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Quantitative assessments of the recent state of an epidemic and

short-term projections into the near future are key public health

tools that have substantial policy impacts, helping to determine

if existing control measures are sufficient or need to be strength-

ened. Key to these quantitative assessments is the ability to

rapidly and robustly measure the speed with which the epidemic

is growing or decaying. Frequently, epidemiological trends are

addressed in terms of the (time-varying) reproductive number

R . Here, we take a more parsimonious approach and calculate

the exponential growth rate, r , using a Bayesian hierarchical

model to fit a Gaussian process to the epidemiological data. We

show how the method can be employed when only case data

from positive tests are available, and the improvement gained by

including the total number of tests as a measure of heterogeneous

testing effort. Although the methods are generic, we apply them

to SARS-CoV-2 cases and testing in England, making use of

the available high-resolution spatio-temporal data to determine

long-term patterns of national growth, highlight regional growth

and spatial heterogeneity.
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2 GUZMÁN-RINCÓN ET. AL

1 | INTRODUCTION7

Statistical analysis of the SARS-CoV-2 pandemic has been instrumental in both assessing the current status of infection at8

a local or national level (The Royal Society, 2020; Hellewell et al., 2020; Flaxman et al., 2020; Davies et al., 2020, 2021),9

and extrapolating to generate short-term projections. Arguably good statistical knowledge is key to the control of epidemics,10

as it provides a quantitative assessment of control measures and can highlight sectors of the population in which additional11

targeted controls may be needed. Five elements combine to make the statistical analysis of the SARS-CoV-2 pandemic difficult:12

many infections are asymptomatic and go undetected; the regular use of lateral flow devices, which would detect asymptomatic13

infection, is heterogeneous across time, space and age-groups; the use of polymerase chain reaction (PCR) testing (adopted14

as the gold-standard in the UK) also changes across time and space, presumably as individuals react to changes in perceived15

risk; infection and testing are inherently stochastic processes; and there are distributed lags between infection and detection.16

These five factors mean that the prompt identification of rising infection (especially in relatively small populations) requires17

sophisticated statistical methods.18

The reproductive number, R , has gained substantial media and political interest during the SARS-CoV-2 pandemic as a19

simple statistical indicator of the current epidemiological trends, with R < 1 corresponding to a declining outbreak and R > 120

corresponding to a growing outbreak (Vegvari et al., 2021). During 2020 in England, the nationwide estimate of R (UK Health21

Security Agency, 2020b) was one of the key metrics in determining the national alert level with implications for changes in22

control measures (UK Health Security Agency, 2020a); hence placing great political, economic and public-health importance23

on this single value. A robust and rapid estimation of R (or the epidemic growth rate r ), together with levels of uncertainty,24

remains a key public-health tool. The estimation needs to be rapid, such that prompt action can be taken before the burden on25

health services becomes too great; the estimation also needs to be robust, as the economic and social consequences of action26

can be costly and so should only be enacted when there is considerable certainty that such measures are needed. As such there27

is a clear need for continued development of statistical methods that can extract a meaningful signal from complex and noisy28

epidemiological data.29

Obtaining an accurate and timely measure of R generally requires a robust estimate of either the generation time or the30

infectiousness profile over time (Wallinga and Lipsitch, 2007) (capturing the expected level of transmission at time t after31

infection). Both of these necessitate detailed individual-level observations (Hart et al., 2021; Abbott et al., 2020, 2021) and may32

therefore be context dependent, leading to a diversity of R estimates from the same population-level data (Funk et al., 2020).33

Here, we adopt the more parsimonious approach of working with the growth rate r (such that the number of infections grows like34

