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Abstract  22 

  The continued emergence of SARS-CoV-2 variants is one of several factors that may 23 

cause false negative viral PCR test results. Such tests are also susceptible to false positive results 24 

due to trace contamination from high viral titer samples. Host immune response markers provide 25 

an orthogonal indication of infection that can mitigate these concerns when combined with direct 26 

viral detection. Here, we leverage nasopharyngeal swab RNA-seq data from patients with COVID-27 

19, other viral acute respiratory illnesses and non-viral conditions (n=318) to develop support 28 

vector machine classifiers that rely on a parsimonious 2-gene host signature to predict COVID-29 

19. Optimal classifiers achieve an area under the receiver operating characteristic curve (AUC) 30 

greater than 0.9 when evaluated on an independent RNA-seq cohort (n=553). We show that a 31 

classifier relying on a single interferon-stimulated gene, such as IFI6 or IFI44, measured in RT-32 

qPCR assays (n=144) achieves AUC values as high as 0.88. Addition of a second gene, such as 33 

GBP5, significantly improves the specificity compared to other respiratory viruses. The 34 

performance of a clinically practical 2-gene RT-qPCR classifier is robust across common SARS-35 

CoV-2 variants, including Omicron, and is unaffected by cross-contamination, demonstrating its 36 

utility for improving accuracy of COVID-19 diagnostics.37 
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Introduction  38 

  The COVID-19 pandemic has inflicted unprecedented human health consequences, with 39 

millions of deaths reported worldwide since December 20191. Testing is a cornerstone of pandemic 40 

management, yet existing assays suffer from accuracy limitations. Even the gold-standard testing 41 

modality of nasopharyngeal (NP) swab RT-PCR returns falsely negative in a substantial proportion 42 

of cases2–4 and may fail to detect SARS-CoV-2 variants with mutations at primer target sites5–7. 43 

False positive tests due to sample cross-contamination in the laboratory are also a significant 44 

complication8,9 as they can lead to costly contact tracing efforts and the unnecessary isolation of 45 

uninfected individuals, including essential workers. 46 

  Measuring the host immune response offers a complementary approach to direct 47 

detection of the SARS-CoV-2 virus and holds potential for overcoming the limitations of existing 48 

COVID-19 diagnostics. RNA-sequencing (RNA-seq) studies of NP swabs and blood have 49 

demonstrated that COVID-19 elicits a unique host transcriptional response compared with non-50 

viral and other viral acute respiratory illnesses (ARIs)10–12. A host gene expression signature of 51 

COVID-19, when utilized in combination with molecular detection of SARS-CoV-2, can serve as 52 

a fallback to identify suspected false negative or false positive results of traditional viral PCR tests, 53 

thus improving overall diagnostic reliability.  54 

  Recent studies have employed machine learning on RNA-seq data from NP swabs to 55 

develop proof-of-concept, host-based COVID-19 diagnostic classifiers that rely on a relatively 56 

large number of genes10,13. While highly promising, these classifiers have yet to undergo validation 57 

in external cohorts. Furthermore, RNA-seq is not widely available in clinical settings and thus the 58 

immediate practical utility of RNA-seq classifiers is limited. 59 

  Here, we address these gaps by developing 2-gene host signatures that could practically 60 

be incorporated into an RT-qPCR (qPCR) assay alongside a control gene and a viral target. We 61 

leverage NP swab RNA-seq data from two large patient cohorts to derive and validate top 62 

performing support vector machine (SVM) binary classifiers that use 2 host genes to predict 63 
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COVID-19 status. We then refine these signatures for use in qPCR assays and confirm their 64 

prediction performance from qPCR data on an independent sample cohort.  65 

  The optimal 2-gene signatures combine an interferon-stimulated gene (ISG) that is 66 

strongly induced in COVID-19, such as IFI6, IFI44 or IFI44L, with another immune response gene 67 

that is more strongly induced in other viral ARIs, such as GBP5 or CCL3. Finally, we demonstrate 68 

that such a host classifier is robust across SARS-CoV-2 variants, including those that can yield a 69 

false negative viral PCR result, and is unaffected by laboratory cross-contamination that can yield 70 

a false positive viral PCR result.  71 

 72 

Results 73 
 74 

Performance of 2-gene combinations for a COVID-19 host classifier from NP swab RNA-seq 75 

