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Abstract 

Background: Many studies have been conducted with the goal of correctly predicting 

diagnostic status of a disorder using the combination of genetic data and machine learning. The 

methods of these studies often differ drastically. It is often hard to judge which components of a 

study led to better results and whether better reported results represent a true improvement or 

an uncorrected bias inflating performance. 

Methods: In this systematic review, we extracted information about the methods used and other 

differentiating features in genomic machine learning models. We used the extracted features in 

mixed-effects linear regression models predicting model performance. We tested for univariate 

and multivariate associations as well as interactions between features.  

Results: In univariate models the number of hyperparameter optimizations reported and data 

leakage due to feature selection were significantly associated with an increase in reported 

model performance. In our multivariate model, the number of hyperparameter optimizations, 

data leakage due to feature selection, and training size were significantly associated with an 

increase in reported model performance. The interaction between number of hyperparameter 

optimizations and training size as well as the interaction between data leakage due to 

optimization and training size were significantly associated reported model performance. 

Conclusions: Our results suggest that methods susceptible to data leakage are prevalent 

among genomic machine learning research, which may result in inflated reported performance. 

The interactions of these features with training size suggest that if data leakage susceptible 

methods continue to be used, modelling efforts using larger data sets may result in 

unexpectedly lower results compared to smaller data sets. Best practice guidelines that promote 

the avoidance and recognition of data leakage may help the field advance and avoid biased 

results. 
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Introduction 

The genetic study of complex disorders has made great strides in the discovery of genome-wide 

significant genetic loci and substantial evidence for polygenicity[1].  These discoveries have 

generated new hypotheses about the etiology of these disorders and have motivated machine 

learning (ML) efforts to separate cases and controls using genome-wide association study 

(GWAS) data. While results from early genomic ML research had been promising, the potential 

pitfalls of such studies have limited their interpretation[2]. Although best practices have 

previously been described, the methods, reporting, and overall study design for genomic ML 

studies vary so drastically that it is often difficult to compare and evaluate studies[3]. This 

between-study heterogeneity may contribute to distrust and underutilization of machine learning 

results.  A clearer understanding of which genomic ML research are most important in 

producing successful results could lead to more consistent study design and reporting, which 

may collectively move the field towards using genomic ML models as a component of 

personalized medicine. 

To better appreciate the strengths and weaknesses of genomic ML research, one must 

understand the differences between ML analyses and traditional GWAS. GWAS seeks to 

determine loci that are statistically significantly different between cases of a disorder and 

healthy controls and to test for polygenicity[4]. Since these studies examine hundreds of 

thousands to millions of loci, researchers apply stringent genome-wide significance thresholds 

(most commonly p < 5 x 10-8) to reduce reporting false positive results.  

In the ML analyses we review here, the primary goal is accurately predicting whether subjects 

are cases or controls using differences in loci between the two groups. Towards achieving this 

goal, relying only on loci that meet the threshold for genome-wide significance limits the learning 

capability of ML models.  For example, a schizophrenia GWAS found that while 108 genome 

wide significant loci were able to explain 3.4% of the variation on the liability scale, including loci 
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that met the nominal significance threshold (0.05) increased the variation explained to 7%[5]. 

This effect may be more pronounced in ML models which take advantage of interactions 

between loci to find patterns that are useful in differentiating cases and controls since more loci 

give the models more potential to find patterns. 

Including additional loci in ML models has some drawbacks. One of the most important aspects 

of generalizable ML models is avoiding overfitting, which becomes more difficult as the number 

of loci increases[6]. Overfitting occurs when a model learns patterns that are only present within 

the data used to train the model (See Figure 1). In ML algorithms, the training process learns 

model parameters that minimize the difference between the predicted and actual case/control 

labels. Researchers aim to build models that use real, generalizable differences between cases 

and controls to make each prediction, but in practice, models are free to use whatever patterns 

best minimize that difference. If a model memorizes the noise specific to only the training data, 

the model is less motivated to learn patterns that may be more generalizable if using those 

patterns is less successful than memorizing training data noise. For many ML models, 

constraints are added to reduce the model’s ability to overfit, but overfitting is rarely completely 

avoided[6]. Each additional locus that a model has access to increases the probability of 

overfitting but also has the potential to add generalizable information the model can use to 

increase its ability to separate cases and controls. 