I (t ) ∼ exp (r t )), in which case our threshold for a growing or declining outbreak becomes where r is greater or less than zero,35

respectively.36

Given the importance of real-time estimation of the growth rate, r , or the reproductive number, R , multiple statistical37

methods have been developed (The Royal Society, 2020; Gostic et al., 2020). All methods have advantages and potential38

problems, with an inevitable trade-off between robustness and timeliness. Most naively, the growth rate can be estimated by39

simply measuring the rate of change of log(infection) , where infections are often approximated as being proportional to reported40

cases. This naive approach is confounded by the stochastic nature of transmission and reporting, requiring either smoothing of41

the data or fitting the growth rate over a defined time window - longer windows and more smoothing eliminate stochastic effects,42

but mean that real-time estimates of the growth rate and R are considerably lagged. The UK government dashboard (UK Health43

Security Agency, 2020c) expands on these simple ideas to produce estimates of the growth rate at the national scale, calculated44

as the relative change over seven days in the smoothed number of cases (smoothed by taking a mean over a seven-day window).45

In recent years, EpiEstim (Cori et al., 2013) has grown in popularity as a method of estimating changing R values, due to its46

flexibility and accuracy (Funk et al., 2020). EpiEstim uses a Bayesian framework to compare the reported number of cases over a47

time window with the projection based on the infectiousness profile and historic reporting to generate an estimate of R in a given48
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GUZMÁN-RINCÓN ET. AL 3

window.49

In this paper we develop a novel method to generate a real-time estimate of the growth rate of infection in small stochastic50

populations. Our flexible method uses a Bayesian approach to compute the posterior distribution of the growth rate at any point in51

time and produces samples of the joint posterior distribution of the growth rate for any given interval. We use Gaussian processes52

(GPs) to fit to the reported data, which gives us flexibility in smoothing the count of new cases according to the GP parameters.53

We fit to two different measures: the raw number of recorded cases in a region, as defined by PCR positives in the community; or54

the proportion of community PCR tests that are positive. The latter provides a more stable estimate when testing patterns are55

changing rapidly.56

We first outline the basic methodology and illustrate its use on surrogate data sets where the growth rate is known. We then57

apply our model to data on SARS-CoV-2 cases in England, initially at a national-level by estimating the daily growth rate of58

SARS-CoV-2 from 1st September 2020 to 6th December 2021 (as available at the time of writing). Finally, we explore the spatial59

heterogeneity in cases at the Lower Tier Local Authority (LTLA) level in April 2021 when the Delta variant was increasing in the60

North-West of England - a time when the spatial variability of epidemic behaviour was key to understanding the impact of the61

new variant.62

2 | METHODS63

We describe a model framework to estimate the growth rate, r , of an epidemic based on the count of reported infections (cases).64

If the counts are recorded through a testing programme, to adjust for changes in testing effort the model can also incorporate the65

total number of tests performed over time. We assume that the underlying process generating the count of cases is given by66

a one-dimensional Gaussian process (Section 2.1), and obtain the growth rate by sampling from the derivative of the process67

(Section 2.2).68

2.1 | Model structure69

For a given community, let T = {1, . . . ,T } be a set of time indices at which data are collected. For each t ∈ T, yt denotes70

the number of positive test results at time t and nt denotes the total number of tests. In the context of SARS-CoV-2, data are71

generally collated daily with the potential for missing data, which our proposed models allow for; for other infections data may72

be collected over larger or irregularly spaced intervals.73

2.1.1 | Positives model74

We first propose the following Bayesian hierarchical model, labelled as the positives model, which only requires knowledge75

of yt (the number of positive cases at time t ) and is therefore applicable in situations where nt (the number of tests at time76

t ) is not available. The model assumes that yt follows a negative binomial distribution parameterised by its mean µt and a77

time-homogeneous over-dispersion parameter η. The probability mass function of yt under this parameterisation is:78

Prob(yt |µt , η) =
Γ (yt + η)

