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Abstract 
The Office for National Statistics COVID-19 Infection Survey is a large household-based 
surveillance study based in the United Kingdom. Here, we report on the epidemiological and 
evolutionary dynamics of SARS-CoV-2 determined by analysing sequenced samples 
collected up until 13th November 2021. We observed four distinct sweeps or partial-sweeps, 
by lineages B.1.177, B.1.1.7/Alpha, B.1.617.2/Delta, and finally AY.4.2, a sublineage of 
B.1.617.2, with each sweeping lineage having a distinct growth advantage compared to their 
predecessors. Evolution was characterised by steady rates of evolution and increasing 
diversity within lineages, but with step increases in divergence associated with each 
sweeping major lineage, leading to a faster overall rate of evolution and fluctuating levels of 
diversity. These observations highlight the value of viral sequencing integrated into 
community surveillance studies to monitor the viral epidemiology and evolution of SARS-
CoV-2, and potentially other pathogens, particularly as routine PCR testing is phased out or 
in settings where large-scale sequencing is not feasible.  
 
 
Main text 
A crucial component of the global response to COVID-19 is the identification, tracking and 
characterisation of new SARS-CoV-2 lineages. As well as enabling researchers to identify 
patterns of spread, variants can be identified that might pose a particular risk. For instance 
they may be able to transmit more easily, or evade immune responses. Prominent examples 
include the variants of concern (VOCs) Alpha, Beta, Gamma, Delta and Omicron [1], and 
individual mutations such as E484K, an immune escape mutation in the Spike protein [2]. At 
the time of writing, the COG-UK Genomics Consortium [3] has produced over 1.6 million 
SARS-CoV-2 sequences, primarily from positive RT PCR tests, with this substantial 
surveillance effort generating a snapshot of the leading edge of infection across the UK. 
  
Estimating the prevalence of SARS-CoV-2 lineages and/or mutations can, however, be 
subject to biases as a consequence of the sampling regime [4–6]. Sampling has been 
heavily focussed on symptomatic infections, even though a high proportion of infections are 
asymptomatic or may not reach the criteria for testing [7]. For example, in the early phase of 
the UK epidemic most testing was conducted among hospitalised patients with severe 
disease, with a later focus on symptomatic individuals. Where testing of asymptomatic 
individuals has been conducted, it has often been in the context of specific settings, such as 
returning travellers, schools, or as part of surge testing in geographical areas where VOCs 
have been identified [8]. Large-scale community surveillance studies, such as the Office for 
National Statistics (ONS) Covid Infection Survey (CIS) [6], and the Real-time Assessment of 
Community Tranmission (REACT) [9,10] are thus valuable since sampling is not subject to 
these biases, they consist of a random, potentially more representative sample of the 
population, and, crucially, identify both symptomatic and asymptomatic infections. Moreover, 
community-based surveillance studies are not reliant on sequencing samples collected as 
part of national RT-PCR testing programmes. They will therefore become increasingly 
important as routine RT-PCR testing is scaled down, or as countries seek to enhance 
surveillance capabilities for SARS-CoV-2 and other pathogens . 
 
The Office for National Statistics (ONS) COVID-19 Infection Survey (CIS) is a United 
Kingdom (UK) household-based surveillance study, with households approached at random 
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from address lists to ensure as representative a sample of the population as possible [6,11]. 
RT-PCR positive samples collected during the survey were sequenced as part of the COG-
UK Genomics Consortium [3]. Here, we present an analysis of the 16817 consensus 
sequences from RT-PCR positive samples collected between 26th April 2020 to 13th 
November 2021 that had genomic coverage over 50%, with the aim of reconstructing the key 
epidemiological and evolutionary features of the UK epidemic. These data capture the 
sequential sweeps and partial sweeps of the B.1.177, B.1.1.7/Alpha, and B.1.617.2/Delta, 
and AY.4.2 lineages which the UK experienced, plus the sporadic appearance of other 
VOCs and Variants Under Investigation (VUIs), most notably B.1.351/Beta and P.1/Gamma. 
For each of the sweeping lineages we calculated their growth rate advantage, with each 
lineage having a progressively higher growth rate compared to previously circulating 
lineages. 
 
A feature of B.1.1.7/Alpha is the RT-PCR S-gene target failure (SGTF) caused by the Spike 
DH69/V70 deletion. During the UK epidemic, SGTF greatly facilitated the rapid quantification 
of B.1.1.7/Alpha case numbers [12–15], and subsequently non-SGTF was used to quantify 
B.1.617.2/Delta case numbers [16,17]. By comparing the presence or absence of SGTF with 
genotype for samples in the ONS CIS, we determined the specifity of RT-PCR S-gene target 
failure (SGTF), for B.1.1.7/Alpha, and non-SGTF for B.1.617/Delta, with high specificity 
when lineage prevalences were high (~99%), but low specificity at low prevalences. 
 
