. One limitation could be that our data was skewed with respect
to the protected features. As we are using neural networks, different
distributions of the protected label can give significantly different
results for the adversary model. This has previously been discussed
[16], as using balanced data was found to have a much stronger
effect on adversarial training. Thus, future experiments would greatly
benefit from balanced training data.

With respect to debiasing against ethnicity, one limitation is the
ambiguity of certain categories, namely, “Unknown,” “Mixed,” and
“Other.” In our experiments, we kept these categories in order to max-
imize the number of cases (especially COVID-19 positive cases) used
in training. This may have impacted the adversary network’s ability
to confidently differentiate between different ethnicities, hindering its
influence on the main network.

Bias may also still exist with respect to data missingness. Although
we used population median imputation to “fill-in” missing values, the
nature of the missing data may have conveyed important information,
or reflected biases such as differences in access, practice, or recording
protocols.

Another limitation is the difficulty in understanding how social,
behavioral, and genetic factors independently and collectively impact
outcomes. For example, consistent genetic effects across racial groups
can result in genetic variants with a common biological effect;
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however, that effect can also be modified by both environmental
exposures and the overall admixture of the population [23]. Thus,
additional evaluations into the main prediction task (and related
variables) will be necessary to determine what biases exist and how
to best mitigate them.

VI. CONCLUSION

In this study, we demonstrated that adversarial debiasing is a
powerful technique for mitigating biases in machine learning models,
providing the first piece of literature on adversarial debiasing in a
clinical context. We trained our framework on a large, clinically-
rich COVID-19 dataset, from four independent hospital cohorts, and
demonstrated that the addition of an adversary model demonstrably
improves outcome fairness, without compromising performance of
the task at hand. We know that looking at variations across different
regions and ethnic groups only addresses a small subset of existing
inequities in healthcare; however, the framework we outlined can be
easily applied to many different tasks and features. As technolog-
ical capabilities continue to grow and machine learning continues
to saturate decision-making processes in healthcare, we hope that
the ability to develop fair models will encourage more hospitals
to adopt machine learning-based technologies, and inspire greater
confidence in the utility and reliability of these tools for making
critical decisions.
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