We previously developed multi-gene host classifiers for COVID-19 using RNA-seq data 76 

from NP swabs of patients tested for COVID-19 at the University of California, San Francisco 77 

(UCSF) who were diagnosed with either COVID-19, other viral ARIs or non-viral ARIs10. In the 78 

present work, we sought to develop a parsimonious 2-gene signature that could practically be 79 

incorporated into a PCR test alongside a control gene and a viral target. We began by identifying 80 

top performing 2-gene candidates in our RNA-seq cohort after supplementing it with additional 81 

samples collected in the intervening time. The full UCSF cohort included n=318 patients, of whom 82 

90 had COVID-19 (with viral load equivalent to PCR Ct < 30), 59 had other viral ARIs (mostly 83 

rhinovirus and influenza), and 169 had non-viral conditions (Supp. Table 1; Supp. Data File 1).  84 

The UCSF samples were split into a training set (70%) and a testing set (30%), with 85 

stratification to ensure each one contained similar proportions of samples with and without 86 

COVID-19. We then applied a greedy selection algorithm to identify 2-gene combinations that 87 

best predicted COVID-19 status. The performance metric was the area under the receiver 88 

operating characteristic curve (AUC) of a support vector machine (SVM) binary classifier that 89 
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used the selected genes as features, calculated using 5-fold cross-validation within the training 90 

set (Figure 1a). Thus, a first gene was selected to maximize the AUC it achieved, and a second 91 

gene was selected to maximize the AUC when combined with the first gene. Table 1a lists nine 92 

combinations composed of each of the three best ‘first’ genes and their respective three best 93 

‘second’ genes. The ‘first’ genes in the top combinations were the interferon-stimulated genes 94 

(ISGs) IFI6, IFI44L and HERC6, which we previously showed are strongly induced in COVID-95 

1910. Most of the ‘second’ genes were also related to immune and inflammatory processes.  96 

The performance of the nine 2-gene combinations on previously unseen data was 97 

estimated by: i) 10,000 rounds of 5-fold cross-validation within the training set, ii) 10,000 rounds 98 

of 5-fold cross-validation within the testing set, or iii) training on the training set and prediction on 99 

the testing set (Table 1a). Using the third approach, we observed AUC values as high as 0.93 100 

(Figure 1b). We further validated the classifiers using an external, independently generated and 101 

quantified NP swab RNA-seq dataset from a cohort of n=553 patients in New York (166 with 102 

COVID-19, 79 with other viral ARIs, 308 with non-viral conditions)12 (Supp. Table 1; Supp. Data 103 

File 1). The 2-gene combinations achieved comparable performance on the external dataset 104 

(Table 1b). The best performing combinations were IFI44L+GBP5 (AUC 0.919) and IFI6+GBP5 105 

(AUC 0.91), when the classifier was trained on the UCSF 70% training set. These results 106 

demonstrate that 2-gene classifier models are feasible, stable, and generalizable. 107 

 108 

Optimization of 2-gene combinations for incorporation into an RT-qPCR assay 109 

We noted that the ‘first’ and the ‘second’ genes in the 2-gene combinations performed 110 

distinct roles. The former was sufficient to distinguish COVID-19 from non-viral ARIs while the 111 

latter helped reinforce the distinction between COVID-19 and other viral ARIs. Considering IFI6 112 

and GBP5 as an example, IFI6 alone almost completely separated the COVID-19 and non-viral 113 

samples (Figure 1c). However, some of the other viral ARI samples showed equivalent levels of 114 