In addition to measuring the growth rate advantage of sweeping lineages, we determined 
how these sweeps impacted measures of the genetic diversity and divergence of the virus, 
both at the within-lineage and between-lineage levels. As well as VOCs, which are 
characterised by a large number (constellation) of mutations, single mutations can also be a 
cause for concern. For example, the appearance of the E484K mutation in Spike, which 
likely contributes to the partial immune escape [2] on the highly transmissible B.1.1.7/Alpha 
genetic background was rightly seen as a cause for concern [18]. We determined the 
number of samples in which we saw any of the Spike amino acid replacements reported to 
confer antigenic change to antibodies as listed by the COG-UK Mutation Explorer [2,19], 
taking particular note of those where the mutation was not lineage defining given the lineage 
of the sample, and therefore likely to represent recently acquired mutations. In addition, we 
calculated how often the ancestral nucleotide changes corresponding to these replacements 
appeared on the phylogenic tree of the ONS CIS samples. Most mutations were rare and 
sporadic, appearing in a single sample, but others were notably more common, with some 
having appeared independently on multiple phylogenetic lineages, suggesting convergent 
evolution.  
 
Although sequences from the ONS CIS represented about 1.6% of the total number of 
SARS-CoV-2 sequences obtained in the UK during this period, we were able to reconstruct 
the key epidemiological and evolutionary aspects of the epidemic. Our observations highlight 
the value of incorporating sequencing into large-scale surveillance studies of infectious 
disease, and the important role that community-based genomic surveillance studies can 
have in the monitoring of infectious disease. Although the ONS CIS is based in the UK, in 
which sequencing effort has been unprecidented, this is of particular importance in settings 
where routine testing is likely to be scaled back, and for countries exploring the best 
strategies for tracking SARS-CoV-2 as well as other pathogens.  
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Results 
Sequential replacement of lineages in the UK  
Between April 2020 and late December 2020, a random selection of RT-PCR samples 
collected as part of the ONS CIS were sequenced. There was a substantial increase in the 
size of the ONS CIS between August and October 2020, which went from testing under 
50,000 people per fortnight to around 180,000 people per fortnight [20], and consequently 
the number of sequenced samples also increased. In response to the emergence of 
B.1.1.7/Alpha [21], the sequencing effort was intensified again, with the aim of prospectively 
sequencing all RT-PCR positive samples in addition to unsequenced earlier samples where 
possible. Here we report on the sequenced samples with cycle threshold (Ct) <=30 and over 
50% genome coverage collected between 26th April 2020 and 13 November 2021. 
 
The Pango lineage [22] for all the samples was determined using Pangolin v3.1.16 [23]. 
Since 7 December 2020 we have provided publicly available weekly reports, giving the 
number of sequenced samples with >50% genome coverage by lineage [24]. Observing the 
raw data (Fig. 1), we see a small 2020 autumn peak in sequenced samples, dominated by 
B.1.177 and its sub-lineages. We then see a decline in cases due to the second national 
lockdown which lasted from 5th November to 2nd December 2020, before the number of 
sequenced samples started to rise again. This is attributed to a relaxation of restrictions 
during the Christmas period and corresponded to a rapid rise in the number of B.1.1.7/Alpha 
infections. After the commencement of a further lockdown in England, Scotland and 
Northern Ireland in early January, cases declined again, before another rapid increase in the 
number of sequenced samples that were dominated by B.1.617.2/Delta, with this increase 
corresponding to a phased reopening on the 19th May and 20th June 2021.  
 
When the proportion of samples belonging to each lineage are plotted over time (Fig. 1), the 
sequential sweeps and partial sweeps of B.1.177, B.1.1.7/Alpha, and B.1.617.2/Delta, can 
be readily observed, followed by the slower partial sweep of the B.1.617.2 sublineage 
AY.4.2. The lineage dynamics observed using ONS CIS samples are broadly in line with 
those observed for pillar 2 (community testing) samples across the whole COG-UK 
consortium, but excluding the ONS CIS samples (Figs. S1, S2). However, some differences 
are noticeable. The first samples of each sweeping lineage were collected earlier by COG-
UK, and sustained lineage growth rates were also noticeable two-to-four weeks earlier 
among COG-UK samples for lineages B.1.177, B.1.617.2/Delta and AY.4.2, but at a similar 
time to the ONS-CIS for B.1.1.7/Alpha. This reflects the much larger number of COG-UK 
compared to ONS-CIS sequences, but also may reflect differences in the demographics 
sampled. It is interesting that the lineages dynamics among the two datasets are most 
similar for B.1.1.7/Alpha, which most likely emerged within the UK, whereas initial growth of 
the other lineages was driven by importations. 
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Figure 1. Sequenced samples and genetic diversity by lineage. A. Number of sequenced samples 
with >=50% genome coverage, coloured by lineage. Named lineages include all sub-lineages apart 
from B.1.617.2, for which sublineaege AY.4.2 is coloured separately. B. Number of VOC and VUI 
sequenced samples, as designated by Public Health England, but excluding Alpha and Delta. C. 
Proportion of samples belonging to each lineage. D. Genetic diversity among all samples, based on 
the consensus sequence of each sample. E. Genetic diversity among all samples with a fully resolved 
lineage, excluding B.1.177, Alpha, Delta and AY.4.2. F-H. Genetic diversity among all B.1.177 (E) 
B.1.1.7/Alpha (F) and B.1.617.2/Delta including AY.4.2 (G) samples. All samples are grouped by the 
week in which they were collected, with the date giving the first day of the collection week (every other 
week labelled for clarity).  
 