Many ML researchers account for overfitting by testing the performance of their models on data 

that were not seen during training[7].  One of two methods is typically used: cross-validation 

within the training set and validation with data not used at all in the training process. In k-fold 

cross-validation, researchers randomly split the data into some number of subsets, called folds, 

and then complete the association analysis and modeling that detect and use loci that are 

different between cases and controls to best separate the two classes using all but one of the 

folds.  The model is trained using data from k-1 folds and its accuracy is tested in the single fold 
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that was not included in training. This process is repeated until the model has used each fold as 

the withheld subset. Then the results across all iterations are averaged.  

In the hold-out method, researchers randomly split the data into either two (training and test) or 

three (training, validation, and test) subsets. The training subset is used for the association 

analysis and modeling. If present, the validation subset is used to tune the model by setting the 

optimal hyperparameters, which are all the options and configurations that are not trained by the 

model itself, to best predict the validation subset. Then, the test subset is used to measure and 

report model performance. Unlike in cross-validation where all folds are the same size, the hold-

out method typically uses 60-80% of the data in the training subset, while the remaining data is 

split evenly between the validation and test subsets. Cross-validation is often used when data is 

limited since in this method the model has a chance to train using each person in the study. The 

hold-out method, while not allowing the model to train on each person, is thought to be the more 

conservative approach and less likely to produce an overfit model.  

The value of external testing can easily be lost through methods that leak information about the 

test subset/fold into the training of a model[8]. When this occurs, the model can use that 

information to model the specific test data more accurately. Consequently, the test data no 

longer represent unseen data and no longer account for overfitting to the same degree. The 

result in a model that is biased in favor of the test data. This problem, called data leakage, is 

especially detrimental because it often goes unnoticed, leading researchers and their audiences 

to believe that their model performs exceptionally well even outside the training subset when 

instead they are observing model bias. The amount of data leakage caused through 

methodological issues can vary from slight leakages that may result in some overreporting of 

performance, to major leakages that cause the testing subset/fold to mimic the training 

performance with near-perfect prediction. One example of minor data leakage could be a cycle 

of checking the performance of a model in the test subset, then deciding to try more types of 
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models using the same data subsets until the performance meets a threshold deemed worthy of 

reporting. In this situation, researchers indirectly leak information about the test data into their 

modeling, allowing them to select the model that performed best in the test data and reporting 

an inflated result (See Figure 1). An example of major data leakage is using the entire data set 

to select which of the many different features best separate cases and controls and only splitting 

the data into subsets during the actual modeling. In this situation, when the features were 

selected with the entire data set, information about the test data were directly leaked into the 

process and the features included in the model will perform well in the test data, but in unseen 

data will either be less predictive or entirely unpredictive if the features selected are specific to 

the data in the feature selection process.  

The choices researchers make regarding which ML models to train, loci to include, and methods 

to use for measuring performance and optimization are critical decisions that will determine the 

outcome and validity of their study. But since few studies compare ML variations in the same 

external data sets, comparisons between studies are difficult even within the same disorder. 

This leads to a potential dilemma: Is a model with a higher reported performance better than a 

lower performing model or more overfit to their data?  

Here, we report a systematic review that extracted information on model performance, disorder, 

training size, ML methods, optimization methods, performance measurement methods, and 

reporting on common issues from all published genomic ML papers. We use this information in 

a mixed-effects linear regression model predicting model accuracy as measured by the area 

under the receiver operating characteristic curve (AUC). Within each data set and study 

involving machine learning models, many factors, such as training size, model type, and 

disorder, likely have a real, generalizable impact on reported model performance. When looking 

at a group of studies, those factors may be harder to identify due to the variable effects of data 

leakage among the studies in the group. We hypothesized that data leakage would be 
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associated with a significant increase in reported AUC.  We sought to test this hypothesis and to 

identify other study features that lead to increased reported AUC.  