IFI6 expression. Adding GBP5 to the model allowed for improved separation, as expression of 115 
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this ISG was typically higher in other viral ARIs (Figure 1c). Given this pattern, and because our 116 

ultimate goal was a qPCR assay in which small effect sizes are more difficult to discern, we refined 117 

our candidate genes by also considering the expression fold-change between COVID-19 and the 118 

two other patient groups.  119 

We first plotted the AUC of SVM classifiers relying on each individual gene against the 120 

fold-change of that gene between the COVID-19 and non-viral samples, where both measures 121 

were averaged between the full UCSF cohort and the New York cohort (Figure 1d; Supp. Data 122 

File 2). As expected, several ISGs exhibited equivalently robust predictive value as well as 123 

substantial fold-changes (log2FC ~2-4) that should be readily detectable by qPCR. We then 124 

plotted the AUC of classifiers that used the ISG IFI6 in combination with every possible ‘second’ 125 

gene, against the fold-change of the ‘second’ gene between COVID-19 and other viral ARIs 126 

(Figure 1e; Supp. Data File 2). This revealed candidate genes with somewhat smaller fold-127 

changes (log2FC ~1.5-2) that should still be detectable by qPCR. These candidate genes only 128 

partly overlapped with the ‘second’ genes selected by the greedy algorithm, which did not 129 

explicitly consider fold-change. 130 

 131 

RT-qPCR validation of host genes to differentiate COVID-19 from other ARIs 132 

 We chose four ‘first’ ISGs based on their predictive value and fold-change. We then 133 

measured the expression of these ISGs, relative to the reference gene RPP30, using qPCR in 134 

swabs from a new cohort of patients with (n=72) or without (n=72) COVID-19. Because these 135 

swabs were not sequenced, we could not definitively assign those without COVID-19 as either 136 

non-viral or other viral cases. However, the low prevalence of other viral ARIs during the 137 

timeframe of sample collection, due to the public health measures implemented for COVID-1914, 138 

suggested they were mostly non-viral. All four genes were able to clearly separate the majority of 139 

samples with or without COVID-19 in the qPCR data (Figure 2a). SVM classifiers relying on single 140 
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ISGs achieved mean AUC values as high as 0.88 in predicting COVID-19 status from the qPCR 141 

data (Figure 2b), on par with their prediction performance from RNA-seq (Figure 1d). 142 

To explicitly test the ability to separate COVID-19 from other respiratory viruses using 143 

qPCR data, we chose four ‘second’ genes and measured their expression in the COVID-19 144 

samples described above (n=72) as compared to a subset of our original, sequenced other viral 145 

samples (n=17). Consistent with the RNA-seq data, the expression of three of the genes (GBP5, 146 

CD274 and CCL3) was significantly higher on average in the other viral samples, and expression 147 

of the fourth gene (GSTA2) was significantly higher in the COVID-19 samples (Figure 2c). 148 

Classifiers that combined one of these genes with a ‘first’ gene achieved near perfect separation 149 

of the COVID-19 and other viral samples (Figure 2d). This performance is likely overly optimistic, 150 

due in part to the relatively small size of the other virus group in the qPCR data, but it is overall 151 

consistent with the performance observed in the larger RNA-seq datasets. These results 152 

demonstrate that 2-gene signatures can successfully predict COVID-19 status from qPCR data. 153 

 154 

Host signatures are robust to SARS-CoV-2 variants and laboratory cross-contamination 155 

 We next assessed whether a 2-gene host classifier was robust across SARS-CoV-2 156 

variants, which could conceivably yield an altered host response and/or harbor mutations that 157 

disrupt primer target sites and lead to false negative viral PCR tests5,7,15. We performed qPCR for 158 

the genes IFI6 and GBP5 on samples with the Omicron variant (n=3), which causes S-gene target 159 

dropout in certain viral PCR assays; the N-gene variant (n=4), which causes N-gene target 160 

dropout15; and on samples with the Delta variant (n=7). An SVM classifier trained on the qPCR 161 

results of the samples with and without COVID-19, described above, predicted COVID-19 with 162 