 
B.1.177, B.1.1.7/Alpha, B.1.617.2/Delta and AY.4.2 each had growth advantages 
For each of the sweeping lineages in turn, we calculated the relative growth advantage 
compared to all other contemporary lineages using the ONS-CIS data (Fig. 2). In line with 
previous findings [25–27], we found that B.1.177 had a significant growth rate advantage 
compared to all other co-circulating SARS-CoV-2 lineages, which peaked at around 0.075 
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per day towards the end of September 2020 before slowly declining through October 2020. 
In other words, B.1.177 case numbers grew about 7.5% faster each day when compared to 
all other cases. The B.1.177 lineage most likely originated in Spain, with the first samples 
collected in June 2020 [26], and with international travel from Europe being a major driver of 
new infections of this lineage in the UK from August 2020 [25,26]. However, there is 
continuing debate as to whether the growth advantage of B.1.177 was also associated with 
increased transmissibility, with some reports arguing there is little evidence for increased 
intrinsic transmissibility [25,26], whilst others suggesting importations alone cannot explain 
the patterns of replacement [27]. In the ONS CIS data, we observed a continued growth 
advantage of B.1.177 in the UK thoughout October 2020, when the number of incident 
B.1.177 infections was relatively high (Fig. S1) whilst travel to the UK from other European 
countries had tailed off [25,26], which is consistent with increased B.1.177 transmissibility. 
 
If we consider the growth advantage of B.1.1.7/Alpha, which largely replaced B.1.177 and 
other circulating lineages between October 2020 and February 2021, we continue to find a 
pattern consistent with a transmission advantage of B.1.177 over previously circulating 
lineages. The early growth advantage of B.1.1.7/Alpha, when compared to other 
contemporaneous lineages, reached a peak of approximately 0.14 per day in November 
2020, when both B.1.177 and earlier lineages were in circulation (Figs 1, S1), before settling 
to around 0.05 per day in December 2020, by which time almost all non-Alpha lineages were 
B.1.177. This is the pattern we would expect if B.1.177 has a transmission advantage 
compared to other (non-B.1.1.7/Alpha) lineages; B.1.1.7/Alpha will grow relatively faster in a 
background of B.1.177 and other less transmissible lineages, but will grow relatively slower if 
the background consists of only B.1.177. This declining growth rate advantage of 
B.1.1.7/Alpha after initial high values has also been noted in previous reports [14,27–30].  
 
There is little doubt, however, that an intrinsic transmission advantage of B.1.1.7/Alpha was 
the major force driving the rapid increase of B.1.1.7 infections [14,27–30]. Finally, by the 
time B.1.617.2/Delta emerged it was in a background of almost exclusively B.1.1.7/Alpha 
infections, making interpretation much more straightforward. We estimate that 
B.1.617.2/Delta had a growth advantage of around 0.12 per day compared to B.1.1.7/Alpha, 
in line with previous estimates [27,31], likely due to a combination of increased 
transmissibility and immune evasion [27]. More recently AY.4.2, a Delta sublineage with 
Y145H, a potential antibody escape mutation, is currently increasing in frequency in the UK 
[32,33]. We estimate AY.4.2 and its sublineages (which in turn is a sublineage of B.1.617.2), 
had a growth advantage of 0.02 per day compared to all other Delta lineages, with an 
estimated doubling time of 28 days. 
 
 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 6, 2022. ; https://doi.org/10.1101/2022.01.05.21268323doi: medRxiv preprint 

https://doi.org/10.1101/2022.01.05.21268323
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 

 
 
Figure 2. Relative growth advantages of B.1.177, B.1.1.7/Alpha, B.1.617.2/Delta and AY.4.2. Top. 
The proportion of samples belonging to each of the lineages compared to all other contemporary 
samples, with uncertainty represented by 200 data bootstraps. Bottom. Per day growth rate 
advantage of each of the four lineages compared to all other contemporary samples. The doubling 
times represent how long it would take for the frequency of the lineage to double if current trends 
continued. The Delta curve includes B.1.617.2 and all sublineages, including AY.4.2. 
 
 
SGTF was a good proxy for lineage when lineage prevalence was high, but not when 
lineage prevalence was low 
SGTF was an attractive surrogate marker for B.1.1.7/Alpha in the UK since it enabled the 
lineage to be tracked in the population without the delays incurred due to sequencing, and 
enabled samples with high cycle threshold (Ct) to be included in analyses even if they 
couldn’t be sequenced. For all samples in the analysis, we classed those as having SGTF if, 
during RT-PCR testing, N and ORF1ab were successfully amplified, but S was not, and non-
SGTF samples as those where N, ORF1ab and S were all amplified. Since we only consider 
samples with Ct<=30 (and hence those with relatively high viral loads), almost all samples 
were classified as SGTF or non-SGTF. Lineage was generally a good indicator of SGTF, 
with 99.0% (3424/33460) of B.1.1.7/Alpha and 100% (3/3) of B.1.525/Eta variant samples, 
both of which have the DH69/V70 deletion, having SGTF (Table S1). Other lineages, which 
do not have the DH69/V70 deletion, typically did not have SGTF; no B.1.351/Beta, 
P.1/Gamma had it, although a few B.1.617.2/Delta samples (14/10984) were SGTF. As 
previously reported [34], the exception was the B.1.258 lineage, of which around three-
quarters of samples had the DH69/V70 deletion and SGTF (47/62). 
 