Γ (η)Γ (yt + 1)
(µt /η)yt

(1 + (µt /η))η+yt
.79

The parameter log(η) is assigned a normal prior N(mη , τ
−1
η ) . The log relative risk, log(µt ) , is decomposed into the sum of80

a smooth term xt and a Gaussian error term ϵt with zero mean and precision τϵ ∼ Γ (aϵ , bϵ ) . The model can therefore be81
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4 GUZMÁN-RINCÓN ET. AL

expressed as:82

yt |µt , η ∼ Negative binomial(µt , η), (1)83

log(η) ∼ N(mη , τ
−1
η ) .84

log(µt ) = xt + ϵt ,85

ϵt ∼ N(0, τ−1ϵ ), τϵ ∼ Γ (aϵ , bϵ ) .86
87

where the hyperparameters underpinning the distribution of the error precision (aϵ and bϵ ) and the over-dispersion hyperparam-88

eters (mη and τ−1η ) are specific to the problem and quoted in the results. To avoid identifiability issues with the terms xt , we89

impose a sum-to-zero constraint to the error terms such that
∑

t ϵt = 0.90

The prior on the smooth terms xt is given by a Gaussian process f on Ò such that xt = f (t ) , where f has mean zero,91

covariance kθ (f (s), f (s′)) between the value of the process f at times s and s′ and hyperparameters θ:92

xt = f (t ), (2)93

f (s) |θ ∼ GP(0, kθ (f (s), f (s′))) .94
95

A comprehensive summary of such regression models using Gaussian processes can be found in (Rasmussen and Williams, 2006,96

Ch. 2). Here, we use a one-dimensional Matérn covariance family (Stein, 1999), since the resulting process f is stationary and97

isotropic, and the smoothness can be specified through a single smoothing parameter ν. We choose ν = 3/2 which results in the98

covariance function:99

k (l ,σ ) (f (s), f (s′)) = σ2

(
1 +

√
3
|s − s′ |

l

)
exp

(
−
√
3
|s − s′ |

l

)
.100

which also depends on the additional hyperparameters θ = (l ,σ); where l is the length-scale, and σ2 is the marginal variance of101

the process. We set the joint prior of l and σ as (log(l ), log(σ)) ∼ N( (l0,σ0),B−1) where l0 and σ0 are baseline values for the102

length-scale and precision, respectively, and B is the precision matrix of the joint prior. A diagram of the model is shown in S.1103

of the Supplementary material.104

This basic model can be extended by adding additional terms which capture other elements of the dynamics. For example,105

reported SARS-CoV-2 cases in England have a pronounced day-of-the-week effect, with fewer cases reported on weekends (see106

Figure 2A). The day-of-the-week effect (which is included in all the results shown below) can be interpreted as an alternative107

error term with possible non-zero mean whose parameters are allowed to depend on the day of the week. Formally, we substitute108

the error term ϵt by a day-of-the-week effect wd (t ) with a Gaussian hyperprior with zero mean and precision τw ∼ Γ (aw , bw )109

(where d (t ) is the day of the week on t ). We impose a sum-to-zero constraint
∑

t = wt = 0 to avoid identifiability issues with110

the terms xt .111

2.1.2 | Proportions model112

If the number of tests is known, then an alternative model formulation is possible that accounts for changes in testing behaviour113

over time; we label this model the proportions model and seek to capture the proportion of tests that are positive. In this case, yt114

(the number of positive cases at time t ) given nt (the number of tests at time t ) is assumed to follow a beta-binomial distribution115

with mean parameter µt , over-dispersion parameter ρ and number of trials nt . We use a beta-binomial distribution to account for116

both the bounded nature of yt (which is bounded above by nt ) and the over-dispersion.117
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GUZMÁN-RINCÓN ET. AL 5

The probability mass function of yt under this parameterisation is given by:118

Prob(yt |µt ,M , nt ) =
(
nt
yt

)
Γ (M )

Γ (Mµt )Γ (M (1 − µt ))
Γ (yt +Mµt )Γ (nt − yt +M (1 − µt ))

Γ (nt +M ) ,119

where M = (1/ρ) − 1. Given the bounded nature of the positive tests, such that µt ∈ (0, 1) , we utilise the inverse logit transform120

(logit−1), and assume that logit−1 (µt ) is decomposed into the sum of a smooth term xt and a Gaussian error term ϵt with121

zero mean and precision τϵ ∼ Γ (aϵ , bϵ ) . The transformed over-dispersion parameter logit−1 (ρ) is assigned a normal prior122