Methods 

Search strategy and selection 

To identify studies that used genotype data as input for machine learning models to predict any 

disorder, we searched PubMed using the key-words ‘(GWAS OR genotype[ti] OR SNP) AND 

(classification OR predict OR prediction) AND ("machine learning" OR "data mining[ti]" OR 

"neural network*" OR "random forest" OR "support vector machine")’. The search produced 660 

studies (up to July 1, 2021).  

We excluded studies that were not using machine learning classifiers to predict a human 

disorder, studies that did not report results for genotype only models, and studies that did not 

report testing performance outside the data used to train the model. We also excluded studies 

starting with less than 100 variants, since these studies are generally focused on specific 

variants that have been thoroughly studied and do not face many of the challenges addressed 

in this paper. We excluded studies that did not report AUC as a performance metric since 

combining different performance metrics in our analysis would limit interpretation and potentially 

bias results. After exclusion criteria, 41 studies remained[9-49].  These studies provided 

accuracy statistics for 77 models because some studies modeled multiple disorders. 

Supplementary Figure 1 shows the article selection procedure in a PRISMA diagram. 

Data extraction  

We extracted the following data from each included study: disorder predicted, number of 

subjects used for training and testing, number of participants the model was trained on, highest 

AUC, method for testing/reporting model AUC, reporting on optimization, number of 
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hyperparameters optimized, number of models reported, and machine learning method with the 

highest AUC. We split studies that modeled multiple disorders such that each row of extracted 

data represented a single disorder from a single study.  

Regression analysis 

We fit linear mixed-effects models to test the individual and combined contribution of study 

variables to AUC. The standard error of each of our models was estimated using a clustered 

sandwich estimator clustering on PMID of the included studies, which adjusts standard errors 

for the lack of statistical independence of results within studies.  We fit univariate models with 

AUC as the dependent variable and used the following as independent variables: data leakage 

through feature selection, data leakage through hyperparameter optimization, disorder type, 

reporting of optimization, number of hyperparameter optimizations reported, disorder heritability, 

model type, testing method, and size of training dataset.  

Data leakage through feature selection was a binary feature scored as 1 if the data used to test 

model performance were used to select which features would be included in the model. It was 

scored zero otherwise.  Data leakage through optimization was a binary feature scored 1 if the 

data used to test model performance was used at all in optimizing the model. It was scored zero 

otherwise.  Reporting of hyperparameter optimization was a binary variable scored 1 if the 

authors reported any optimization of model hyperparameters. It was scored zero otherwise.  

Number of hyperparameters optimizations indicated the number of hyperparameters the authors 

reporting optimizing in the model with the highest AUC. Disorder heritability for each disorder 

included in these studies was gathered from heritability studies of those disorders based on 

twins or families. Model type was a binary variable scored 1 if the model with the highest AUC 

was non-linear and 0 if it was linear. Testing method was a binary variable scored 1 if cross-

validation was used to test model performance and 0 if a hold-out test subset was used to test 

model performance.  
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We corrected univariate p-values for multiple testing using Bonferroni correction. Variables were 

added to a multivariate model sequentially, ordered based on the p-value of the variables 

univariate model, and kept if the variable remained significant.   

Among the possible interaction terms for the variables used in our models, we identified 6 

interactions that could be reasonably hypothesized to impact prediction performance. These 6 

terms were: data leakage through feature selection + training size, number of hyperparameter 

optimizations + training size, testing method + training size, data leakage through 

hyperparameter optimization + training size, number of hyperparameter optimizations + data 

leakage through hyperparameter optimization, and number of hyperparameter optimizations + 

testing method. We tested the potential interaction terms as individual additions to the 

multivariate model, added the interactions sequentially ordered by the p-value of the initial 

interaction models, and kept the interactions in the final model if they remained significant. For 

each significant interaction, we estimated predictive margins using STATA16’s margins 

command, which computes the average probability for each observation at a fixed level of a 

selected variable[50]. In our analyses, these predictive margins estimate the average AUC of 

our collection of studies at each fixed level of a selected variable. To visualize these effects 

within the training size range of the included studies, we fixed the values of tested variables at 

each level, estimated the predicted AUC for each study, and then plotted a linear prediction of 

the predicted AUCs for each group level as a function of training size.  