While B.1.1.7/Alpha prevalence was high (between December 2020 and June 2021), SGTF 
was highly specific for Alpha, and similarly while B.1.617.2/Delta prevalence was high (May-
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Nov 2021) non-SGTF was highly specific for B.1.617.2/Delta (Fig. 3, Table S2). However, 
when the prevalence of these variants was lower, SGTF was a poorer indicator of lineage, 
either due to the presence of other co-circulating lineages with or without the DH69/V70 
deletion, or due to SGTF independent of the corresponding B.1.617.2/Delta lineage mutation 
as a result of RT-PCR technical failures or other errors. Prior to November 2020, most SGTF 
samples were associated with the B.1.258 lineage, and conversely, from February to April 
2021, non-SGTF samples represented a broad range of lineages, including Alpha, making 
non-SGTF a poor indicator of any specific lineage during this period.  
 

 
Figure 3. Comparison of S-gene target failure with lineage by calendar month. Top row. Number 
of SGTF (left) and non-SGTF (right) samples by calendar month.Bottom row. Proportion of SGTF 
(left) and non-SGTF (right) samples that are of a given lineage.  
 
 
Diversity increases within lineages through time, but fluctuates when measured 
across all lineages  
The sequential sweeps of B.1.177, B.1.1.7/Alpha and B.1.617.2/Delta (including AY.4.2) are 
readily observable on the time-scaled phylogeny of ONS CIS consensus sequences, with 
each of the lineages representing a distinct clade (Figs. 4, S3). Both the B.1.177 and 
B.1.1.7/Alpha clades have times of most recent common ancestor (tMRCAs) close to the 
time of first sampling, indicating the recent emergence of these lineages.  
 
These patterns are also reflected in measurements of genetic diversity, with diversity among 
lineages (excluding B.1.177, B.1.1.7/Alpha and B.1.617.2/Delta) (“Other”; Fig. 1) showing a 
pattern of initial low diversity, followed by increasing diversity until February 2021, after 
which there are very few samples in the ONS CIS. Similarly, within both the B.1.177 and 
B.1.1.7/Alpha lineages, diversity was relatively low when they first appeared, and gradually 
increased through time (Fig. 1). This initial low diversity is a consequence of their relatively 
recent emergence in Spain and South East England, respectively, before first detection in 
the ONS CIS data. The slightly higher diversity in B.1.177 likely reflects its geographical 
spread and multiple introductions from Europe.  B.1.617.2/Delta, on the other hand, had high 
initial diversity (Fig. 1), with multiple introductions into the UK of this lineage from an already 
diverse source population in India [16]. Diversity in this lineage then declined slightly 
corresponding to fewer introductions as a result of travel restrictions from India, before then 
steadily rising again. 
 
In contrast, when we consider overall genetic diversity, we see transient increases, peaking 
when two or more distinct lineages are at relatively high frequencies (Fig. 1), but then 
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declining as single lineages dominate the population. It is notable that in August 2021 overall 
levels of diversity were lower than in August 2020 despite much higher prevalence (e.g. in 
England 1.32% in the week ending 31 July 2021 vs 0.05% the week ending 25 August 
2020).   
 
Divergence increases through time, but at different rates within and among lineages 
As expected, divergence from the root of the phylogeny increased gradually through time, 
both within-lineages (Fig. S4) and across all lineages (Fig. 4), demonstrating the presence of 
a strong molecular clock. It has been noted previously that although divergence within the 
B.1.1.7/Alpha lineage increased at a similar rate to previously circulating lineages, it had 
accumulated a disproportionate number of lineage defining mutations [21]. We also observe 
this pattern, with similar estimated molecular clock rates (line gradients) of 0.00038 
substitutions per site per year (s/s/y) for B.1.177, and of 0.00034 s/s/y for B.1.1.7/Alpha, but 
with the B.1.1.7 line appearing shifted upwards (Fig. S4). Since many of the B.1.1.7/Alpha 
lineage defining mutations were nonsynonymous and in the Spike region, it has been 
hypothesised Alpha arose during a long-term chronic infection [21]. 
 
Meanwhile, the data indicate a higher substitution rate for B.1.617.2/Delta (0.00064 s/s/y), 
again with a shift up in the regression line, possibly as a consequence of divergence within 
India before importation into the UK. Finally, the observed substitution rate over all ONS 
sequences is 0.00094 s/s/y, which is faster than any of the within-lineage rates we 
measured, and is largely a result of the step increases in divergence associated with the 
new variants. 
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Figure 4. Dated phylogeny and root-to-tip distance of ONS CIS sequences. First, a maximum 
likelihood phylogeny of ONS sequences with over 95% genome coverage up to and including 13th 
November 2021 (Fig S3) was generated using RAxML-NG. A. Root to tip distance for samples from 
the maximum likelihood phylogeny. B. Time tree generated from the maximum likelihood phylogeny 
using TreeTime [35].  B.1.177, B.1.1.7/Alpha, B.1.617.2/Delta (including AY.4.2) and ‘Other’ were 
each randomly subsampled to a maximum of 500 sequences. 
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Spike mutations conferring antigenic change 
There is justified concern that, as population levels of immunity increase via vaccination 
and/or prior infection, SARS-CoV-2 may acquire immune escape mutations on already 
highly transmissible genetic backgrounds. For example, concerns were raised over the 
presence of E484K in some B.1.1.7/Alpha isolates in the UK [36]. More recently the AY.4.2 
sublineage of Delta has Y145H, a potential antibody escape mutation. We determined the 
number of consensus sequences with potential antibody escape mutations for each of the 
four sweeping lineages in our dataset: B.1.177, B.1.1.7/Alpha, B.1.617.2/Delta and AY.4.2. 
We considered Spike amino acid replacements reported to confer antigenic change to 
antibodies as listed by the COG-UK Mutation Explorer [2,19], and only considered mutations 
which were not lineage defining on the genetic background on which they were found. For 
example, L18F is found in the majority of B.1.177 samples, but only a small proportion of 
Alpha and Delta samples, and therefore L18F was excluded on a B.1.177 background but 
included on a B.1.1.7/Alpha or B.1.617.2/Delta background.  
 
