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Abstracts: 
Objective 

Inpatients with high risk of venous thromboembolism (VTE) usually face serious 
threats to their health and economic conditions. Many studies using machine learning 
(ML) models to predict VTE risk neglected an important statistical phenomenon, 
‘fuzzy feature’, and achieved inferior results. Considering the effect of ‘fuzzy feature’, 
our study aims to develop a VTE risk assessment model suitable for Chinese medical 
inpatients. 
Materials and Methods  

Inpatients in the medical department of Peking Union Medical College Hospital 
(PUMCH) from January 2014 to June 2016 were collected. A new ML VTE risk 
assessment model was built through population splitting. First patients were classified 
into different groups based on values of VTE risk factors, then trustless groups were 
filtered out, and finally ML models were built on training data in unit of groups. 
Predictive performances of our method, five traditional ML models, and the Padua 
model were compared. 
Results  

The ‘fuzzy feature’ was verified on the whole dataset. Compared with the Padua 
model, the proposed model showed higher sensitivities and specificities on training 
data, and higher specificities and similar sensitivities on test data. Standard deviations 
of predictive validity of five ML models were larger than the proposed model. 
Discussion 
    The proposed model was the only one which showed advantages on both 
sensitivity and specificity over Padua model. Its robustness was better than traditional 
ML models. 
Conclusion 

This study built a population-split-based ML model of VTE for Chinese medical 
inpatients and it may help clinicians stratify VTE risk and guide prevention more 
efficiently. 
 
INTRODUCTION 

Venous thromboembolism (VTE), comprising deep venous thrombosis (DVT) 
and pulmonary embolism (PE), is a life-threatening disease associated with more than 
one-half million hospitalizations in the United States each year, and is a contributing 
cause in 100,000 or more deaths.1,2 As a common cardiovascular disease, VTE often 
leads to complications including recurrent VTE, post-pulmonary embolism syndrome, 
chronic thromboembolic pulmonary hypertension, and post-thrombotic syndrome, 
causing heavy burden to both life quality and economy. 3 

Prophylaxis against VTE such as anticoagulant drugs, graduated compression 
stockings and venous foot pump can reduce mortality efficiently. Studies have shown 
that appropriate prevention can lower patients’ VTE incidence from 10.5%-14.9% to 
5.5-5.6% in medical department and also reduce VTE events in surgical departments. 
4-6 Since hypercoagulability is one of the most important VTE risk factors,7 
anticoagulant drugs realize the disease prevention by changing coagulation status for 
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high VTE risk patients. However, it may also cause bleeding events and even death, 
especially for patients with low VTE risk, who is not hypercoagulabe. Therefore, to 
recognize patients with high VTE risk clinically is vital and a precise VTE risk 
assessment model is needed to guide prevention. 

The American College of Chest Physicians recommended Padua risk assessment 
model, a linear model consisting of 11 VTE risk factors (Table 1), to stratify VTE risk 
for medical inpatients.8,9 Inpatients with Padua score of no less than 4 points were 
considered as high-risk and recommended to receive prophylaxis. However, due to 
the close correlations between VTE and race, genetic background and disease 
spectrum, studies have shown that the Padua model, which was derived based on the 
Western population, is not suitable for Chinese inpatients.10,11 Thus, it is necessary to 
establish a model suitable for Chinese inpatients. 

 

Table 1 Padua risk assessment model. 
Risk factor Score 
Active malignant cancer/chemotherapy 3 
Previous VTE 3 
Reduced mobility 3 
Thrombophilic condition 3 
Recent trauma/surgery 2 
Age>=70 1 
Heart/respiratory failure 1 
Acute myocardial infarction/ischemic stroke 1 
Acute infection/rheumatologic disorder 1 
BMI>=30 kg/m2 1 
Ongoing glucocorticoid treatment 1 

A Padua score ≥ 4 is classified as high risk. 