Results 

Among the 41 studies and 77 models included, 27 different disorders were modeled. The 

average AUC among all models was 0.77. Thirty-nine percent (N = 30) of the models modeled 

eight autoimmune disorders and had a mean AUC of 0.81 ± 0.12. Eighteen percent (N = 14) of 

the models modeled six psychiatric disorders and had a mean AUC of 0.74 ± 0.16. The 
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remaining 33 models modeled 12 disorders that did not fit into either of these groups and had a 

mean AUC of 0.76 ± 0.16. The included studies and models are listed in Table S1.  

In univariate models the number of hyperparameter optimizations reported and data leakage 

due to feature selection were significantly associated with an increase in AUC in the test data 

after correcting for multiple testing (Table 1). Use of a non-linear model was nominally 

associated with an increase in AUC but did not remain significant after correcting for multiple 

testing. Disorder type, reporting on optimization, training size, testing method, disorder 

heritability, and data leakage due to optimization were not significant.  

When interactions were entered one at a time, the interaction between number of 

hyperparameter optimizations and training size as well as the interaction between data leakage 

due to optimization and training size were significantly associated with AUC after correcting for 

multiple testing (Table 2). In predictive margins analysis, the average marginal effect of training 

size on AUC was nominally significantly positive (p = 0.004) when data leakage due to 

hyperparameter optimization was absent and was not significant (p = 0.71) when data leakage 

due to optimization was present. Figure 2 illustrates the effect of predictive margins analysis by 

showing the linear fit of the predicted AUC when we fixed data leakage due to hyperparameter 

optimization to either absent or present. The average marginal effect of training size on AUC 

was significantly positive (p < 0.001) when the number of hyperparameters optimized was fixed 

at zero and was significantly negative (p = 0.001) when the number of hyperparameters 

optimized was one standard deviation higher than the mean (Figure 3). After we added data 

leakage due to hyperparameter optimization to the previous predictive margins analysis, the 

marginal effect of training size on AUC with no hyperparameter optimization remained 

significantly positive (p = 0.001) while the marginal effect of training size on AUC with the 

number of hyperparameters optimized fixed at one standard deviation higher than the mean 

remained significantly negative (p = 0.002). Figure 3 illustrates the effect of this predictive 
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margins analysis by showing the linear fit of the predicted AUC when we fixed number of 

hyperparameters optimized to either zero, which was approximately one standard deviation 

below the mean, and 6.6, which was approximately one standard deviation above the mean. 

When sequentially adding the interactions, only the interaction between number of 

hyperparameter optimizations and training size remained significant after Bonferroni correction. 

Our final multivariate model included the number of hyperparameter optimizations, data leakage 

due to feature selection, disorder type, and the interaction between number of optimizations and 

training size along with their main effects (Table 3). In this model, number of hyperparameter 

optimizations, data leakage due to feature selection, and training size were significantly 

associated with an increase in AUC after correcting for multiple testing. In comparison to 

autoimmune disorders, both psychiatric disorders and disorders not belonging to either group 

were significantly associated with a decrease in AUC after multiple testing correction. The 

interaction between number of hyperparameter optimizations and training size was significantly 

negatively associated with AUC after correcting for multiple testing.  The main effects of data 

leakage due to hyperparameter optimization, model type, reporting on optimization, testing 

method, and disorder heritability were not associated with changes in AUC in our multivariate 

model. The interaction between data leakage due to optimization and training size was initially 

significantly negatively associated with AUC (p = 0.0039) but was no longer significant after 

multiple testing correction. The interaction between data leakage due to optimization and the 

number of hyperparameter optimizations was initially significantly positively associated with 

