Infectious viral load in unvaccinated and vaccinated patients infected with SARS-CoV-2 WT, Delta and Omicron

Olha Puhach¹, Kenneth Adea¹, Nicolas Hulo², Pascale Sattonnet¹, Camille Genecand³, Anne Iten⁴, Frédérique Jacquérioz Bausch⁵,⁶,⁷, Laurent Kaiser⁵,⁸,⁹, Pauline Vetter⁵,⁸,⁹,*, Isabella Eckerle¹,⁵,⁹,*,#, Benjamin Meyer¹,⁵,.*

Affiliations:
¹ Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
² Service for Biomathematical and Biostatistical Analyses, Institute of Genetics and Genomics, University of Geneva, Geneva, Switzerland
³ Cantonal Health Service, General Directorate for Health, Geneva, Switzerland
⁴ Service of Prevention and Infection Control, Directorate of Medicine and Quality, University Hospital Geneva, HUG, Geneva, Switzerland
⁵ Geneva Centre for Emerging Viral Diseases, Geneva University Hospitals, 1205 Geneva, Switzerland
⁶ Division of Tropical and Humanitarian Medicine, Geneva University Hospitals, Geneva, Switzerland
⁷ Primary Care Division, Geneva University Hospitals, Geneva, Switzerland
⁸ Laboratory of Virology, Division of Laboratory Medicine, Geneva University Hospitals & Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland
⁹ Division of Infectious Diseases, Geneva University Hospitals, 1205 Geneva, Switzerland
¹⁰ Centre for Vaccinology, Department of Pathology and Immunology, University of Geneva, Switzerland

* Corresponding authors
Benjamin Meyer: Benjamin.Meyer@unige.ch
Isabella Eckerle: Isabella.Eckerle@hcuge.ch
Pauline Vetter: Pauline.Vetter@hcuge.ch

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

Background

Viral load (VL) is one determinant of secondary transmission of SARS-CoV-2. Emergence of variants of concern (VOC) Alpha and Delta was ascribed, at least partly, to higher VL. Furthermore, with parts of the population vaccinated, knowledge on VL in vaccine breakthrough infections is crucial. As RNA VL is only a weak proxy for infectiousness, studies on infectious virus presence by cell culture isolation are of importance.

Methods

We assessed nasopharyngeal swabs of COVID-19 patients for quantitative infectious viral titres (IVT) by focus-forming assay and compared to overall virus isolation success and RNA genome copies. We assessed infectious viral titres during the first 5 symptomatic days in a total of 384 patients: unvaccinated individuals infected with pre-VOC SARS-CoV-2 (n= 118) or Delta (n= 127) and vaccine breakthrough infections with Delta (n= 121) or Omicron (n=18).

Findings

Correlation between RNA copy number and IVT was low for all groups. No correlation between IVTs and age or sex was seen. We observed higher RNA genome copies in pre-VOC SARS-CoV-2 compared to Delta, but significantly higher IVTs in Delta infected individuals. In vaccinated vs. unvaccinated Delta infected individuals, RNA genome copies were comparable but vaccinated individuals have significantly lower IVTs, and cleared virus faster. Vaccinated individuals with Omicron infection had comparable IVTs to Delta breakthrough infections.

Interpretation

Quantitative IVTs can give detailed insights into virus shedding kinetics. Vaccination was associated with lower infectious titres and faster clearance for Delta, showing that vaccination would also lower transmission risk. Omicron vaccine breakthrough infections did not show elevated IVTs compared to Delta, suggesting that other mechanisms than increase VL contribute to the high infectiousness of Omicron.

Funding

This work was supported by the Swiss National Science Foundation 196644, 196383, NRP (National Research Program) 78 Covid-19 Grant 198412, the Fondation Ancrage Bienfaisance du Groupe Pictet and the Fondation Privée des Hôpitaux Universitaires de Genève.
Introduction

As of 2 January 2021, the coronavirus disease 2019 (COVID-19) pandemic led to a total of nearly 289 million cases and just over 5.4 million deaths globally (1). Severe acute respiratory coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19, primarily infects the cells of the upper respiratory tract (URT) where it leads to an increasing viral load (VL) during the course of infection (2).