With the rapid development of artificial intelligence technology, machine 
learning (ML) models are increasingly employed in medical research.12,13 Support 
vector machine (SVM), random forest (RF), gradient boosting decision tree (GBDT), 
logistic regression (LR) and XGBoost have been proposed to do VTE risk assessment, 
but most of them trained models using equal number of VTE and non-VTE 
patients.14-16 Wang, Yang, Liu, Hong, Sun, Shi 17 compared multiple ML models by 
training them on 188 VTE and 188 non-VTE patients, and showed that performances 
of ML models were instable and their sensitivities were lower than the Padua. In 
addition, explainability of ensemble-based models such as RF, GBDT and XGBoost 
was limited though their predictive performances were relatively well. 

All previous ML VTE risk assessment models ignored an important statistical 
phenomenon in VTE population (we called ‘fuzzy feature’). That is, VTE and 
non-VTE patients can share the same values of all risk factors. Let 

�� � ����, ��� , ���, … , ���� be the ���  patient with K risk factors where ��� � 	0,1� 

represents value of the ��  risk factor, and �� � 	0,1� indicates whether the patient 
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has VTE. The ‘fuzzy feature’ phenomenon means that there are the ���  and 
��patients, 

��	 � ��	 , for k � 0, … , K � 1 but �� � �� , 
and it results in many groups with different values of risk factors. Assuming that by 
analyzing all patient data in a hospital for a certain period, there are � patients with 
same values of � risk factors, 

�
	 � ��	 � � � ���� 	 � �	 , ��� � � 0, … , � � 1 
, and VTE events occurred in � patients,  

 ��

���

��

� m, for i � C, |C| � n  

, where n patients with risk factor vector v � ��
 , �� , … , ����� make up the group C. 
The VTE risk ratio for group C can be calculated as r � � �⁄ . 

The existence of this phenomenon limits the performance of ML model in two 
aspects. On one hand, most reported VTE ML models were trained using equal 
number of VTE and non-VTE patients, which was not consistent with distribution of 
the real clinical dataset. In these training set, the estimation of VTE risk ratio of the 
group C, denoted as ��, may be unequal to �, which represents the VTE risk ratio in 
the real clinical dataset. When �� ( �, the ML model tends to predict patient with the 
risk factor vector v to be high risk and vice versa. Besides, when the training set 
includes more patients from the group C with risk factor vector v, the number of 
patients from other groups with vector �� ��� � v� tends to be less, which will 
influence the prediction of patients with risk factor vector �� . Therefore, it is 
unreasonable to construct the training set by including equal number of VTE and 
non-VTE patients. On the other hand, when the number of patients in group C is small, 
estimation of its real VTE risk ratio r may be unreliable. Especially, due to the low 
incidence rate of VTE, non-VTE patients are more likely to be observed in a group. If 
there is a group C with high VTE risk ratio r but only small number of non-VTE 
patients from it were collected, ML model based on it will predict patients of group C 
as low risk, which reduces model’s sensitivity.  

Considering the problem of Padua model and the effect of ‘fuzzy feature’ 
phenomenon, to build a new VTE risk assessment model for Chinese inpatients, this 
study proposed a population-split-based approach as shown in Figure 1. This 
approach first split patients into different groups according to their values of risk 
factors, then filtered out trustless groups, and finally trained ML models in the unit of 
groups. It explores relationship between VTE events and combinations of risk factors 
by constructing different groups, rather than relationship between VTE event and risk 
factors, which shows advantages of robustness and good performance. Then our 
model was compared with Padua and multiple traditional ML models on real clinical 
dataset to verify its efficiency, indicating the potential to help clinicians evaluate VTE 
risk and guide prevention. 
 
MATERIALS AND METHODS 
Population 

This study analyzed inpatients who developed VTE, including DVT and PE, and 
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partially non-VTE patients in medical department of Peking Union Medical College 
Hospital (PUMCH) from January 2014 to June 2016. All these inpatients from May 
2016 to June 2016 were included as a test cohort for model verification and the other 
patients formed the training cohort. All the enrolled patients met the following 
inclusion/exclusion criteria: inclusion criteria: over 18 years old, hospital stay ≥72 
hours; exclusion criteria: receiving anticoagulation medicine (e.g., therapeutic dose of 
low-molecular-weight heparin for treatment of acute myocardial infarction) other than 
the anticoagulation regimen for VTE diagnosed during the hospitalization.  