AUC (p = 0.019) but was not significant after multiple testing correction. None of the other 

interaction terms we tested were significantly associated with AUC.  
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Discussion 

Our analysis to determine which features of genomic ML studies lead to significant increases in 

AUC found evidence that, in many studies, methodological issues result in overreporting of 

model performance. Out of the studies investigated here, 44% had some form of data leakage 

due to feature selection. The most common form of data leakage due to feature selection was 

using the entire dataset for the GWAS and later splitting the dataset into multiple subsets or 

folds. Since the test data were used to determine the loci that best separate cases from controls 

before ML modeling, even if researchers split the data into separate subsets during ML, 

information from the test data has already leaked into the process, which would lead to 

overestimates of accuracy. The coefficient of our multivariate model for this feature indicates 

that, on average, this form of data leakage increases the AUC by 0.18 after adjusting for other 

factors.  For some applications, an increase in AUC of that magnitude would be enough to move 

models into a performance range that would falsely suggest clinical utility. Although this is the 

first demonstration of this problem for a collection of genomic ML studies, others have 

previously warned of the potential for this type of issue to interfere with results.   

Out of the included studies, 56% had some form of data leakage due to hyperparameter 

optimization. In this form of data leakage, the test data are used multiple times as the 

researcher is optimizing the hyperparameters of a model to determine which set of those 

hyperparameters results in the best performance in the test data. A study using random training 

data showed that improper use of cross-validation, one example of data leakage due to 

hyperparameter optimization, leads to biased performance in the compromised dataset[51]. This 

type of data leakage allows the model to overfit the data by giving it many different opportunities 

to find a model that best separates those specific test data.  It is typically used for smaller data 

sets where it is not feasible to create an independent test set.  Instead, a more generalizable 

practice would be to either use a different subset or cross-validation within the training data to 
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optimize hyperparameters and apply those hyperparameters to a single model in the test 

data[7].  

Although the main effect of data leakage due to hyperparameter optimization was not 

significant, its interaction with training size was significant even after correcting for multiple 

testing. Learning curve analyses have demonstrated that increasing training size results in 

increased performance in machine learning since the model has more opportunities to learn 

patterns and features within the data[52, 53]. In learning curve analyses, a machine learning 

model is trained with an increasing number of training examples and prediction performance is 

measured at each training size[54]. Generally, models will gradually improve with training size 

until a plateau is reached. The amount of training data necessary to reach the plateau and the 

prediction performance at the plateau depend on the complexity of the model and the prediction 

task.  Increased training size also makes it more difficult for ML models to find non-

generalizable patterns within the noise of large datasets and the correlated increase in test size 

makes it more difficult to bias towards the test data when data leakage is present[55]. Thus, we 

thought that the interaction of data leakage due to hyperparameter optimization and training size 

would be important and included it in our analysis. This interaction was significant.  As illustrated 

in Figure 2, training size was nominally positively associated with the predicted AUC only when 

data leakage due to hyperparameter optimization fixed at absent. This finding makes it evident 

that optimizing directly on test data should be avoided and verifies that increasing the number of 

subjects included in machine learning studies could further improve results. Our model also 

warns that if data leakage due to optimization occurs, studies with this issue may not benefit as 

much as expected from increasing training size. 

The number of hyperparameter optimizations reported by researchers was associated with 

increased AUC in our univariate and multivariate models. Unlike the data leakage features, 

which are clearly a source of bias, the number of hyperparameters optimized could lead to 
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genuine improvement, bias, or a balance of the two. The “no free lunch” theorem states that all 

optimization algorithms have the same performance when averaged over all possible tasks[56]. 