high likelihood in all variant samples (Figure 2e), demonstrating the utility of a host signature as 163 

a complement to viral PCR. 164 

 On the other hand, false positive viral PCR tests frequently result from trace cross-165 

contamination of samples with high viral titers into negative specimens processed 166 
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contemporaneously in the laboratory9. To examine whether the IFI6+GBP5 host classifier would 167 

be affected in such cross-contamination events, we spiked extracted NP swab RNA from a 168 

sample with very high SARS-CoV-2 viral load (Ct≈12) into n=7 COVID-19 negative swab 169 

specimens at a dilution of 1:105, which would be expected to yield a positive viral PCR with Ct<30. 170 

The probability of COVID-19 estimated by the host classifier was not significantly affected in the 171 

simulated false-positive specimens (Figure 2f). 172 

 173 

Discussion 174 

We leveraged multiple cohorts – encompassing over 1,000 patients with COVID-19, other 175 

viral ARIs and non-viral conditions – to develop and validate 2-gene host-based COVID-19 176 

diagnostic classifiers that could be practically incorporated into clinical PCR assays in 177 

combination with a control gene and a viral target. We found that the host classifier enabled 178 

reliable identification of COVID-19 even in the face of SARS-CoV-2 variants that cause false 179 

negative viral PCR tests and remained unaffected by simulated laboratory cross-contamination 180 

that can cause false positive viral PCR tests. 181 

Given the inevitable continued emergence of SARS-CoV-2 variants, which may disrupt 182 

primer target sites, assays capable of detecting infection regardless of viral sequence are 183 

essential to avoid adverse outcomes owing to infected individuals going unrecognized in 184 

congregate settings, such as hospitals or nursing homes. The adverse effects of false-positive 185 

tests are also non-trivial. The positive predictive value of highly specific viral PCR assays 186 

diminishes for asymptomatic individuals undergoing continual surveillance testing in low 187 

prevalence settings9. False positive results then become more likely, leading to unnecessary 188 

isolation and quarantine, depletion of essential personnel, and unwarranted contact tracing.  189 

Our study has some limitations. While our findings provide a framework for the rapid 190 

clinical translation of a host-based COVID-19 diagnostic, a randomized controlled trial of our 191 

assay will be needed to firmly establish its clinical utility. Our results suggest that addition of host 192 
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targets is likely to improve diagnostic accuracy, however, a prospective assessment using 193 

clinically confirmed false-positive and false-negative viral tests is needed. Moreover, our classifier 194 

models were trained and tested on cohorts with particular characteristics, including the balance 195 

between COVID-19, other viral and non-viral samples; the mix of other respiratory viruses 196 

represented; and within the COVID-19 group, the distributions of viral load and of time since onset 197 

of infection. All these variables no doubt affect classifier performance and will vary in reality with 198 

time and place. However, the fact that our classifiers translated so well across diverse real-world 199 

cohorts argues that they are quite robust to these issues. 200 

  While we did not explicitly explore it here, our results suggest that parsimonious host 201 

classifiers could serve not only as a COVID-19 diagnostic but also as a pan-respiratory virus 202 

surveillance tool. Even prior to the COVID-19 pandemic, viral lower respiratory tract infections 203 

were a leading cause of disease and death16, and many respiratory viral infections go undetected, 204 

leading to preventable transmission and unnecessary antibiotic treatment17. Since our classifiers 205 

rely heavily on ISGs, and type I interferon signaling is a biologically conserved mechanism, these 206 

genes could be used in future work as the basis for a diagnostic that identifies respiratory viruses 207 

more generally. Such a diagnostic could have considerable value as a screening tool in hospitals, 208 

nursing homes or other congregate settings with potential for adverse consequences from 209 

unrecognized respiratory viral transmission. 210 

 211 
Materials and Methods 212 

RNA-seq cohorts and data pre-processing 213 

The UCSF cohort used to develop the RNA-seq classifiers was initially described in our 214 

study applying metagenomic sequencing to NP swabs from adult patients tested for COVID-19 215 

by RT-PCR, according to the published methods and under UCSF IRB #17-2405610. In brief, 216 

samples were assigned to one of three viral status groups: 1) samples with a positive clinical RT-217 