The two key parameters when assessing VL are either RNA genome copies, often expressed in cycle threshold (Ct) values, or infectious virus that can only be assessed by virus isolation in cell culture. Although the process of human-to-human transmission is complex, VL can serve as a proxy, with higher VL posing a greater risk for onward transmission. In several epidemiological studies, higher viral load expressed as viral RNA was associated with an increased secondary transmission in household settings (3, 4). Shedding of infectious SARS-CoV-2 in the URT starts on average two days prior to the beginning of symptoms and gradually declines up to 8 days post onset of symptoms. Even though viral RNA could be detected afterwards, in most studies infectious virus was not detected in respiratory samples collected from immunocompetent individuals later than 8 days post onset of symptoms (5-9). Moreover, the detection of viral RNA does not correlate with infectiousness in an animal model (10). Instead, success of virus isolation in cell culture was found to be a proxy for detection of infectious virus from respiratory specimens and the ability to shed and transmit fully competent viral particles (8, 11, 12). Virus isolation success can only give information about the presence or absence of infectious virus, but is not able to quantify the infectious viral titre in samples of the URT (13).

Since the start of the pandemic, SARS-CoV-2 is constantly evolving, leading to the emergence of new variants. While most variants vanished quickly, other such as D614G, and the designated variants of concern (VOCs) Alpha, Beta, Gamma, Delta and Omicron harbour an apparent selection advantage and manage to replace other existing variants locally or even globally. These VOCs exhibit various mutations and amino acid alterations in viral proteins (14) that lead to immune evasion and/or higher transmissibility to which increased virus shedding among other factors like environmental stability can significantly contribute (15, 16). For Alpha VOC, an approximately 10-fold higher RNA viral load was observed compared to pre-VOC viral strains, that was also associated with an increase in virus isolation success (17, 18). Similarly, Delta VOC also showed 10- to 15-fold higher viral load on RNA level compared to pre-VOC strains (18, 19). However, little is known about the quantity of emitted infectious viral particles for VOCs including Omicron.

There is extensive evidence that introduction of licensed vaccines against SARS-CoV-2, which were designed against the original virus strain, led to the reduction of cases and disease severity. However, the effect of vaccination on infectious viral shedding and onward transmission from vaccinated patients remains controversial. Considering that all currently approved vaccines are administered intramuscularly, the titre of neutralizing antibodies on the mucosal surfaces lining the URT might be limited, and therefore sterilizing immunity is probably only transient if achieved at all (20, 21). Epidemiological studies on the secondary attack rate in households of vaccinated vs unvaccinated index patients led to contrary results. While some studies show a reduction of transmission rates in vaccinated index cases (22-24), one study found no influence of the vaccination status of index cases (25). However, many additional factors, such as the behaviour of index patients, age, comorbidities, the variant present at the time of study, time elapsed after complete vaccination and the vaccine used, can influence the secondary attack rate in these studies. Therefore, it is difficult to delineate the effect of vaccination on viral load from other factors in purely epidemiological studies. An overall reduction...
of RNA viral loads was reported in vaccinated COVID-19 patients (BNT162b2 mRNA vaccine or ChAdOx1 nCoV-19 (AZD1222) adenoviral vector vaccine), but no difference was observed at 6 months post vaccination (26, 27). Another study found reduced RNA viral load early after complete vaccination when the Alpha VOC was prevalent, but no difference at later time points when the Delta VOC was dominant (28). In addition, a study that investigated the kinetics of RNA viral load in COVID-19 patients did not find a difference during the first 5 days post symptom onset, i.e. when most human-to-human transmissions occur, but showed a faster decline of RNA viral load in vaccinated patients (29). Similarly, a lower probability of virus isolation success was found in vaccinated vs unvaccinated COVID-19 patients at the same RNA viral load indicating that vaccines can reduce the infectious viral load (30). However, no study quantified infectious virus titres of different VOCs in URT samples of vaccinated and unvaccinated COVID-19 patients.

Dynamics of infectious viral shedding in vaccinated and unvaccinated patients infected with relevant SARS-CoV-2 variants of concern requires detailed investigation. Understanding of the SARS-CoV-2 viral shedding in patients would help the implication of public health decisions to limit the transmission of the virus in the community (31). Here we compare RNA and infectious viral load between pre-VOC strains and Delta VOC in unvaccinated patients as well as in vaccination breakthrough infections due to Delta and Omicron. Respiratory samples from mildly symptomatic patients of different age and sex, sampled in the first five days post onset of symptoms were used for this study. By quantifying infectious viral titres from URT specimens, we show that patients infected with SARS-CoV-2 Delta variant of concern harbour elevated levels of infectious viral titres, while vaccination leads to a reduction of infectious virus.