Applied in the context of machine learning hyperparameters, this means that it is impossible to 

know which type of model or hyperparameters within the model will perform best on a given 

dataset without prior knowledge. This maxim has led to the best practice of optimizing the 

hyperparameters of a model by either using a grid search over different values of those 

hyperparameters or using hyperparameter optimization algorithms and suggests that at least 

some of the improvement due to the number of hyperparameters optimized is due to genuine 

prediction improvement.  

Conversely, the variable representing the number of hyperparameters optimized may also be a 

proxy of cryptic data leakage due to optimization. If data leakage due to hyperparameter 

optimization is present within the study, more optimizations will likely result in a model that is 

more biased in favor of the test data because the model has more opportunities to use the 

information it obtains about the test data through data leakage to find the optimal configuration 

for those data. This is similar to the data leakage illustrated in Figure 1, but instead of being only 

biased towards the unreported validation subset, the model would also be biased towards the 

test data. As illustrated in Figure 3, the average marginal effect between training size and AUC 

is significantly positive when fixed at no hyperparameters optimized and significantly negative 

when fixed at a value 1 standard deviation above the mean number of hyperparameters 

optimized. One explanation of this finding is that since the models with no hyperparameters 

optimized have fewer chances to use any leaked information about the test data and the results 

of increasing training size would represent the real improvements demonstrated in unbiased 

learning curve analyses. In comparison, if models with more optimized hyperparameters are 

more biased due to unaccounted data leakage, we would expect a more negative association 

with AUC when more hyperparameters are optimized because, in addition to the positive effects 
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of training size, the increase in training and testing size will increase the difficulty of biasing 

towards the specific leaked test data. .   To test whether these effects could be explained 

through the data leakage through hyperparameter optimization variable, we ran an additional 

predictive margins analysis which included the variable in the model. The results of the analysis 

were almost identical after including the data leakage through hyperparameter optimization 

variable, suggesting that the data leakage observed here is beyond what we could detect 

through reporting on methods. An alternate explanation could be that studies with highly 

optimized models, large training size, and relatively low performance share some other cryptic 

factor that drives the negative association of AUC with training size when hyperparameters 

optimized is fixed to a high value. While arguably a diminishing effect of training size on AUC 

with increased optimization may instead reflect the ability of larger datasets to overcome the 

limitations of unoptimized modeling better than smaller data sets, this argument would not 

explain the significantly negative average marginal effect of training size on AUC in models with 

more optimized hyperparameters. Unbiased model improvements due to increased 

optimizations are likely a component of the positive marginal effect on AUC found in our 

analysis, but any real effects are inseparable from the cryptic data leakage. Our results suggest 

that even when optimization is reportedly handled appropriately,  data leakage due to 

hyperparameter optimization may still be present. These findings should not be interpreted as 

evidence that hyperparameter optimization should be avoided to reduce data leakage. 

Hyperparameter optimization is an important component of improving machine learning models 

and can be done in ways that avoid data leakage. Instead, our results points towards the 

necessity of establishing and following standard practices that are more careful in avoiding data 

leakage in the genetics machine learning field. 

The type of disorder studied was significantly associated with AUC in our final multivariate 

model after Bonferroni correction. After adjusting for other significant predictors of AUC, models 
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of autoimmune disorders had significantly higher AUCs compared to both psychiatric disorders 

and all other disorders. We were initially surprised by the lack of association between disorder 

heritability and AUC since disorders with a larger genetic component should theoretically be 

more predictable in genetic models, but the significance of disorder type may help explain 

disorder heritability’s lack of significance in our multivariate models. The hypothesis that 

disorder heritability may be associated with an increase in AUC assumes that the difficulty of 

extracting and modeling the genetic components is equivalent in all disorders. If the accessibility 

and ease of modelling genetic risk differ between disorders, we would no longer expect 

heritability to be associated with AUC. While this conclusion could previously be inferred by 

comparing the effect sizes of individual loci in GWASs of different disorders, our analysis 

provides further evidence that the genetic information from some groups of disorders may 

collectively differ in accessibility and ease of modelling.  Differences in accessibility and ease of 

modelling could be due to differences in genetic architecture or differences in measurement 

(e.g., differences in misclassification rates).  