Of the 1415 B.1.177 samples in our dataset, 20 (1.4%) had a non-lineage defining antigenic 
mutation of concern; this was also true of 159 (4.6%) out of 3454 B.1.1.7/Alpha samples, 
292 (2.8%) of 10421 B.617.2/Delta samples, and 7 (1.2%) of 578 AY.4.2 samples. In total, 
65 unique mutations at 55 unique residue sites were observed among the four lineages 
(Fig.5). By performing ancestral state reconstruction on the phylogeny of all over 95% 
coverage ONS CIS samples collected before 17th July 2021 (Fig. S5) we determined the 
number of ancestral occurances of each of these mutations (multiple ancestral nodes are 
depicted on Fig. 5). Whereas most mutations have a single origin on the tree, some appear 
multiple times, including L18F (14 times), H146X (9 times), E484K (5 times), and S255F (6 
times). Some of these mutations are lineage defining for multiple lineages, indicating 
convergent evolution and benefit on different genetic backgrounds. Most however, only 
appeared once, suggesting they may have had limited evolutionary advantage when 
occurring in isolation, at least during the sampling period considered. It remains possible that 
these mutations may have an advantage on different genetic backgrounds (epistasis) and/or 
in different environments, for example as acquired immunity increases due to infection or 
vaccination.  
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Figure 5. Mutations in Spike conferring antigenic change for the three most common lineages. 
The stacked bar chart indicates the number of samples in our dataset with the mutation. All antigenic 
mutations included in the COG-UK mutational explorer [19], were included. For clarity, mutations on a 
lineage that define that lineage are not considered. The y-axis has been truncated for clarity, but L18F 
was observed in 77 Alpha samples. 
 
 
Discussion 
Surveillance studies such as the ONS CIS are valuable tools for tracking the emergence and 
spread of infectious disease. Since participants are selected at random and are periodically 
tested for SARS-CoV-2 infection regardless of symptoms, the ONS CIS gives an accurate 
picture of SARS-CoV-2 prevalence in the UK that is not subject to biases due to, for 
example, increased sampling effort in different geographical areas or demographic groups, 
or among symptomatic individuals [4–6]. By sequencing RT-PCR positive samples collected 
as part of ONS-CIS data between April 2020 and November 2021, we observed four sweeps 
or partial sweeps by lineages B.1.177, B.1.1.7/Alpha, B.1.617.2/Delta, and AY.4.2. This 
resulted in a pattern of relatively steady within-lineage evolution, followed by periodioc 
replacement by faster growing lineages which were characterised by a step-increase in the 
number of substitutions. This in turn resulted in faster overall rates of evolution when 
measured across all lineages, and fluctuating levels of genetic diversity. Whether this pattern 
will be an ongoing feature of SARS-CoV-2 evolution remains to be seen. 
 
Of the ~1.3 million UK sequences collected during the period studied here as part of the 
COG-UK consortium [3], about 1.6% were samples collected as part of the ONS CIS. The 
comparatively smaller sample sizes associated with the ONS-CIS makes it more difficult to 
identify small clusters of infection, and may delay the detection of lineages with a growth rate 
advantage. For example, only two B.1.258/Beta samples were identified from sequenced 
ONS CIS samples during February, March and April 2021, despite the occurance of a 
sizeable outbreak in South London during this time. Moreover, a clear increase in the 
proportions of B.1.177, B.1.617.2/Delta, and AY.4.2 cases was detected about two-four 
weeks later in the ONS CIS data compared to the whole COG-UK data. The sampling of all 
individuals regardless of symptoms in ONS may also generate a short lag in the detection of 
a growth advantage compared to COG-UK as a whole: ONS effectively measures pathogen 
prevalence (total number of infected individuals), whereas COG-UK data effectively 
measures incidence (total number of new infections). 
 
As well as the smaller sample sizes contributing to the delayed detection of growing 
lineages, it is also possible that a higher proportion of COG-UK samples represented 
communities and/or demographics where imported cases took hold. We note that detection 
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of B.1.1.7/Alpha, which likely emerged in the UK, was not associated with delayed detection 
in the ONS-CIS data. Other community surveillance sampling strategies can partially 
compensate for the lower number of sequenced samples on a given day by concentrating 
sampling over a short period of time. For example, the REACT study [10] concentrates 
sampling over a few days each month, which enabled characterisation of the spread of 
B.617.2/Delta in the UK [37]. However, this is at the cost of the temporal granularity needed 
to rapidly detect fast growing variants such as B.1.1.529/Omicron.  
 
A further drawback of relying on sequening for genomic surveillance is the delay between 
sample collection and subsequent sequencing (the ONS CIS has lags in the data of two 
weeks or more) and the need for high viral loads to produce adequate sequence data. This 
in turn could severely impact the success of any interventions. The earliest signals that both 
B.1.1.7/Alpha and B.1.1.529/Omicron [38] had a growth rate advantage were serendipitously 
inferred from the increasing incidence of SGTF during RT-PCR testing. The introduction of 
qPCR-based genotyping for specific VOCs and VUIs into diagnostic pipelines has the 
potential to speed-up detection of known variants. However, qPCR-based genotyping cannot 
be relied upon to characterise emerging variants fast enough to contain them due to the lead 
time required to manufacture and distribute specific assays. Moreover, substantial genome 
sequencing efforts will always be required to detect variants that have not previously been 
identified as of concern, to monitor the ongoing specificity of rapid genotyping in the face of 
ongoing evolution, and to better characterise the evolution and spread of the virus.  
 