PCR test for SARS-CoV-2 were assigned to the “COVID-19” group, 2) samples with another 218 
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pathogenic respiratory virus detected by the ID-Seq pipeline18 in the metagenomic sequencing 219 

data were assigned to the “other virus” group, and 3) remaining samples were assigned to the 220 

“no virus” group. In the present work, we supplemented the samples reported in our original study 221 

with additional swabs collected, sequenced and analyzed in the same manner.  222 

We wished to retain for classifier development COVID-19 samples with likely active 223 

infection (culturable virus), which several studies have related to viral PCR Ct < 3019–21. Because 224 

not all Ct values were available, we relied on the relationship between viral reads-per-million (rpM) 225 

in the sequencing data and PCR Ct that we previously reported10: log2(rpM) = 31.9753 - 0.9167*Ct. 226 

Metadata for the UCSF samples is provided in Supp. Data File 1.  227 

We pseudo-aligned the UCSF samples with kallisto22 (v. 0.46.1), using the bias correction 228 

setting,  against an index consisting of all transcripts associated with human protein coding genes 229 

(ENSEMBL v. 99), cytosolic and mitochondrial ribosomal RNA sequences, and the sequences of 230 

ERCC RNA standards. Samples retained in the dataset had at least 400,000 estimated counts 231 

associated with transcripts of protein coding genes. Gene-level counts were generated from the 232 

kallisto transcript abundance estimates using the R package tximport23 (v. 1.14) with the 233 

scaledTPM method. Genes were retained if they had at least 10 counts in at least 20% of samples.  234 

The New York cohort used to validate the RNA-seq SVM classifiers on an external dataset 235 

was previously published12. Samples in this cohort were also categorized into the three viral status 236 

groups described above based on a combination of RT-PCR and metagenomic sequencing. 237 

Because we did not have access to the underlying sequencing data, we used the gene counts 238 

originally generated by the authors using STAR alignment and the R function featureCounts. We 239 

excluded samples with less than five million total counts as well as samples that had discordant 240 

COVID-19 test results between two assays, but did not filter based on viral load. Genes were 241 

retained if they had at least 32 counts in at least 10% of samples. Metadata for the New York 242 

samples is provided in Supp. Data File 1. 243 
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For each RNA-seq cohort, gene counts were subjected to the variance stabilizing 244 

transformation (VST) from the R package DESeq2 (v. 1.26.0) and the transformed values were 245 

then standardized (centered and scaled) to yield the final input features. 246 

RNA-seq SVM classifier development and validation 247 

SVM learning was implemented in scikit-learn (https://scikit-learn.org) using the 248 

sklearn.svm.SVC class function with default parameters and probabilistic output.  249 

The UCSF cohort was split into a training set (70%) and a testing set (30%), with 250 

stratification to ensure each set contained a similar proportion of samples with and without 251 

COVID-19. For the greedy feature selection, performance of a binary SVM classifier for predicting 252 

COVID-19 status relying on each single feature (gene) was evaluated by running 5-fold cross-253 

validation within the training set and calculating the average AUC across the folds. The three best-254 

performing ‘first’ genes were then selected. To extend these ‘first’ genes to 2-gene combinations, 255 

another round of the algorithm was performed, picking the three best-performing ‘second’ genes 256 

when combined with each of the ‘first’ genes.  257 

In order to rigorously assess the performance of the SVM 2-gene models, we employed 258 

three approaches: (1) running 10,000 rounds of 5-fold cross-validation on the UCSF 70% training 259 

set and calculating the average AUC and standard deviation, (2) running 10,000 rounds of 5-fold 260 

cross-validation on the UCSF 30% testing set and calculating the average AUC and standard 261 

deviation, and (3) training each model on the UCSF 70% training set and testing it on the 30% 262 

testing set to generate an AUC score (Table 1a). We then validated the 2-gene models on the 263 

external New York cohort, using two approaches: (1) running 10,000 rounds of 5-fold cross-264 

validation on the New York cohort and calculating the average AUC and standard deviation, and 265 