Our study has several limitations that may have limited our ability to detect associations 

between the included features and AUC. The studies used in this analysis are heterogeneous 

due, in part, to the inclusion of any human disorder. These disorders likely have differing genetic 

complexities and optimal prediction performances, which may have limited our ability to detect 

differences in AUC based on the features of the study but also highlights the strength of the 

features that were detected despite this heterogeneity. We were unable to use specific 

disorders as a feature in our analysis due to the limited number of studies with each disorder. 

Excluding papers that did not use AUC as a performance metric limited the number of studies 

we could include in this analysis. Our study was also limited to using what was reported in these 

studies, which may have limited our ability to fully assess data leakage and optimization. 
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Our analysis of genomic machine learning studies has implications for defining best practices 

for genomic ML studies.  Although such studies may eventually lead to clinically actionable risk 

calculators, publications that overestimate results will not be replicated, which could lead the 

field to prematurely abandon ML. We found data leakage due to both feature selection and 

optimization to be prevalent.  The former leads to increased AUCs that likely overestimate the 

models’ true performance outside the training data while the latter limits or hides the effect of 

increasing training size. We also found evidence that suggests data leakage due to optimization 

may occur even when studies report methods that should minimize the effects of data leakage. 

If genomic machine learning methods and results are to be improved and trusted, researchers 

must recognize and avoid these issues. Thorough best practice guidelines that promote the 

avoidance of data leakage and other common issues will be critical as the field grows and 

advances. 
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Table 1. Univariate mixed-effects linear model results 

Feature Coefficient z P>|z| 

Number of optimizations 0.02 7.07 <0.001** 

Data leakage: feature selection 0.17 3.65 <0.001** 

Model type 0.12 2.63 0.008 

Disorder type  1.95 0.15 

            autoimmune vs other -0.05 -1.51 0.14 

            autoimmune vs psych -0.06 -1.63 0.09 

            psych vs other  0.49 0.63 

Reported optimization 0.06 1.57 0.12 

Training size -7 x 10-7 -0.74 0.46 

Testing method 0.04 0.73 0.46 

Disorder heritability 0.07 0.61 0.54 

Data leakage: optimization 0.03 0.56 0.57 

*p<0.05 after multiple testing correction, **p<0.01 after multiple testing correction 
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Table 2. Multivariate mixed-effects linear model interaction results 

Feature z P>|z| 

Number of optimizations # 
training size 

-3.34 0.0008* 

Data leakage: optimization # 
training size 

-2.99 0.003* 

Data leakage: feature selection 
# training size 

-1.81 0.07 

Testing method # training size -1.49 0.14 

Testing method # number of 
optimizations 

-1.29 0.20 

Data leakage: optimization # 
number of optimizations 

-0.28 0.78 

*p<0.05 after Bonferroni multiple testing correction, **p<0.01 after 
Bonferroni multiple testing correction, #: interaction 
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Table 3. Multivariate mixed-effects linear model results 

Feature Coefficient z P>|z| 

Number of optimizations 0.04 4.04 0.0001** 

Data leakage: feature selection 0.16 3.19 0.0014* 

Disorder type    

            autoimmune vs other -0.10 -4.27 <0.0001** 

            autoimmune vs psych -0.11 -3.72 0.0002** 

            psych vs other  0.64 0.51 

Training size 1.4 x 10-5 3.56 0.0004** 

Number of optimizations # 
training size 

-6.58 x 10-6 -3.34 0.0008** 

    