N(mρ , τ
−1
ρ ) . As in the positives model, the prior on xt is given by the Gaussian process described in Section 2.1.1:123

yt |µt , ρ, nt ∼ Beta-binomial(µt , ρ, nt ), (3)124

logit−1 (ρ) ∼ N(mρ , τ
−1
ρ ) .125

logit−1 (µt ) = xt + ϵt ,126

ϵt ∼ N(0, τ−1ϵ ), τϵ ∼ Γ (aϵ , bϵ ) .127
128

2.2 | Growth rate sampling129

The instantaneous growth rate is defined as the per capita change in the number of new cases per time period. That is, if wt is130

the process generating new cases at time t , the growth rate corresponds to rt = ∂t (wt )/wt , or equivalently, rt = ∂t (logwt );131

where ∂t signifies the time derivative. However, wt is unknown in practice, so we instead approximate the growth rate using132

our fitted Gaussian process. For the positives model, we approximate rt as the growth rate of the process fitting the number133

of new reported cases, exp(f (t )) . That is, rt ≈ r At = ∂t (log[exp{f (t ) }]) = ∂t f (t ) and therefore, rt can be estimated as the134

derivative of the Gaussian process f . For the proportions model, we approximate rt as r Bt = [∂t {f (t ) }]/[1 + exp{f (t ) }], such135

that r Bt corresponds to the growth rate of new reported cases minus the growth rate the new tests performed (see S.2 of the136

Supplementary material).137

To capture the inherent uncertainty in the process f , we sample from the derivative of the process f to obtain samples of138

the growth rate. Note that Gaussian processes with the Matérn covariance are mean-square differentiable if ν > 1, which is139

satisfied by our choice of ν = 3/2 (Stein, 1999). We obtain samples of the derivative by taking numerical approximations of140

the derivative (∂t ) of samples drawn from the process f . That is, for a given sample g of f , we approximate the derivative as141

g ′ (s) ≈ g (s+h)−g (s−h)
h with error O(h) , where h is the window size of the approximation.142

2.3 | Implementation143

We implement the model in R using the package INLA (Rue et al., 2009), where the posterior distribution of the parameters of144

the model is obtained using a Laplace approximation. The Gaussian process with Matérn kernel is computed as the solution145

of a stochastic partial differential equation (Lindgren et al., 2011), obtained by the Finite Element Method (FEM). To fit the146

model using the FEM implementation in INLA, we create a one-dimensional mesh with equally-spaced nodes that represent time147

points. The nodes are located according to the frequency of reported counts; that is, if the data is reported daily, one node per148

day is located, even if there is missing data. To avoid boundary effects, the mesh domain is extended by at least the length of149

the studied period (extra nodes are added before the first observation and after the last observation) (Lindgren and Rue, 2015).150

The code is available in GitHub/juniper-consortium/growth-rate-estim. For the rest of the paper, we use weakly informative151

priors to the over-dispersion parameters of the models, such that log(η) ∼ N(0, 0.01−1) and logit−1 (ρ) ∼ N(0, 0.5−1) . More152

restrictive priors could reject values of the hyperparameters possibly explained by the data (Rasmussen and Williams, 2006,153
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6 GUZMÁN-RINCÓN ET. AL

Ch. 5). Choices of τϵ , l0, σ0 and B are case-specific and are detailed in the results.154

2.4 | Model validation155

To validate the accuracy of the models, we generate synthetic epidemiological data from a single homogeneous population of156

size N = 1, 000, 000. We assume for the first 100 days there is an underlying growth rate of r = 0.03 per day. For the second157