Methods

Participants

Sample collection and setting

Nasopharyngeal swabs for diagnostics of SARS-CoV-2 by RT-PCR collected from symptomatic individuals in the outpatient testing center of the Geneva University Hospital were included in this study. Infection with SARS-CoV-2 was diagnosed by RT-PCR assay (Cobas 6800, Roche). All samples originate from the diagnostic unit of the virology laboratory of the hospital and were received for primary diagnosis of SARS-CoV-2. Remaining samples were stored at -80°C, usually on the same day or within 24h. All samples had only one freeze-thaw cycle for the purpose of this study. All specimens from vaccinated individuals were characterized by full genome sequencing for their infecting SARS-CoV-2 variant. Initial identification of the Omicron VOC was done by S gene target failure of the TaqPath COVID19 assay (Thermofisher) and confirmed by partial Sanger sequencing of the Spike (32). Final confirmation was done by next-generation sequencing. No sequence information was obtained for patients infected with pre-VOC SARS-CoV-2, as all samples were collected in 2020, in a time period before first detection of the VOCs in Switzerland. Clinical information of the patients was collected by a standardized questionnaire in our testing Centre and/or through the Cantonal Health Service.

Viral load quantification by qRT-PCR
Viral loads in each sample were determined by quantitative real time PCR (RT-qPCR) using SuperScript™ III Platinum™ One-Step qRT-PCR Kit (Invitrogen). RT-PCR for SARS-CoV-2 E gene and quantification of genome copy number was performed as described previously (33).

Quantification of SARS-CoV-2 by focus-forming assay.

Vero E6 and Vero E6-TMPRSS were cultured in complete DMEM GlutaMax I medium supplemented with 10% fetal bovine serum, 1x Non-essential Amino Acids, and 1% antibiotics (Penicillin/Streptomycin) (all reagents from Gibco, USA). Vero-TMPRSS were kindly received from National Institute for Biological Standards and Controls (NIBSC, Cat. Nr. 100978).

Nasopharyngeal swab samples were serially diluted and applied on a monolayer of VeroE6 cells in duplicates. Following 1 hour of incubation at 37°C, the virus-containing inoculum was removed and the cells were overlaid with prewarmed medium mixed with 2-4% Avicel (DuPont) at a 1:1 ratio. Plates were incubated at 37°C for 24 hours and then fixed using 6% paraformaldehyde for 1 hour at room temperature. Cells were permeabilized with 0·1% Triton X-100 and blocked with 1% BSA (Sigma). Plates were incubated with an anti-SARS-CoV monoclonal nucleocapsid protein primary antibody targeting SARS-CoV-2 nucleocapsid protein (Geneva Antibody facility; JS02) for 1 hour at room temperature and then with peroxidase-conjugated secondary antibody (Jackson ImmunoResearch, #109-036-09) for 30 minutes at room temperature. Foci were visualized using True Blue HRP substrate (Avantor) and imaged on an ELISPOT reader (CTL). Focus-forming assay for comparison of infectious viral loads in Delta vs Omicron was performed in Vero E6-TMPRSS cells.

Virus isolation

Nasopharyngeal samples were applied on the monolayer of Vero E6 cells in 24 well plates. 100 µl of each sample was added and inoculated for 1 hour at 37°C. Following the incubation, the infectious supernatant was discarded and virus culture medium was added. 50 µL of the medium was collected to define the viral load at day 0. 3 to 4 days post inoculation the medium was replaced with fresh one, and 6 days post infection the infectious medium was collected to define the viral load at day 6. The change of viral load for at least 1 log of SARS-CoV-2 genome copies from day 0 till day 6 was considered as successful isolation.

Statistical analysis

All statistical analyses were performed using R Statistical Software version 4.1.1 (Foundation for Statistical Computing, Austria) and Prism version 8.0.1 (GraphPad, San Diego, CA, USA).

Ethical approval

The study was approved by the Cantonal ethics committee (CCER Nr. 2021-01488). All study participants and/or their legal guardians provided informed consent.