DVT was diagnosed as the presence of intraluminal blocking or filling defects in 
the deep veins of the upper or lower limbs evidenced by venography or deep vein 
thrombogenesis illustrated by color Doppler ultrasonography. PE was diagnosed 
either as the presence of intraluminal blocking and/or filling defects in the pulmonary 
arteries by pulmonary angiography, computed tomographic pulmonary arteriography 
or magnetic resonance, or by radionuclide lung ventilation-perfusion scans showing 
multiple pulmonary segmental perfusion defects. This study was approved by the 
Ethics Committee of PUMCH in Chinese Academy of Medical Sciences (reference 
number for ethics approval: B164). 

 
Variable selection 

The variables involved in modeling are VTE risk factors, including active cancer, 
previous VTE, reduced mobility, thrombophilia, recent trauma and/or surgery, age 
≥70 years, heart and/or respiratory failure, acute myocardial infarction or ischemic 
stroke, acute infection and/or rheumatologic disorder, obesity, ongoing glucocorticoid 
treatment, hormone replacement therapy including estrogen or progesterone, 
mechanical ventilation 11. 

 
Population clustering analysis and population split 

In order to learn patterns of distribution of VTE patients, population clustering 
analysis was performed using 16 features, including 13 VTE risk factors, Padua score, 
Padua high risk, and the number of non-zero risk factors. Inspired by the clustering 
analysis results, patients were split into different groups based on values of 13 risk 
factors. Denote the dataset consisted of N patients as ) � 	��� , ������


��� , where 
�� � ����, ��� , ���, … , ����  represented feature vector of the ���  patient, ��	  is 
binary variable, and �� � 	0,1�. Now the dataset X was split into T groups C �
	*������


���, and for the +��  group, ���� � |*���| represented its number of patients. 
For every patient belonged to *���, their values of feature vector were the same 

���� � ��


���, ��

���, … , ��

����. For any two groups *���  and *���, we have 

���� � ����, ��� ,�� *��� � *, *��� � *, ,�- + � .. 
 

Calculation of VTE risk ratio and group filtering 
After splitting the dataset into T groups, VTE risk ratio for each group was 

calculated. For group *���, let ���� � ∑ ��������  be the number of VTE patients, and 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 10, 2022. ; https://doi.org/10.1101/2022.01.08.22268955doi: medRxiv preprint 

https://doi.org/10.1101/2022.01.08.22268955
http://creativecommons.org/licenses/by-nc-nd/4.0/


its VTE risk ratio was ���� � ����

����
. To remove groups which couldn’t represent real 

VTE risk ratio, the probability of including ���� VTE patients among ���� patients 
for group *��� was computed using the incidence rate of VTE, 

0��� � 1�����1 � 1����������
, 

where 1  was the VTE incidence rate in whole population. Then groups with 
0��� 2 threshold (e.g. 0.05) were filtered out and the remaining groups were saved 
to train model. 
 
Training set construction 

Considering the effect of the ‘fuzzy feature’, training set was built in unit of 
group *��� instead of patient ��� , ���. Firstly, all saved groups were sorted by VTE 
risk ratio ����, number of VTE patients ����, and [-1* number of non-VTE patients 
����� � ����)]. Then accumulated sensitivities and specificities were calculated from 

group *�
� to *�����. Groups after filtering were denoted as *� � 	*�

����
��


����
 and 

9� � |*�| was the number of groups. For the +��  group *�

��� , its accumulated 

sensitivity and specificity were 

Sen��� � ∑ �����
��	

∑ ��
�
���

��	

 and Spec��� � 1 � ∑ ����������
��	

∑ ��
����
�
���

��	

. 