100 days, we assume that controls are enacted and the epidemic goes into decline with a rate of r = −0.02. More precisely, the158

number of infections y (t ) on day t are sampled from a Poisson distribution with rate r
∑6

i=3 y (t − i ) for t > 6 and exp(r t ) for159

t <= 6 (where r = 0.03 for t <= 100, r = −0.02 for t > 100, and y (0) = 100).160

We compare two scenarios for the number of daily tests n (t ) . As our purpose is to test the model accuracy under a known161

growth rate, rather than discuss the effect of the test sampling, we make highly optimistic assumptions for the frequency of162

testing. In the first scenario, a random ten percent of the population is tested daily, n (t ) = 0.1N ; in the second scenario, tests163

increase linearly from n (0) = 0.01N to n (200) = 0.1N .164

We run both the positives model and proportions models for each scenario. We set l0 = 50, σ0 = 1, and impose B = É to165

have non-informative priors for the parameters of the Gaussian process (where É is the identity matrix). For the approximation of166

the derivative, we set a window of h = 3 days for all times except near the boundary, where we choose h = 1 for t = 1, 200, and167

h = 2 for t = 2, 199.168

For simulation 1, with a constant daily testing rate, for both models the true growth rate is in the posterior credible interval169

(CI) for all time steps, except near t = 100 (Figure 1, top row). The lack of abrupt transition at the t = 100 breaking point is due170

to the smoothness of the Gaussian process (as captured by the assumed length scale, l0). Although we could use a less smooth171

covariance function, such a covariance function choice would overfit the data, responding to small stochastic variations and172

hence not capturing the true underlying growth rate.173

positives model proportions model
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ulation 1

sim
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0 50 100 150 200 0 50 100 150 200
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F I G U R E 1 Validation of the ‘positives model’ and the ‘proportions model’. Posterior distributions of the growth rate for
simulated data under two scenarios (top - constant testing; bottom - increasing testing) and two models (left - positives model;
right - proportions model). We display the median (solid black line), 50% credible interval (dark shaded ribbon) and 90%
credible interval (light shaded ribbon). The red dotted lines indicate the true growth rate.
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For simulation 2, which has a linearly increasing daily testing rate, the positives model generally overestimates the growth174

rate. The overestimation in the positives model is more dramatic for the first 100 time steps, where the exponential growth rate175

of testing was higher (Figure 1, bottom left panel). In contrast, for the proportions model the true growth rate lies within the176

posterior credible interval for the majority of time steps, as in simulation 1 (Figure 1, bottom right panel).177

2.5 | Heterogeneity measure178

Although the method is not inherently spatial, treating each set of temporal data as statistically independent, we can nevertheless179

use the spatial position of each spatially sampled location to address localised effects. In this way, we introduce a heterogeneity180

measure to assess whether exceptionally high or low growth rates within a given spatial location are a localised pattern or are181

caused by a larger, more widespread, phenomenon. We define the heterogeneity hi of a spatial element i as:182

hi =
1

Ni

∑
j ∈Nbd (i )

(ri − rj )2 sign(ri − rj ),183

where ri is the growth rate within location i , j ∈ Nbd (i ) denotes all spatial locations that neighbour element i (where for184

simplicity we assume this means share a boundary, but could be any measure of spatial locality) and Ni is the number of185

neighbours of i . Samples of hi are taken by sampling from ri and rj . As such, hi provides a measure of local covariance, with its186

sign reflecting whether it has higher or lower growth than its neighbours. Moreover, we can estimate other quantities that allows187

us to compare the heterogeneity measure of different spatial elements. For instance, we estimate Prob(hi > 0) , allowing us to188

identify elements with considerably high heterogeneity.189

3 | CASE-STUDY190

3.1 | Data191

We apply the models described above to data on daily counts of SARS-CoV-2 cases in England and in lower tier local authorities192

(LTLAs) between 1st September 2020 and 6th December 2021, dataset provided by Public Health England (now UKHSA).193

The data correspond to the count of people from the wider population (Pillar 2 of the UK government testing programme (UK194

Health Security Agency, 2021)) with at least one positive PCR test, reported by specimen date and residence location (by LTLA).195