(2) training each model on the UCSF 70% training set and testing it on the New York cohort to 266 

generate an AUC score (Table 1b). 267 
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The AUC scores of single gene or 2-gene SVM classifiers displayed in Figure 1d,e were 268 

calculated by 5-fold cross validation using all the samples in each RNA-seq cohort.  269 

RNA-seq differential expression 270 

 Gene expression fold-changes in each RNA-seq cohort between the COVID-19 and non-271 

viral samples (Figure 1d) and between the COVID-19 and other viral samples (Figure 1e) were 272 

calculated with the R package limma (v. 3.42), using quantile normalization and the voom method.  273 

RT-qPCR of host genes 274 

RNA was reverse transcribed using the High-Capacity cDNA Reverse Transcription Kit 275 

(Applied Biosystems), according to the manufacturer’s protocol, and analyzed by qPCR in a Bio-276 

Rad CFX384 thermocycler (BioRad) using Taqman Fast Advanced Master Mix (Applied 277 

Biosystems) and Taqman Gene Expression Assays (Applied Biosystems), according to the 278 

manufacturer’s protocol. Assay IDs for each gene are provided in Supp. Table 2. ΔCt values were 279 

calculated with respect to the reference gene RPP30 (also known as RNASEP2), the standard 280 

host control gene used in many viral PCR tests. ΔCt values are provided in Supp. Data File 3. 281 

qPCR SVM classifier development and validation 282 

 The input features for qPCR-based SVM COVID-19 diagnostic classifiers were 283 

standardized (centered and scaled) ΔCt values. Standardization was performed separately in 284 

each analyzed sample set using the mean and standard deviation of the training samples. In the 285 

context of cross-validation, this was done for each fold using the appropriate training samples. 286 

Performance of SVM classifiers to distinguish between the samples with (n=72) and without 287 

(n=72) COVID-19 (Figure 2b), or to distinguish between the samples with COVID-19 and other 288 

viral ARIs (n=17) (Figure 2d), was assessed by 5-fold cross-validation.  289 

The IFI6+GBP5 classifier, which was used to predict the COVID-19 status of variant 290 

samples (Figure 2e) and of samples that had been purposely contaminated with 1:105 dilution 291 

from a high SARS-CoV-2 viral load sample (Figure 2f), was trained on the set of samples with 292 
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and without COVID-19 described above. Because the variant and contamination samples on 293 

which we performed prediction were assayed in separate experiments subsequent to the 294 

generation of the training dataset, they were always processed alongside n=6-7 COVID-19 295 

negative controls from the original training dataset. The median ΔCt difference observed for these 296 

control samples between the training dataset and the prediction experiment in which they were 297 

re-run was applied to all the samples in the respective experiment in order to account for 298 

systematic shifts.   299 
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Data Availability 355 

 Gene counts for all UCSF samples have been deposited under NCBI GEO accession 356 

GSE188678. The New York dataset can be obtained according to the Data Availability statement 357 

in the original publication12. Code for RNA-seq and qPCR SVM classifier development and 358 

validation is available at: https://github.com/czbiohub/Covid-Host-Classifier-Code.  359 
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Table 1. Performance of 2-gene SVM classifiers on RNA-seq data. Performance of binary 360 
SVM classifiers for predicting COVID-19 status, measured by the area under the curve (AUC). 361 
Where multiple cross-validation (CV) rounds were performed, values indicate mean and standard 362 
deviation. a) Performance of indicated 2-gene combinations in the UCSF training (70%) and 363 
testing (30%) sets, b) Performance in the external New York dataset. 364 
 365 
a 366 

 70% Training Set 
(n=222, 5-fold CV, 

10,000 rounds) 