Due to foresight and investment, the COG-UK consortium has now sequenced over 1.6 
million RT PCR positive samples spanning the UK SARS-CoV-2 epidemic. This has enabled 
the detection and tracking of genomic variants in the UK [21], quantification of their growth 
advantage [14], and inference regarding patterns of spread [28,39]. However, it is unlikely 
that this unprecedented sequencing effort can be sustained in the long term, and in most 
countries this level of sequencing has never been feasible, with patchy sequencing efforts 
among different countries and regions [40]. Although only a fraction of the COG-UK 
sequences were comprised of samples collected as part of the ONS CIS, we were able to 
use ONS CIS sequenced samples to monitor the emergence, spread and evolution of the 
major lineages and sublineages sweeping through the UK population.  
 
Moving forwards, the implementation of genomic surveillance globally should be considered 
a key development goal, enabling the early detection of worrisome and/or rapidly growing 
lineages wherever they emerge. Community surveillance studies similar to ONS-CIS may 
therefore provide powerful cost-effective tools for pathogen genomic surveillance in the 
future, particularly if combined with the continued sequencing of a small proportion of 
samples from symptomatic individuals. Incorporating the detection and sequencing of other 
pathogens into the same community surveillance frameworks will only act to enhance the 
positive public health and scientific outcomes from these studies whilst maximising value for 
money.   
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Methods 
ONS COVID-19 Infection Survey 
The ONS CIS is a UK household-based surveillance study with selected households chosen 
to ensure a representative sample of the population. For a full description of the sampling 
design see [6], but in brief swabs were taken from individuals aged two years and older living 
in private households, from 26th April 2020 onwards. These households were selected 
randomly from address lists and previous ONS surveys to provide a representative sample 
of the population. Participants could provide consent for optional follow-up sampling weekly 
for the first five weeks, and monthly thereafter.  
 
This work contains statistical data from ONS which is Crown Copyright. The use of the ONS 
statistical data in this work does not imply the endorsement of the ONS in relation to the 
interpretation or analysis of the statistical data. This work uses research datasets which may 
not exactly reproduce National Statistics aggregates. 
 
Sequencing 
For samples collected from 26th April 2020 to approximately mid-December 2020, a random 
selection were selected for sequencing. RNA extracts were amplified using the ARTIC 
amplicon protocol [41] and most were sequenced on Illumina Novaseq with consensus fasta 
sequences produced using the ARTIC nextflow processing pipeline [41]. A small number of 
samples (36) in our study were sequenced using Oxford Nanopore GridION or MINION. 
Thereafter, the ambition was to sequence all positive samples including retrospective 
sequencing of stored RT-PCR positive samples where available (after a couple of months it 
was decided to only sequence samples with Ct<30, since samples with higher Ct values had 
a high failure rate due to low levels of virus). The move to sequence all RT-PCR positive 
samples coincided with a move to veSeq, an RNASeq protocol based on a quantitative 
targeted enrichment strategy [42,43] and sequenced on Illumina Novaseq. Consensus 
sequences were produced using shiver [44]. If the same sample was sequenced twice, the 
consensus sequence with the lowest genome coverage was excluded from the analysis. Fig. 
S6 shows the proportion of all ONS CIS RT PCR positive samples with Ct <=30, and the 
proportion of these samples that have sequence >50% coverage.  Finally, from mid-July 
2021 onwards, sequences were again sequenced using ARTIC. 
 
We have previously shown that Log10 viral load is positively correlated with the Log10 
number of mapped reads obtained using veSeq, and that Ct is negatively correlated with the 
Log10 number of mapped reads [42,45]. For all samples sequenced using the veSeq 
protocol we compared the Log10 mapped reads with Ct, obtaining a strong negative 
correlation [Fig. S7]. Outliers may have a number of different causes including PCR 
amplification or sequence failures. Samples from individual sequencing plates where no 
clear correlation was observed were excluded from all analyses. All remaining sequences 
with coverage >=50% were included. In total, 10,042 ARTIC/Illumina, 36 ARTIC/Nanopore, 
and 6775 veSeq/Illumina sequences were included. 
 
Lineage calling 
Lineages using the Pango nomenclature [22] were determined using the Pangolin software 
[23]. Reported lineages include any sub-lineages, except where stated otherwise. For 
example, B.1.177 includes all sub-lineages of B.1.177, and B.1.617.2 includes all AY.x 
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lineages. When comparing SGTF with lineage, we excluded samples where the lineage 
resolved to A, B, B.1 or B.1.1 since B.1.1.7/Alpha samples can be given these Pango 
lineages if an insufficient number of loci have coverage at lineage defining sites. 
 
Lineage growth rates and doubling times 
For each of the three most common lineages observed in our dataset, B.1.177, 
B.1.1.7/Alpha, and B.1.617.2/Delta, we calculated their relative growth rate advantage 
compared to all other lineages in our data using a generalised smoothing method. 
 