Next groups were classified into high and low VTE risks by thresholding values of 
Spec��� (e.g. 75%). The groups with Spec��� 2 +=�>?=�@- were recognized as the 
high risk with ���� � 1, the other groups were the low risk with ���� � 0. Finally, 

model training set )� � 	�����, ������
��


����
 with 9� samples was constructed. 

 
Model derivation 

In the training set, labels of groups were assigned based on statistical analysis, 
and they were regarded as the ground truth, or known knowledge. For patients from 

known groups *�

���, the VTE risk could be obtained simply by looking up a table 

consisted of all groups �����, �����. For patients from unknown groups *��	����, 

����	����� � ���� , ��� ,�� *�

��� � *� , + � 	0,1, … , 9� � 1�. 
Reasonable and accurate VTE risk prediction for these unknown patients was needed 
based on results of known groups, which was the goal of training a ML model.  

Thus, the proposed VTE risk assessment model consisted of two modules, the 
group-memory module for patients from known groups and group-prediction module 
for patients from unknown groups. For group-memory module, a decision tree model 

was used to record all pairs �����, ����� from )�, and contributions of risk factors 

could be analyzed by comparing feature weights. For group-prediction module, an 
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artificial neural network (ANN) was used to fit the relationship between feature 
vector of group ���� and VTE risk ratio ����. By comparing goodness of fit, the 
optimal ANN with the highest 1� was selected, and patient with predicted VTE ratio 
2 0.5 was recognized as the high VTE risk. 

 
Model evaluation and comparison 

To verify the proposed model’s efficiency, five traditional ML models including 
SVM,RF, GBDT, LR 18, and XGBoost 19, and Padua model, were compared. Five ML 
models were trained in the popular method, on the same training patients as the 
proposed model, and considering that the number of non-VTE patients were larger 
than the number of VTE, non-VTE patients equal to the number of VTE patients were 
randomly selected to construct 1:1 training set. For five ML models, 10-fold cross 
validation was used and the optimal ML models were chosen with the highest Youden 
index 20. Model’s sensitivity, specificity, and Youden index were computed to evaluate 
their predictive validity, and the training process was repeated five times to calculate 
mean values and standard deviations.  
 
 
RESULTS 
Characteristics of distribution of VTE patients 

230 VTE patients and 3054 non-VTE patients were included in this study. 
Clustering analysis with 13 VTE risk factors and 3 Padua-score-related features on 
these patients, (Figure 2) showed that VTE patients didn’t get together and were 
scattered among non-VTE patients. The distribution of VTE patients with a Padua 
score ≥ 6 points (accounting for 49.13% of overall VTE patients) is more intensely 
concentrated, while VTE patients with Padua score <6 points were poorly 
characterized by the Padua model and distributed over a wide area (accounting for 
50.87% of overall VTE patients). 14.35% VTE patients had a Padua score under 4 
points and were stratified incorrectly as low risk. In addition, 85.87% of the high-risk 
patients recognized by the Padua were non-VTE patients. 

Inspired by the clustering analysis results, patients with same values of risk 
factors were grouped and the ratio of VTE patients were calculated. Some 
representative groups were shown at Table 2. It could be seen that there were VTE 
and non-VTE patients with identical values of risk factors and different groups had 
distinct VTE risk ratios, which proved the existence of ‘fuzzy feature’. Four groups in 
Table 2 had both VTE and non-VTE patients and there were two groups with only 
non-VTE patients. The 4��  group with feature vector v � �0,0,0,0, … ,0� had more 
patients than any other groups, which meant that most of patients didn’t have 
non-zero VTE risk factor. The 3��  group with v � �0,0,1,0, … ,0� was the second 
largest group, which showed that there were many patients with just one risk factor, 
the reduced mobility. The 1��  group with v � �0,0,1,0, … ,0� had more VTE than 
the non-VTE patients, but the 2��  group with v � �1,0,1,0, … ,0� had less VTE than 
the non-VTE patients. 
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Table 2. Representative groups and their VTE ratio in PUMCH data. 
Group 
Index 