Results

In this study, we analysed the viral load characteristics in the URT of unvaccinated pre-VOC- as well as vaccinated and unvaccinated Delta VOC-infected COVID-19 subjects up to 5 days post onset of symptoms (DPOS). We included a total of 384 samples in our cohort of which 118 originated from patients infected with pre-VOC SARS-CoV-2 and 248 from patients infected with the Delta VOC. Of the Delta VOC infected patients, 121 were vaccinated twice prior infection and 127 were unvaccinated. In
addition, we included 18 vaccinated individuals recently infected with Omicron. None of the patients infected with pre-VOC SARS-CoV-2 were vaccinated due to the absence of licensed vaccines at the time of infection. All patients had mild symptoms at the time of sampling. Samples of pre-VOC infected patients were collected between April 7th and September 9th 2020, before circulation of any VOCs, while samples of Delta VOC infected patients were collected from June 26th until December 4th 2021 and sample of Omicron VOC infected patients from 14th to 17th of December 2021. All vaccinated patients included in this study were diagnosed positive at least 14 days after 2nd dose, which complies with the definition of vaccination breakthrough given by the Centers for Disease Control and Prevention (34). 132/139 patients were vaccinated with mRNA vaccines, one was vaccinated with a non-replicating viral vector vaccine (CoviVac) and for six patients the vaccine used is not known. The median time between 2nd dose and breakthrough infection was 79-5 (IQR 40-5-139 days) for Delta infections and 136 (IQR 85-176) for Omicron infections. All three groups of patients (pre-VOC, Delta VOC unvaccinated and Delta VOC vaccinated) had a similar age and sex distribution (see Table 1).

We quantified genome copies and infectious viral titres in SARS-CoV-2-positive nasopharyngeal swabs using qRT-PCR and focus-forming assay. Only specimens with a CT values below 27 for the E gene target of the diagnostic RT-PCR (Cobas, Roche), as determined by the clinical laboratory, were included in our study, since previous studies from us and others have shown that in the pre-Omicron era infectious virus cannot be reliably isolated from samples with higher CT values(12, 35). To validate our focus forming assay, we compared it to the ability to successfully isolate virus in cell culture. Virus isolation success has been used as a correlate of infectious viral shedding for SARS-CoV-2(6, 36-38), but lacks the ability to differentiate between high and low viral load samples. We were able to quantify viral titres using the focus forming assay in 91-9%, 91-7% and 83-8% of culture positive samples in the Pre-VOC, Delta and Delta vaccinated group, respectively, indicating a high sensitivity for our assay (Figure 1A). Overall, the Cohens kappa agreement was 0-69, 0-71 and 0-53 for the 3 groups, showing a moderate to substantial agreement (Figure 1 B).

Low correlation between genome copies and infectious viral titres

First, we investigated whether RNA genome copies are a good proxy for infectious virus shedding. We observed only a very low correlation ($R^2 = 0.119$, $p=0.0001$) between viral genome copies and infectious virus particles for pre-VOC samples (Figure 2 A), while the samples from unvaccinated and vaccinated Delta patients showed slightly higher, yet still low correlation ($R^2 = 0.312$, $p <0.0001$ and $R^2 = 0.3962$, $p <0.0001$, respectively) (Figure 2B, C).

No correlation between infectious viral load and age and sex of patients

Next, we tested if infectious viral loads from patient samples are associated with patient age and sex. We did not observe any correlation between the age and infectious viral load for all three groups (Supplementary figure S1). Similarly, no significant differences of infectious viral loads between male and female patients were detected for pre-VOC or Delta variant samples from vaccinated or unvaccinated patients (Supplementary figure S2).

Delta VOC infected unvaccinated patient have higher infectious viral load

Next, we compared genome copies and infectious viral loads in pre-VOC and Delta VOC samples from unvaccinated patients during the first 5 symptomatic days. Overall, pre-VOC samples had significantly higher genome copies (0-653 log, $p<0.0001$) compared to Delta VOC, but infectious viral titres were
significant higher in Delta VOC infected individuals (0.343 log, p=0.0373) (Figure 3A). When we
analysed the kinetics of viral shedding, we found that genome copies for pre-VOC samples were higher
at one and two dpos but similar to Delta VOC at 0, 3, 4, 5 dpos (Figure 3B). Conversely, infectious virus
shedding was higher for Delta VOC at 3-5 dpos, but similar at 0-2 dpos (Figure 3C). In addition, we
observed that genome copies remained largely stable until 5 dpos, with only a minimal decline at 5
dpos, while infectious viral load substantially declined (Figure 3B and C).