Suppose we have two species with exponential growth rates 𝑟!	and 𝑟" and therefore 
expected counts 
 
𝑍!(𝑡) = 𝑍!(0)𝑒#!$,	𝑍"(𝑡) = 𝑍"(0)𝑒#"$, 
 
respectively. Then the probability of a uniform random sample from both being of type 1 is 
 

𝑝(𝑡): =
𝑍!(𝑡)

𝑍!(𝑡) + 𝑍"(𝑡)
. 

 
We now consider the log odds, 𝑓(𝑡)	of being type 1 over time; using the standard definition 
of these we obtain 
 

𝑓(𝑡): = 𝑙𝑜𝑔(
𝑝(𝑡)

1 − 𝑝(𝑡)
) = 𝑙𝑜𝑔(

𝑍!(0)
𝑍"(0)

) + (𝑟! − 𝑟")𝑡. 

 
Therefore, if we take the derivative of this quantity, we obtain the relative growth rate 
advantage for species 1 and associated doubling time, 
 
𝑟! − 𝑟" = �̇�(𝑡),𝜏% = 𝑙𝑜𝑔(2)/(𝑟! − 𝑟"). 
 
This doubling time when calculated gives the time for 𝑍!/𝑍" to double if the current trends 
continue. 
 
In practice, we do not measure 𝑝(𝑡) directly, but rather work with a sample, with 𝑿 being a 
vector of times that samples are taken and 𝒚 being an associated vector with values equal to 
0 if species 2	is observed and 1	if species 1	is observed. Because we wish to differentiate 
the time trend, traditional splines that have penalised or zero derivatives may not be 
appropriate, and so we place a Gaussian process prior on 𝑓 with the Radial Basis Function 
(RBF) kernel, which has 𝐶&	samples (i.e., all derivatives exist). 
 
To implement this we can use the approach from Chapters 3 and 5 of C. E. Rasmussen and 
C. K. I. Williams. Gaussian Processes for Machine Learning [46], as implemented in Scikit-
learn’s GaussianProcessClassifier class. This returns an estimate for 𝑝(𝑡) as well as 
optimised hyperparameters for the RBF kernel. To assess uncertainty, we are most 
interested in the role of finite data size and the distribution over possible trajectories of the 
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relative growth advantage, and so bootstrap the data vectors 𝑿 and 𝒚, then use the kernel 
hyperparameters optimised on real data to produce an ensemble of bootstrapped curves for 
𝜋(𝑡). For the original data and bootstrapped curves, we can then also produce estimates of 
growth advantage from the equations above. 
 
Phylogenetics 
The alignment of consensus sequences with at least 95% coverage was used for 
phylogenetic reconstruction using RAxML-NG version 0.9.0 [47]. The resulting tree was 
rooted and fit to calendar time using TreeTime version 0.8.2 [35]. Ancestral sequence 
reconstruction was performed on the TreeTime divergence tree using IQ-TREE version 
1.6.12 [48]. Visualisation used ggtree [49].  
 
Nucleotide genetic diversity 
We calculated the genetic diversity among consensus sequences for all sequenced samples 
collected in a particular week and with >50% coverage. Nucleotide genetic diversity was 
calculated using the π statistic, since this has been shown to be the least sensitive to 
differences in the number of sequences used in the analysis [50]. Mean pairwise genetic 
diversity across the genome is given by: 
 

𝜋 = ∑ %#$
#%!
(

  
 
Where 𝐿 represents the length of the genome, and 𝐷) the pairwise genetic diversity at locus 
𝑖. This is calculated as: 
 

𝐷) =
∑ *#*&#'&

+.-	/(/1!)
  

 
Where 𝑛) represents the number of alleles 𝑖 observed at that locus, and 𝑁 the number of 
samples with a consensus base call.  
 
Within-lineage genetic diversity was calculated as above, but limiting only to sequences 
identified as belonging to B.1.177, B.1.1.7/Alpha or B.1.617.2/Delta, as well as for all of the 
other samples with a defined lineage but not B.1.177, B.1.1.7Alpha or B.1.617.2/Delta.   
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Supplementary Tables and Figures 
 
Table S1. S-gene target failure by lineage 

Lineage SGTF Non-SGTF Percentage SGTF* 

Other 8 576 1.4 (0.6, 2.7) 

B.1.177 3 1377 0.2 (0.1, 0.6) 

B.1.1.7/Alpha 3424 36 99.0 (98.6, 99.3) 

B.1.351/Beta 0 6 0.0 (0, 45.9) 

P.1/Gamma 0 1 0.0 (0, 97.5) 

B.1.617.2/Delta 14 10970 0.1 (0.1, 0.2) 

B.1.525/Eta 3 0 100 (29.2, 100) 

B.1.1.318 0 1 0.0 (0, 97.5) 

A.23.1 0 4 0.0 (0, 60.2) 

B.1.258 47 15 75.8 (63.5, 85.8) 

 
*Values in parentheses represent 95% confidence intervals using the Clopper-Pearson method 
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Table S2. Sensitivity of SGTF for B.1.1.7/Alpha and non-SGTF for B.1.617.2/Delta by 
month of sampling (new) 
 

Month SGTF 
count 

SGTF + 
B.1.1.7 

Percentage SGTF 
that are B.1.1.7 * 

Non-
SGTF 
count 

Non-SGTF 
+ B.1.617.2 

Percentage 
Non-SGTF that 
are B.1.617.2* 

Apr 2020 0 0  2 0 0 (0, 84.2) 