30% Testing Set 
(n=96, 5-fold CV, 
10,000 rounds) 

30% Testing Set 
(n=96, trained on 70% 

training set) 
IFI6, GRINA 0.959 (0.005) 0.936 (0.012) 0.934 
IFI6, C15orf48 0.949 (0.005) 0.916 (0.012) 0.908 
IFI6, GBP5 0.948 (0.005) 0.917 (0.013) 0.905 
IFI44L, GBP5 0.944 (0.004) 0.897 (0.014) 0.883 
IFI44L, PTAFR 0.934 (0.006) 0.908 (0.015) 0.910 
IFI44L, FCGR1A 0.932 (0.004) 0.864 (0.017) 0.859 
HERC6, TNIP3 0.923 (0.005) 0.869 (0.013) 0.844 
HERC6, GBP5 0.917 (0.005) 0.826 (0.018) 0.841 
HERC6, C0A3 0.914 (0.005) 0.787 (0.022) 0.816 

 367 
b 368 

 External Dataset 
(n=553, 5-fold CV, 

10,000 rounds) 

External Dataset 
(n=553, trained on 70% 

UCSF training set) 
IFI6, GRINA 0.875 (0.004) 0.883 
IFI6, C15orf48 0.894 (0.004) 0.861 
IFI6, GBP5 0.902 (0.004) 0.910 
IFI44L, GBP5 0.910 (0.004) 0.919 
IFI44L, PTAFR 0.897 (0.004) 0.894 
IFI44L, FCGR1A 0.898 (0.003) 0.896 
HERC6, TNIP3 0.874 (0.004) 0.852 
HERC6, GBP5 0.872 (0.005) 0.866 
HERC6, COA3 0.851 (0.004) 0.797 
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Supplementary Tables 369 

Supplementary Table 1. Cohort details. 370 
 371 

Cohort Description COVID-19 
(n) 

Non-Viral 
ARI (n) 

Other Viral 
ARI (n) Reference 

1. UCSF (RNA-seq, n=318) Patients tested for 
COVID-19, CA, 2020  90 169 59 

10 + this 
study 

2. New York (RNA-seq, n=553) Patients tested for 
COVID-19, NY, 2020 166 308 79  12 

3. UCSF (qPCR, n=144) Patients tested for 
COVID-19, CA, 2020 72 

 
72 

 
This study 

4. UCSF SARS-CoV-2 N-gene 
variant (qPCR, n=4) 

Patients with SARS-
CoV-2 N-gene variant, 
CA, 2020 

4 - This study 

5. UCSF SARS-CoV-2 Delta 
variant (qPCR, n=7) 

Patients with SARS-
CoV-2 Delta variant, 
CA, 2021  

7 - This study 

6. UCSF SARS-CoV-2 Omicron 
variant (qPCR, n=3) 

Patients with SARS-
CoV-2 Omicron variant, 
CA, 2021  

3 - This study 

 372 
Supplementary Table 2. Taqman Gene Expression assay IDs for genes tested by RT-qPCR. 373 
 374 

Gene Assay ID 
IFI6 Hs00242571_m1 
GBP5 Hs00369472_m1 
RPP30 Hs01124518_m1 
IFI44 Hs00197427_m1 
IFI44L Hs00915292_m1 
IFI27 Hs01086373_g1 
CCL3 Hs00234142_m1 
CD274 Hs00204257_m1 
GSTA2 Hs00747232_mH 
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Supplementary Data Files 375 

Supplementary Data File 1. Sample metadata for the UCSF and New York RNA-seq cohorts. 376 
 377 
Supplementary Data File 2. AUC values and expression fold-changes in the UCSF cohort and 378 
in the New York cohort for every possible ‘first’ gene and for every possible ‘second’ gene 379 
combined with IFI6 (related to Figure 1d,e). 380 
 381 
Supplementary Data File 3. ΔCt values for host genes in all the samples used in qPCR assays 382 
(related to Figure 2a,c,e,f). Clinical RT-PCR SARS-CoV-2 Ct values are also provided for the 383 
COVID-19 positive samples.  384 
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Figure Legends 385 