The data also include the count of negative tests. The dataset includes a total of 4.51 million positives cases (timeseries shown196

in Figure 2, panel B), with test positivity ranging between 0-0.3 (Figure 2, panel C), and a total test count of 62.8 million197

(timeseries shown in Figure 2, panel A). We applied the models at a national-level, to case counts in England (Section 3.2), and198

at a local-level, to cases per LTLA in England (Section 3.3).199

3.2 | Growth rate estimation of SARS-CoV-2 in England from 1st September 2020 to 6th200

December 2021201

We apply the positives and proportions model to the count of cases of SARS-CoV-2 in England between 1st September 2020202

and 6th December 2021. For both models, we chose l0 = 100 days and τ0 = 1 as the baseline value for the length-scale and203

precision, respectively, and B = É. We replicate the same choices for h for the approximation of the derivative as in Section 2.4.204

Following the implementation details in Section 2.3, the model takes less than 3.0 seconds of CPU time to estimate the posterior205

distribution of the parameters (using the package INLA 21.07.10 in R 4.1.0 using a MacBook Pro with the Apple M1 chip) and an206

additional 4.7 seconds to generate 1000 samples of the parameters.207
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8 GUZMÁN-RINCÓN ET. AL

Our time period of study contains both the second wave of infections (punctuated by a short-term imposition of strong208

non-pharmaceutical interventions from 5th November to 2nd December 2021) and the protracted third wave. It is clear from the209

data that there is a pronounced effect of weekends on the testing patterns, with lower testing but a higher proportion of positives210

on a weekend (shown as red circles in Figure 2).211

Both the fitted positives and proportions model had reasonable correspondence with the empirical data (Figure 2, panels212

B&C). The yellow ribbon shows the credible interval of the underlying Gaussian process, while the grey ribbon shows the model213

fit including day-of-the-week effects. Our posterior distributions for the hyperparameters of the Gaussian process were confined214

to a narrow region of the prior distribution, showing we had garnered knowledge from the available data (Figure 3, panel A). For215

the positives model, the standard deviation σ had a posterior median of 5.97 (95% credible interval 3.93-10.88) and the length216

scale l had a posterior median of 120.97 (95% credible interval 89.12-187.73). The proportions model had a similar pattern with217

lower values, where the standard deviation σ had a posterior median of 2.26 (95% credible interval 1.56-3.81) and the length218

scale l had a posterior median of 59.34 (95% credible interval 43.71-91.34).219

There was usually a high level of concordance in the qualitative relationship between the growth rate estimates from the220

positives model and proportions model, with the models particularly well-agreeing whether the growth rate was positive or221

negative (Figure 2, panel D). This agreement provides additional confidence that we are seeing a robust signal from the data.222

Nevertheless, there were sustained periods with the two models producing dissimilar quantitative estimates, such as during223

December 2020. Higher differences in testing correspond to higher differences in growth rate estimation (Figure 3, panel B).224

This helps explain the discrepancies observed in December 2020, when testing practices are likely to be affected by the holiday225

period.226

3.3 | Spatial heterogeneity in cases of SARS-CoV-2 in the North-West region in England, April227

2021228

We applied the proportions model to the count of positive cases of SARS-CoV-2 in England for each of the 317 LTLAs. Since229

data at a lower resolution can be noisy, setting weak priors for the hyperparameters of the Gaussian process can lead to unrealistic230

length scales to account for the noise. To overcome that issue, we assume that the covariance function of the underlying Gaussian231

process at a local authority level has a similar shape to the national data. Therefore, we set the baseline values σ0 and l0 for the232

LTLA level to be the posterior median of σ and l obtained with the national data in Section 3.2, respectively, with precision233

B = 10É.234

We focus on the results from 23rd April 2021, when infections with the Delta variant were increasing in the North-West of235

England, particularly in Bolton where our proportions model gave an estimated positivity of 3.25% (95% PI: 2.65%-3.90%)236

(Figure 4, panel A). Multiple neighbouring LTLAs in the North-West region had median estimates for proportion of tests being237

positive above 2%. In other regions at that time, some urban centres had a similar high incidence of 2% or above, which included238