May 2020 0 0  22 0 0 (0, 15.4) 

Jun 2020 0 0  2 0 0 (0, 84.2) 

Jul 2020 0 0  1 0 0 (0, 97.5) 

Aug 2020 4 0 0 (0, 60.2) 12 0 0 (0, 26.5) 

Sep 2020 4 0 0 (0, 60.2) 148 0 0 (0, 2.5) 

Oct 2020 21 0 0 (0, 16.1) 580 0 0 (0, 0.6) 

Nov 2020 84 73 86.9 (77.9, 93.2) 420 0 0.(0, 0.9) 

Dec 2020 864 854 98.8 (97.9, 99.4) 491 0 0 (0, 0.7) 

Jan 2021 1534 1525 99.4 (98.9, 99.7) 307 0 0 (0, 1.2) 

Feb 2021 473 472 99.8 (98.8, 100.0) 17 0 0 (0, 19.5) 

Mar 2021 303 302 99.7 (98.2, 100.0) 8 0 0, (0, 36.9) 

Apr 2021 124 124 100 (97.1, 100) 3 1 33.3 (3.2, 66.0) 

May 2021 42 42 100 (91.6, 100) 44 44 100 (92.0, 100) 

Jun 2021 24 24 100 (85.8, 100) 445 443 99.6 (98.4, 99.9) 

Jul 2021 4 3 75 (22.2, 97.1) 1920 1919 99.9 (99.7, 100) 

Aug 2021 9 4 44.4 (15.2, 77.1) 1949 1949 100 (99.8, 100) 

Sep 2021 1 0 0 (0, 97.5) 2455 2454 100 (99.8, 100) 

Oct 2021 4 1 25.0 (2.5, 58.9) 2791 2789 99.9 (99.7, 100) 

Nov 2021 4 0 0 (0, 60.2) 1371 1371 100 (99.7, 100) 

*Values in parentheses represent 95% confidence intervals using the Clopper-Pearson method 
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Figure S1. Comparison of lineage dynamics within the ONS CIS and among all COG-UK 
sequences. Top row: Number of sequenced samples and relative prevalence among ONS CIS 
sequences. Bottom row: Number of sequenced samples and relative incidence among COG-UK pillar 
2 sequences [51], but excluding ONS sequences. All samples are grouped by the week in which they 
were collected, with the date giving the first day of the collection week (every other week labelled for 
clarity).  
 
 
 
 
 

 
 
Figure S2. Comparison of sampling dates within the ONS CIS and among all COG-UK 
sequences. Box-whisker plot showing the distribution of sampling dates for the four sweeping 
lineages for COG-UK and ONS-CIS samples. COG-UK sampling dates represent all publicly available 
data for COG-UK pillar 2 sequences [51], but excluding ONS sequences. Some of the early reported 
sampling dates for COG-UK samples for each lineage may represent recording errors. 
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Figure S3. Maximum likelihood phylogeny. A maximum likelihood phylogeny of ONS sequences 
with over 95% genome coverage up to and including 13th November 2021 generated using RAxML-
NG. B.1.177, B.1.1.7/Alpha, B.1.617.2/Delta (including AY.4.2) and ‘Other’ were each randomly 
subsampled to a maximum of 500 sequences. 
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Figure S4. Divergence by lineage for all samples with over 95% genome coverage.  A maximum 
likelihood phylogeny of ONS sequences with over 95% genome coverage up to and including 13th 
November 2021 (Fig S3) was generated using RAxML-NG, from which root-to-tip distances were 
calculated. Regressions were performed separately for B.1.177, B.1.1.7/Alpha, and B.1.617.2/Delta 
(including AY.4.2). B.1.177, B.1.1.7/Alpha, B.1.617.2/Delta (including AY.4.2) and ‘Other’ were each 
randomly subsampled to a maximum of 500 sequences. 
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Figure S5. Mutations in Spike conferring antigenic change for the three most common 
lineages. The stacked bar chart indicates the number of samples in our dataset with the mutation, up 
until 17th July 2021. All antigenic mutations included in the COG-UK mutational explorer [19], were 
included. For clarity, mutations on a lineage that define that lineage are not considered. Numbers 
above the bars indicated the number of ancestral nucleotide changes on the phylogeny of all ONS 
CIS sequences with >95% coverage, if greater than one, whereas numbers superimposed onto the 
bars indicate the number of ancestral nodes associated with that lineage. The y-axis has been 
truncated at 26 for clarity, but up until 17th July 2021 L18F was observed in 76 Alpha samples, and 
was associated with 14 ancestral nucleotide changes. Apparent discrepancies occur because 
samples with <95% coverage were not included in the phylogeny (hence e.g. L455F only has one 
ancestral node on the phylogeny yet appears on both B.1.1.7/Alpha and B.1.617.2/Delta backgrounds 
on the bar chart), and because mutations may occur on lineages other than B.1.177, B.1.1.7/Alpha or 
B.1.617.2/Delta (e.g. E484K). The samples with Y145H on a B.1.617.2/Delta background are 
sublineage AY.4.2.  
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Figure S6: Sample proportions by collection week. The figure shows the percentage of ONS CIS 
RT PCR positive samples with Ct <=30 (yellow), and the percentage of Ct <=30 samples that have 
sequence with >50% genome coverage.   
 
 
 
 

 
Figure S7: Plot of Log10 mapped reads versus Ct for all samples seqeunced using veSeq 
included in this study.  
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