Feature vector of group VTE Patients 
Non-VTE 
Patients 

VTE Ratio 

0 0,1,0,0,0,0,0,0,1,0,1,0,0 3 0 100% 
1 0,0,1,0,0,1,1,0,1,0,0,0,0 4 2 66.67% 
2 1,0,1,0,0,0,0,0,1,0,1,0,0 8 30 21.05% 
3 0,0,1,0,0,0,0,0,0,0,0,0,0 3 168 1.75% 
4 0,0,0,0,0,0,0,0,0,0,0,0,0 2 637 0.31% 
5 1,0,1,0,0,0,0,0,1,1,0,0,0 0 2 0% 
6 1,0,1,0,1,0,0,0,0,0,0,0,0 0 13 0% 

Feature vector of every group was a 13-dimension 0/1 vector of which the elements 
corresponded to values of 13 VTE risk factors orderly as Figure 1 and were separated 
by commas. 
 
Mean predictive validity of VTE risk assessment models 

The training data consisted of 189 VTE patients and 1531 non-VTE patients, 
while test data included 41 VTE patients and 1523 non-VTE patients. Mean values of 
sensitivities and specificities of five ML models, Padua and the proposed model on all 
training and test patients were listed in Table 3. Compared to the result of Padua 
model, generally five ML models had relatively higher specificities but lower 
sensitivities. Within five ML models, RF was the only model with sensitivities > 0.80 
on both training and test data and average performance of specificities (>0.80) of 
XGBoost were the best. There was no model with both higher sensitivity and 
specificity than the Padua among five ML models. However, on the training data, the 
proposed model achieved advantages on both sensitivity and specificity over the 
Padua. On the test data, mean values of sensitivities of the proposed model were very 
similar with the Padua and specificities of the proposed were higher. In addition, 
standard deviations of predictive validity of the proposed model were far less than the 
five ML models. 

 
Table 3. Comparison of mean predictive validity of five ML models, Padua and 
proposed model. 

Model 
Name 

Training set Test set 
Sensitivity Specificity Sensitivity Specificity 

SVM 0.7894±0.0220 0.7240±0.0431 0.8341±0.0420 0.7032±0.0424 

RF 0.8413±0.0150 0.7757±0.0138 0.8195±0.0452 0.7349±0.0156 

GBDT 0.7883±0.0404 0.8135±0.0394 0.8146±0.0396 0.7825±0.0441 

LR 0.7397±0.0304 0.7960±0.0230 0.8195±0.0293 0.7869±0.0230 
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XGBoost 0.7524±0.0316 0.8328±0.0185 0.8293±0.0218 0.8064±0.0239 

Padua 0.8466 0.6127 0.9024 0.6330 

Our 
0.8995±

1.110E-16 
0.6741±0.0056 

0.9024±

1.110E-16 
0.6453±0.0033 

Values of sensitivity and specificity were represented with ‘mean value ± standard 

deviation’. The model training process was repeated five times to calculate the 
predictive validity. Note that sensitivities and specificities on training process were 
computed using all patients from training data. 
 
The optimal predictive validity of VTE risk assessment models 

Further, the optimal ML models were selected by cross validation for five ML 
models and the proposed model, and their performances on training and test data were 
shown in Table 4. In general, patterns of ML models were consistent with the results 
in Table 3. Five ML models had higher specificities by sacrificing the sensitivities. 
Value of Youden index of the optimal proposed model was not as high as the RF, 
GBDT and XGBoost, but better than the SVM, LR, and Padua. However, the optimal 
proposed model had the highest sensitivity and its specificity was better than the 
Padua on both training and test data, which verified its excellent consistency.  
 
Table 4. Comparison of predictive validity of the optimal ML models, proposed 
model and Padua. 

Model 
Name 

Training set Test set 
Sensitivity Specificity Youden Sensitivity Specificity 

SVM 0.8042 0.7511 0.5554 0.8292 0.7104 
RF 0.8307 0.7975 0.6282 0.8780 0.7643 

GBDT 0.8148 0.8223 0.6372 0.8780 0.7787 
LR 0.7725 0.7864 0.5589 0.8537 0.7708 

XGBoost 0.7883 0.8302 0.6185 0.8537 0.7919 
Padua 0.8466 0.6127 0.4593 0.9024 0.6330 
Our 0.8995 0.6786 0.5781 0.9024 0.6494 

The optimal ML models and proposed model were selected by maximizing the value 
of Youden index on training data. Note that metrics of predictive validity on training 
process were computed using all patients from training data. 
 