*p<0.05 after Bonferroni multiple testing correction, **p<0.01 after Bonferroni multiple testing 
correction, #: interaction 
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Figure 1: Overfitting, sample size, and data leakage 

a. Plot Overview: In this illustrative example, we have condensed most of the known genetic variance for a 
hypothetical disorder into 2 continuous features scaled from 0 to 1. In these graphs the axes represent those
2 continuous features, and each point represents a person in the training subset based on their values for 
each feature. People who are cases of the hypothetical disorder are shown in red while people who are 
controls are shown in blue. The true population distribution of cases and controls, which would be unknown 
to us when modeling since we can only sample from the population, is represented by the background, with 
the intensity of the gradient representing how likely a person is to be a case (red) or control (blue) given the 
2 features. The white space represents a region in which the likelihood of being a case or control is similar 
and perfect separation of cases and controls is impossible with only genetic data. Our task is to build a 
model that predicts whether each person is a case or control. To do this task in this example, we will build 
models that enclose all predicted controls. The optimal solution in this case would be a circle splitting the 
white region, but since our data are not a perfect representation of the population distribution, the models we
make will inevitably be less optimal. We will discuss several factors that commonly impact how similar a 
model can be to the optimal model.  

b. Overfitting: Many models are easily capable of achieving perfect prediction on the data that are used to 
build or train the model. However, that performance may be specific to the training data, as illustrated by the 
overfit Model 1. To get a more generalizable measure of model performance, we should test performance in 
data that are not used to train the model. If we were to test Model 1 in a different sample of unseen data 
(validation subset) we may find that it is not nearly as predictive in that subset since the model was trained 
using some patterns that generalize to the population and some patterns in the training data that do not 
match the population distribution. 

c. Advantages of Increasing Training Size: If we increased the training size (only case/control boundary 
examples illustrated) it would become clear that Model 1 was overfit to the original data and the model does 
not generalize to the population. At this point it may still be possible to get perfect prediction by overfitting 

se 

we 
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in 
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the model to the data with more complex models, as illustrated by Model 2, but overfitting becomes 
increasingly difficult as more data are added to the training subset.  

d. Bias due to Data Leakage: To find the model with the best prediction in unseen data, we can use a 
validation subset (not shown) to optimize which model type we use and which hyperparameters or options to 
use within a model. During this process, we indirectly learn information about the validation subset as we 
find the model that best predicts that specific set of unseen data. Therefore, our model is biased towards 
correctly predicting the validation subset due to indirectly “leaking” information from the validation subset 
during model optimization. Each additional model trained during optimization increases the potential for data 
leakage, but also increases the potential of finding the optimal model. The best model among many trials 
optimizing towards the validation subset is illustrated by Model 3. Since the data in the validation subset are 
no longer truly unseen data, we should test the best model in a new, completely unseen subset to avoid 
data leakage from inflating our reported model performance. We can use the test subset (not shown) for this 
purpose to report the performance of the optimized model on unseen data. In this example, the validation 
data contained more cases than controls in the unshaded area wherein the population is equally split 
between cases and controls. This resulted in choosing a model that performs better in the validation subset 
compared to the test subset because the test subset and population do not have all the same patterns seen 
in the validation data. The imperfect generalization of models to unseen data is expected, which is why a 
final test on truly unseen data is important for accurate performance reporting. Testing more models on the 
test subset may lead to the same indirect data leakage occurring in the test subset, resulting in inflated 
reported performance, so use of the test subset should be reserved for the final model.  

 

 

Figure 2. Predictive Margins Analysis of Data Leakage Due to Hyperparameter Optimization. Here, we graph the 
linear fit of the predicted AUC when we fixed data leakage due to hyperparameter optimization to either absent or 
present. The average marginal effect of training size on AUC was nominally significantly positive (p = 0.004) when 
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data leakage due to hyperparameter optimization was absent and was not significant (p = 0.71) when data leakage 
due to optimization was present. 

 

 

 

 

Figure 3. Predictive Margins Analysis of Number of Hyperparameters Optimized. Here, we graph the linear fit of the 
predicted AUC when we fixed the number of hyperparameter (HP) optimizations to either many optimizations (+1 
standard deviations) or no hyperparameter optimizations. The average marginal effect of training size on AUC was 
significantly positive (p < 0.001) when the number of hyperparameters optimized was fixed at zero and was 
significantly negative (p = 0.001) when the number of hyperparameters optimized was one standard deviation higher 
than the mean. 
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