The association of the levels SARS-CoV-2 infectious shedding with patient age and sex is highly debated
(17). In this study we also did not detect a correlation between patients age or sex with their
infectiousness. However, there is increasing evidences of more severe outcomes of COVID-19 disease
in older male patients (36, 38, 39). Thus, to eliminate possible confounders, 84 Delta infected patients
were matched with pre-VOC infected patients in regard to sex, age and dpos. Similarly, significantly
higher infectious viral loads (0.51 log, p=0.001170) were detected in Delta variant samples in
comparison to matched pre-VOC samples (Supplementary figure 3A).

Vaccinated patients have lower infectious viral load than unvaccinated patients

To determine the influence of vaccination on virus shedding, we compared genome copies and
infectious viral loads in unvaccinated and vaccinated patients infected with the Delta VOC during the
first 5 dpos. Overall, genome copies did not significantly differ between vaccinated and unvaccinated
patients, while infectious viral load was significantly decreased in vaccinated patients (0.68 log,
***p<0.0001) (Figure 4A). The kinetics of RNA genome copies were largely similar between vaccinated
and unvaccinated patients with a slight trend of faster decline for vaccinated patients starting at 4
dpos (Figure 4B). In contrast, infectious viral titres were substantially lower in vaccinated patients at
all dpos with the biggest effect observed at 3-5 dpos (Figure 4C). Still, at 5 dpos we were able to detect
infectious virus in 7/13 (53.8%) vaccinated and 11/13 (84.6%) unvaccinated patients. Additionally, 67
Delta VOC infected patients were matched with Delta VOC vaccination breakthrough patients in
regard to age, sex and dpos. Infectious viral titres were elevated in unvaccinated patients in
comparison to vaccine breakthroughs (0.97 log, p<0.0001) (Supplementary figure 3B) confirming a
significant reduction of infectious viral titres among vaccinated patients. We further analysed if there
is a correlation between infectious viral titres and the time interval since the administration of the last
vaccine dose. We observed a high heterogeneity between patient samples, that resulted in no
significant correlation between the time post vaccination and infectious viral shedding
(Supplementary figure 5A).

In previously vaccinated subjects infection with Omicron VOC results in similar infectious viral loads
like Delta

Upon emergence of new VOC Omicron, we analysed the infectious viral shedding in vaccinated
patients infected with this variant. We compared RNA and infectious viral loads in nasopharyngeal
swab samples of 18 Omicron and 17 Delta infected patients. Vaccine breakthrough infection with
Omicron or Delta variant resulted in comparable SARS-CoV-2 genome copies (p= 0.3345). Modestly
lower infectious viral titres were detected in Omicron infected patients in comparison to Delta
infected patients, however this difference was not statistically significant (0.69 log, p= 0.1033) (Figure
5). Same moderate but non-significant reduction of infectious viral titres was observed for Omicron
samples when matching patients for age, sex and dpos (Supplementary figure 3C).
Discussion

In this study we analysed virus shedding in COVID-19 patients infected with pre-VOC, Delta VOC and Omicron VOC SARS-CoV-2 and evaluated the impact of vaccination on viral load in the URT during the first 5 dpos. To our knowledge, this is the first study which quantified infectious viral loads in patients infected with different SARS-CoV-2 variants and vaccination breakthrough cases. We could demonstrate a higher infectious viral load in unvaccinated Delta-infected compared to pre-VOC-infected patients and showed a significant reduction of infectious viral loads in vaccinated patients. Furthermore, we found no difference in infectious viral load between Delta and Omicron breakthrough cases.

Determining the magnitude and timing of infectiousness of COVID-19 patients is a key requirement to make informed public health decisions on the duration of isolation of patients and on the need to quarantine contacts. Infectiousness is strongly influenced by viral load in the URT of infected patients (4). However, in most studies viral load is measured as RNA genome copies and not actual infectious virus. In this study we could show that detection of RNA genome copies in URT swab samples is only poorly correlated with infectious virus shedding. This is in line with several other studies that found that RNA is a poor indicator of infectiousness especially in the presence of neutralising antibodies (12, 37). In addition, in a golden hamster animal model it was demonstrated that only infectious virus but not RNA is a good proxy for onward transmission (10).