 386 
Figure 1. Development of 2-gene host-based SVM COVID-19 diagnostic classifiers from 387 
RNA-seq data. a) Schematic of the greedy feature selection algorithm used to identify top 388 
performing 2-gene combinations. b) Receiver operating characteristic (ROC) curve 389 
demonstrating performance of SVM classifiers using the indicated 2-gene combinations. The 390 
classifiers were trained on the UCSF training set and applied to the UCSF testing set. AUC = area 391 
under the ROC curve. c) Expression scatter plots and distributions of the representative ‘first’ and 392 
‘second’ genes IFI6 and GBP5, respectively, in the full UCSF cohort. Shown are variance-393 
stabilized gene expression values following standardization. Color indicates patient group.            394 
d) Scatter plot of the AUC of COVID-19 diagnostic classifiers that rely on each single gene, 395 
calculated using 5-fold cross-validation (y-axis), against log2 fold-change (log2FC) of the gene 396 
between the COVID-19 and non-viral samples (x-axis). Both metrics were averaged between the 397 
full UCSF cohort and the New York cohort. e) Scatter plot of the AUC of COVID-19 diagnostic 398 
classifiers that rely on the combination of IFI6 and each possible ‘second’ gene, calculated using 399 
5-fold cross-validation (y-axis), against log2 fold-change (log2FC) of the ‘second’ gene between 400 
the COVID-19 and other viral samples (x-axis). Both metrics were averaged between the full 401 
UCSF cohort and the New York cohort. The AUC of an IFI6-only classifier is shown for reference.  402 
 403 
 404 
 405 
Figure 2. Performance of 2-gene SVM COVID-19 diagnostic classifiers in qPCR assays.           406 
a) Expression differences determined by qPCR in a new cohort of patients with (n=72) or without 407 
(n=72) COVID-19 for several ‘first’ ISGs selected for their predictive value and fold-change in the 408 
RNA-seq data. Shown are boxplots of ΔCt values, using RPP30 as the reference gene, 409 
normalized to the median of the COVID-19 group. Statistical significance was assessed using a 410 
one-sided Mann-Whitney test with Bonferroni correction. b) ROC curves demonstrating 411 
performance of SVM classifiers relying on single ISGs for distinguishing the samples with or 412 
without COVID-19 using the qPCR data, estimated by 5-fold cross-validation. c) Expression 413 
differences determined by qPCR between the samples with COVID-19 (n=72) and samples with 414 
other viral ARIs (n=17; a subset of the samples from Figure 1) for several ‘second’ genes selected 415 
for their predictive value and fold-change in the RNA-seq data. Shown are boxplots of ΔCt values, 416 
using RPP30 as the reference gene, and normalized to the median of the COVID-19 group. 417 
Statistical significance was assessed using a one-sided Mann-Whitney test with Bonferroni 418 
correction. d) ROC curves demonstrating performance of SVM classifiers relying on 2-gene 419 
combinations for distinguishing samples with COVID-19 from samples with other viral ARIs using 420 
the qPCR data, estimated by 5-fold cross-validation. e) Probability of COVID-19 predicted by the 421 
IFI6+GBP5 classifier using the qPCR data for samples with the Omicron variant (n=3), the N-422 
gene variant (n=4), and the Delta variant (n=7). The classifier was trained on the samples with 423 
and without COVID-19 shown in a). f) Probability of COVID-19 predicted by the IFI6+GBP5 424 
classifier using the qPCR data for n=7 samples without COVID-19 before and after trace 425 
contamination from a sample with high SARS-CoV-2 viral load. The classifier was trained on the 426 
samples with and without COVID-19 shown in a). Statistical significance was assessed using a 427 
one-sided, paired Mann-Whitney test.  428 
ns = P > 0.05, * = P < 0.05, ** = P < 0.01, *** = P < 0.001, **** = P < 0.0001. 429 
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