DISCUSSION 

In this study, we proposed a new VTE risk assessment model which split the 
population into groups based on values of risk factors, and established group-memory 
and group-prediction modules respectively in order to consider the effect of ‘fuzzy 
feature’ and describe VTE patients' characteristics better. By comparing with five 
traditional ML models and Padua model on patients from PUMCH, effectiveness of 
our proposed model was validated and it showed better robustness than traditional ML 
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models trained on equal number of VTE and non-VTE patients. The proposed model 
was the only one which showed advantages on both sensitivity and specificity over 
Padua model. 

For five ML models trained on equal number of VTE and non-VTE patients, 
results in Table 4 were calculated by using default threshold 0.5 for predictive 
probability to classify patients into the high or low risks. Due to the fact that 
sensitivity and specificity of model can be different by changing values of thresholds, 
the relationship between predictive validity, namely sensitivity and specificity, and the 
threshold was explored further and plotted at Figure 3. RF, GBDT, and XGBoost 
were selected typically because they achieved higher values of Youden index than the 
proposed model. From Figure 3 it could be seen that, on training and test data, for 
GBDT and XGBoost, there was not a threshold that had higher sensitivity and 
specificity simultaneous than the proposed model. For RF, thresholds with better 
predictive validity than the proposed model only existed on test data. In summary 
three ML models couldn’t obtain higher sensitivities and specificities than the 
proposed by changing predictive thresholds, which proved our model’s efficiency 
again. 

One notable result from Table 3 was that standard deviations of sensitivities and 
specificities of five ML models trained on equal number of VTE and non-VTE 
patients were larger than our proposed model, which showed that ML models, lacked 
robustness. Due to the neglect of ‘fuzzy feature’, within training set, randomly 
selected non-VTE patients would disturb the estimation of VTE risk ratios of groups, 
which lead to instability of model’s performance. To elaborate the influence of ‘fuzzy 
feature’ on ML models’ predictive performance, changing of sensitivities and 
specificities of ML models by strengthening the ‘fuzzy feature’ was visualized in 

Figure 4. For group *��� � *�����  which included less VTE patients than non-VTE 

patients, namely VTE risk ratio ���� � ����

���� F 0.5, by increasing the number of 

non-VTE patients of group *���  in the training set, VTE ratio �����
 could be 

changed from >0.5 to F 0.5. When ����� F 0.5, the ML model tended to predict 

patients from group *���  as the low VTE risk, which would affect model’s 
performance. It could be seen that with the increasing of ratio of groups with 

����� F 0.5 belonged to *��� in training set, sensitivities and specificities of three 

ML models varied dramatically. Therefore, taking the ‘fuzzy feature’ into account was 
crucial to model’s robustness. Actually, “fuzzy feature” is very common in medical 
area, since the incidence of most diseases is limited. This method can be widely used 
in many aspects, especially disease screening or risk prediction.  

Currently our study still needs to be improved in several aspects. Firstly, due to 
the low incidence of VTE, the sample size of this research center is still limited. To 
assess statistical differences of predictive validities between the proposed model and 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 10, 2022. ; https://doi.org/10.1101/2022.01.08.22268955doi: medRxiv preprint 

https://doi.org/10.1101/2022.01.08.22268955
http://creativecommons.org/licenses/by-nc-nd/4.0/


Padua model, studies with larger sample sizes are still required. Multi-center and 
prospective researches are also needed to validate and promote the model further. 
Secondly, with increasing number of VTE samples, the deep learning methods 21,22 
maybe can replace the ANN model to further improve our model.  