Virus isolation success in cell culture has been widely used as a proxy for infectiousness (6, 12, 33, 40). Several studies have shown that virus isolation success significantly drops when RNA viral loads are below 6 log10 copies per mL in viral transport medium, or collected later than 8 days post symptom onset. Of note, with only a qualitative result on either successful isolation or not, overall virus isolation success cannot distinguish between high and low infectious viral loads in a patient sample, a key determinant of the size of the transmitted inoculum. Differences in infectious virus load however can have an impact on transmission probability. Therefore, we decided to use a focus forming assay instead that can reliably quantify infectious viral particles from original patient specimens. Focus forming assays have long been used as a standard to quantify excretion of virus in animal infection models for respiratory viruses such as SARS-CoV-2 and influenza virus and are therefore considered one of the best available proxies for infectiousness (41, 42).

Within the first 5 dpos, we found higher RNA genome copies in swabs of unvaccinated patients infected with pre-VOC compared to Delta VOC, but infectious viral titres were higher for Delta VOC. These results are in disagreement with other studies that analysed only nucleic acid detection and found 3-10-fold higher RNA genome copies in Delta VOC infected patients compared to pre-VOC (18, 43). However, these studies did not control for days post symptom onset, age or sex. Other studies found either no difference in RNA genome copies between Delta and pre-VOC swabs (44) or more than 1000-fold higher viral load for Delta VOC (45, 46), documenting the difficulty of comparing RNA viral loads of virus variants during different phases of the pandemic, especially when not taking additional information such as days post symptom onset into account. Conversely, in agreement with our results, a higher virus isolation success rate was observed for Delta compared to pre-VOC SARS-CoV-2 or Alpha VOC (47, 48).

Vaccines have been shown to tremendously reduce symptomatic SARS-CoV-2 infections. However, the impact of vaccination on the infectiousness of breakthrough cases is less clear. We could show that infectious viral load but not RNA genome copies are reduced in vaccinated Delta VOC patients during the first 5 days post symptom onset. In this time period approximately 50% of transmissions occur for pre-VOC SARS-CoV-2 strains (5), indicating that a reduction of viral load could considerably
contribute to a decreased secondary attack rate. Similar observations were made in other studies that found no difference in RNA genome copies between vaccinated and unvaccinated early after symptom onset (29, 30), but detected a lower probability of virus isolation success (30). Conversely, another study detected up to 10-fold reduced RNA genome copies in vaccinated patients but only during the first 60 days after complete vaccination (27). Similarly, two more studies reported decreased RNA genome copies for vaccine breakthrough infection with pre-VOC and Alpha VOC SARS-CoV-2 (26), but the effect vanished around 6 months post vaccination when Delta VOC was present (28). Of note, we were still able to detect infectious viral particles in 53-88% of vaccinated subjects at 5 dpos, indicating that it might be beneficial is not shortened to 5 days as recently recommended by the CDC(49). Whether lower infectious viral load translates into lower secondary attack rate remains controversial and depends on other influencing factors, i.e. environmental stability of virus particles. Several studies did find a correlation between higher viral load and increased secondary attack rate, with viral load of the index case being the leading driver of transmission (3, 4). In agreement with these finding, epidemiological studies also showed reduced transmission rates when index cases were vaccinated, but the effect size depends on the prevalent variant, the vaccine used and the time elapsed since complete vaccination (22). In contrast, another study found that the vaccination status of the index case did not influence the secondary attack rate (25). While VL is a key element of transmission, the process of human-to-human transmission is complex and other factors, such as recommended protection measures in a certain country at a certain time, overall incidence, perceived risks and the context of contacts (household vs community transmission) can influence outcomes in the studies reported. To date, few data exist on viral load in vaccine breakthrough infections caused by the Omicron VOC due to the recent emergence in late November 2021. Reduced neutralization of Omicron by infection- and vaccine-derived antibodies was reported in vitro and epidemiological studies show an increased risk of (re-)infection with Omicron in vaccinated and previously infected individuals (50, 51). Furthermore, very high transmissibility of Omicron breakthrough infections was observed, with high secondary attack rates even among vaccinated individuals (52). Higher RNA viral loads as described in some studies were discussed as one potential contributing factor for the emergence of Alpha and Delta VOC, although for Delta we could only confirm this for infectious viral load in our data. The contribution of VL to the high transmissibility of Omicron is not known so far, neither is the mechanism behind higher transmissibility of Omicron. First in vitro data hint towards alternative entry mechanisms as well as early replication peak in cell culture (53), but no clinical data for this phenomenon exist so far. Our findings indicate that with comparable RNA viral load as well as comparable infectious virus shedding, the higher transmissibility in Omicron doesn’t seem to be related to the shedding of an increased number of infectious viral particles in vaccinated individuals.

Our study has several limitations. We included only samples with Ct values below 27, collected during the first 5 dpos but not afterwards. Therefore, absolute numbers on RNA copies are biased towards higher viral loads as patients with low viral load were not included here. However, patients with low viral load have likely little relevance in terms of transmission and other factors, such as poor swab quality can be a confounding factor leading to low viral loads. Furthermore, our focus was on infectious virus shedding and it has been shown that SARS-CoV-2 culture is unlikely to be successfully from samples with higher Ct values (35) and that the vast majority of secondary transmission occurs before 5 dpos although this needs to be formally assessed in Omicron cases (5). Due to its recent emergence, we did not yet have access to samples from Omicron infected unvaccinated individuals. Last, we also would like to emphasize that almost all patients in this study were vaccinated with mRNA vaccines that induce high titres of neutralizing antibodies in the blood but relatively low mucosal
antibodies. Therefore, our results cannot be generalized to other vaccines, i.e. those that are used mainly in low- and middle-income countries.

In conclusion, this study provides strong evidence for higher infectiousness of the Delta VOC as well as a significantly lower infectiousness and a faster clearance of infectious virus in vaccinated individuals. In addition, we could show that Omicron has similar infectious viral loads than Delta VOC. Furthermore, we show a more detailed picture of viral load assessment in addition to overall virus isolation success, and that quantifying viral loads can give better insights into viral shedding kinetics in acute SARS-CoV-2 infection.

Funding

This work was supported by the Swiss National Science Foundation 196644, 196383, NRP (National Research Program) 78 Covid-19 Grant 198412, the Fondation Ancrage Bienfaisance du Groupe Pictet and the Fondation Privée des Hôpitaux Universitaires de Genève.