 
CONCLUSION 
    Based on population clustering analysis and the Padua model, by considering the 
effect of ‘fuzzy feature’, this study proposes a new VTE risk assessment model using 
data from Chinese medical inpatients. The model shows a promising performance in 
VTE risk prediction, which may help clinicians stratify VTE risk and guide 
prevention efficiently. 
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Figure legends 
Figure 1. The schema of proposed VTE risk assessment ML approach.  Firstly, 
training and test cohorts were constructed and patients in training data were split into 
different groups according to values of VTE risk factors. For different group *��� and 
*���, their corresponding feature vectors ���� and ���� satisfied ���� � ����. Then 
VTE risk ratio was calculated in every group and groups were sorted accordingly. 
Next probability of distribution of patients in each group was estimated using VTE 
incidence rate and only groups with probability < 0.05 were saved. Based on sorted 
result, accumulated sensitivities and specificities were calculated for every group and 
groups were classified into high and low risks by thresholding, which formed a new 
training set based on groups. Using this training set, the proposed model consists of 
two modules, group-memory module for patients in known groups and 
group-prediction module for the unknown. Decision tree was used in group-memory 
module. For group-prediction module, VTE ratios for groups were used instead of 
high or low risk label, and artificial neural network was fitting. 
Figure 2. Population clustering analysis on inpatients from PUMCH. The 
clustering analysis with 13 VTE risk factors and 3 Padua-score-related features 
(Padua score, the number of VTE risk factors, and Padua high risk) was conducted on 
3284 inpatients from PUMCH including 230 VTE and 3054 non-VTE patients. Each 
row represented a patient with (labeled with dark green color) or without (labeled 
with light green color) VTE in this heatmap. Features listed in the columns were 
labeled dark blue color as a lower value and red color as a higher value. 
Figure 3 Changing of sensitivities and specificities of three ML models with the 
increasing of predictive thresholds. 3 ML models with higher Youden index (RF, 
GBDT and XGBoost) than the proposed model were selected. Results in training and 
test data were shown in upper and lower figures respectively. For each figure, 
thresholds with higher specificities than the proposed model were marked with pink, 
and with higher sensitivities were marked with blue. 
Figure 4 Variation of sensitivities and specificities of three ML models by 
strengthening the effect of ‘fuzzy feature’. RF, GBDT and XGBoost were selected 
to show the influence of ‘fuzzy feature’. For all patients in training data, groups set 

*����� � G*���H where VTE risk ratio ���� � ����

����
F 0.5 was recognized and groups 

in *�����  were sorted according to patients’ sizes ���� . During the process of 

constructing 1:1 (VTE: non-VTE) training set, the varying of number of included 

non-VTE patients ����� � �����
from *���  could change VTE ratio �����

 from 

I 0.5, J=>� ����� I �

�
����

�
, to F 0.5, when ����� F �

�
����� , which would influence 
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the prediction of ML models on patients in *���. By proportionally setting VTE ratios 

of groups in *�����  into ����� F 0.5 manually, namely including more non-VTE 

patients than VTE patients from *���  (����� � ����� 2 �����
) in the training set, 

influence of ‘fuzzy feature’ on models’ predictive validity was visualized. ����, the 
number of VTE patients in group *���; ����, the number of all patients in *��� . 
 
Summary Points 
What was already known on the topic: 
� For the VTE risk prediction of Chinese inpatients, the performance of Padua 

model, which is recommended for inpatients by the American College of Chest 
Physicians, is inferior. 

� Multiple ML models were proposed to predict VTE risk but they lack robustness 
and cannot achieve higher sensitivity and specificity over the Padua 
simultaneously. 

What this study adds to our knowledge: 
� An important statistical phenomenon, ‘fuzzy feature’, which is very common in 

medical area for diseases with low incidence, is elaborated. 
� Neglecting the influence of ‘fuzzy feature’, previous ML models achieved 

unstable VTE risk prediction results. 
� A new VTE risk assessment ML model is proposed by considering the effect of 

‘fuzzy feature’. Its predictive performance is better than the Padua and its  
robustness is higher than traditional ML models. 
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