Acknowledgments

We thank all patients for their willingness to participate in our research. We thank the staff of the laboratory of virology from the University Hospitals of Geneva for their support.
<table>
<thead>
<tr>
<th></th>
<th>Pre-VOC SARS-CoV-2</th>
<th>SARS-CoV-2 Delta VOC</th>
<th>Vaccine breakthrough infections (Delta VOC)</th>
<th>Vaccine breakthrough infections (Omicron VOC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>118</td>
<td>127</td>
<td>121*</td>
<td>18</td>
</tr>
<tr>
<td>Sampling dates</td>
<td>April 7 - September 9 2020</td>
<td>June 26 –August 29 2021</td>
<td>July 8 -December 4 2021</td>
<td>December 14 – December 17</td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median (range)</td>
<td>36 (17-82)</td>
<td>37 (16-83)</td>
<td>40 (16-83)</td>
<td>35 (14-58)</td>
</tr>
<tr>
<td><25</td>
<td>22 (18-6%)</td>
<td>19 (14-9 %)</td>
<td>14 (11-6%)</td>
<td></td>
</tr>
<tr>
<td>25-35</td>
<td>37 (31-4%)</td>
<td>38 (29-9%)</td>
<td>36 (29-8%)</td>
<td></td>
</tr>
<tr>
<td>35-50</td>
<td>30 (25-4%)</td>
<td>41 (32-3%)</td>
<td>44 (36-3%)</td>
<td></td>
</tr>
<tr>
<td>50-65</td>
<td>23 (19-5%)</td>
<td>25 (19-7%)</td>
<td>24 (19-8%)</td>
<td></td>
</tr>
<tr>
<td>>65</td>
<td>6 (5-1%)</td>
<td>4 (3-1%)</td>
<td>3 (2-5%)</td>
<td></td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>50 (42-4%)</td>
<td>65 (51-2%)</td>
<td>62 (51-2%)</td>
<td>9 (50 %)</td>
</tr>
<tr>
<td>Male</td>
<td>68 (57-6%)</td>
<td>62 (48-8%)</td>
<td>59 (48-8%)</td>
<td>9 (50 %)</td>
</tr>
<tr>
<td>RT-PCR result, CT (E-gene target, Cobas 6800, Roche)</td>
<td>13-9-26-6</td>
<td>13-8-26-3</td>
<td>16-3-26-1</td>
<td>17.2-25.9</td>
</tr>
<tr>
<td>Interval vaccination to infection, days, mean (IQR)</td>
<td>na</td>
<td>na</td>
<td>79-5 (IQR 40-5-139 days)</td>
<td>136 (IQR 85-176)</td>
</tr>
<tr>
<td>Vaccine</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BNT162b2</td>
<td>na</td>
<td>na</td>
<td>43</td>
<td>8</td>
</tr>
<tr>
<td>mRNA-1273</td>
<td>na</td>
<td>na</td>
<td>73</td>
<td>8</td>
</tr>
<tr>
<td>CoviVac</td>
<td>na</td>
<td>na</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Vaccine unknown</td>
<td>na</td>
<td>na</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Table 1. Patient characteristics of the specimens used in this study. RT-PCR, reverse transcription polymerase chain reaction, CT, cycle threshold, IQR, interquartile range, na, not applicable. *Of the all 121 vaccine breakthrough samples, 104 were titrated in parallel with Delta VOC infection and 17 in parallel with Omicron vaccine break through infections.
Figure 1. Quantitative infectious viral loads versus overall virus isolation success (A) Vero E6 cells were inoculated with 10-fold serial dilutions of nasopharyngeal swabs collected from SARS-CoV-2 infected individuals. Plates were fixed 27 h post-infection and following the staining with SARS-CoV-2 specific antibodies, the number of focus forming units (FFU)/ml was calculated for each sample. Error bars indicate mean±SD. p-values were calculated with the one-way ANOVA. ***: p<0.002; ****p<0.0001. (B) The total number of positive and negative samples defined by titration and virus isolation for each patient group. Cohens kappa agreement is shown.
Figure 2. Relationship between RNA viral loads and infectious viral titers. Linear regression analysis of infectious viral titers in FFU/ml and the corresponding RNA viral loads in nasopharyngeal swabs from the unvaccinated patients infected with pre-VOC (A), and Delta SARS-CoV-2 (B) as well as Delta vaccination breakthroughs (C).
Figure 3. RNA viral load and infectious viral titers for unvaccinated individuals infected with pre-VOC SARS-CoV-2 vs. Delta (A) Genome copies (left panel) and infectious virus (right panel) for pre-VOC and Delta unvaccinated patients. Error bars indicate mean±SD. The t-test was used to determined differences of means. *p=0.0373; **** p<0.0001. Genome copies (B) and infectious viral loads (C) measured for pre-VOC and Delta VOC infected patients at different dpos. The solid lines represent the fitted curve calculated using (locally estimated scatterplot smoothing) LOESS method.
Figure 4. RNA viral load and infectious viral titers for unvaccinated vs. vaccinated individuals infected Delta (A) Genome copies (left panel) and infectious virus (right panel) for vaccinated and unvaccinated Delta infected patients. Error bars indicate mean±SD. The t-test was used to determined differences of means. ***p<0.0005; ****p<0.0001. Genome copies (B) and infectious viral loads (C) measured for vaccinated and unvaccinated Delta infected patients at different dpos. The solid lines represent the fitted curve calculated using (locally estimated scatterplot smoothing) LOESS method.
Figure 5. SARS-CoV-2 infectious viral loads in vaccine break through infections with Omicron or Delta. (A) Genome copies (left panel) and infectious virus (right panel) for vaccinated patients infected with Delta or Omicron VOC. Infectious viral loads (were determined by focus-forming assay on Vero-TMPRSS cells. Significance was determined by t-test. **ns**: nonsignificant.
References

Supplementary figures

Supplementary figure S1. Linear regression analysis of SARS-CoV-2 titers in FFU/ml and the corresponding age of the patient.
Supplementary figure S2. Comparison of infectious viral shedding measured in female and male patients. Error bars indicate mean±SD. The t-test was used to determine differences of means. ns= nonsignificant.
Supplementary figure S3. SARS-CoV-2 infectious viral loads detected in unvaccinated patients infected with pre-VOC or Delta (A), unvaccinated and vaccinated patients infected with Delta (B), vaccinated patients infected with Delta or Omicron (C) matched by age, sex, and dpos. Error bars indicate mean±SD. **p=0·001170; ****p<0·0001, ns=nonsignificant.

Supplementary Figure S4. Linear regression analysis of infectious viral shedding and time since the completion of vaccination in Delta infected patients.