Manchester and Sheffield. However, we generally measured incidence to be lower in other regions compared to the North-West.239

For example, all LTLAs in the South-West and along the southern coast had low median incidence estimates (below 1%).240

Though there was regional structure to the magnitude of test positivity, for growth rates we observed spatial variability in241

areas experiencing high growth in cases and those where incidence was declining (Figure 4, panel B). Areas expressing the242

greatest heterogeneity were regionally disconnected (Figure 4, panel C). LTLAs whose probability of positive heterogeneity243

exceeded 0.95, thereby indicating high growth rates larger than the surrounding areas, included Erewash in the East (median244

heterogeneity: 1.42), Sefton in the North-West (median heterogeneity: 1.00), Bedford in the east (median heterogeneity: 0.79),245

and Bolton in the North-West (median heterogeneity: 0.50). For Bolton, our heterogeneity measure suggested that area was246

having a localised increase (>99% probability of heterogeneity being greater than 0) rather than a regionally-driven event.247

Through concurrently considering the growth rate and the proportion of tests with a positive result, we could discern those248
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F I G U R E 2 Model fitting and posterior distribution of the growth rate for SARS-CoV-2 cases in England from 1st September
2020 to 6th December 2021. (Panel A) Number of tests conducted. Black triangles correspond to reported test counts on
weekdays, whilst red circles correspond to reported test counts on weekends. (Panel B) Median (lines) and credible interval
(darker shaded ribbons for 50%, lighter shaded ribbons for 95%) of the model fitting (grey, dashed line) and the Gaussian
process (yellow, solid line) for the positives model. Dots correspond to the daily count of positives. (Panel C) Median (lines) and
credible interval (darker shaded ribbons for 50%, lighter shaded ribbons for 95%) of the model fitting (grey, dashed line) and the
Gaussian process (yellow, solid line) for the proportions model. Dots correspond to the proportions of positives per day. (Panel
D) Median (lines) and credible interval (darker shaded ribbons for 50%, lighter shaded ribbons for 95%) for the growth rate
estimations in the positives model (red, dashed line) and proportions model (black, solid line).
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F I G U R E 3 (Panel A) Comparison of the prior and posterior distributions of length-scale l (in days) and standard deviation σ

for the positive and proportion models when applied to SARS-CoV-2 cases in England. Grey filled circles correspond to samples
from the prior distribution. Red triangles correspond to samples from the posterior distribution in the positives model. Black
squares correspond to samples from the posterior distribution in the proportions model. The dashed ovals represent the 95%
posterior density region of each distribution. (Panel B) Comparison between the difference in testing (change in the count of tests
in 7 days, y-axis) and the difference between the growth rate estimations of the positives and the proportions model (x-axis). The
filled circle markers correspond to the median growth rate difference between the two models, with horizontal bars representing
the 95% credible interval of the difference between growth rates.

LTLAs suffering from both high prevalence and high growth rates (thereby possibly requiring further support), such as Bolton249

and Blackburn with Darwen, and LTLAs to monitor closely due to having low prevalence but high growth rates, including250

Erewash, Bedford and Sefton (Figure 5, panel A). Although Selby has the highest estimated proportion testing positive (4.19%),251

the growth rate had been decreasing in the prior week (Figure 5, panel B).252

4 | DISCUSSION253

In this paper, we have proposed two model structures, the positives model (which only uses data on confirmed positive cases)254

and the proportions model (which uses both positive and negative test information), to estimate the instantaneous growth rate255

of cases. We note that any measure based on cases is necessarily a lagged indicator of infectious processes due to the delay256

between infection and notification of disease, which generally only occurs once symptoms arise. However, as we show for simple257

models, our methods can robustly estimate both the growth rate and temporal changes in the growth rate, which are often related258

to external epidemiological factors of public-health interest.259

The latent structure of both models includes a Gaussian process (GP) that interpolates the epidemic curve and approximates260

the underlying process that generates the disease incidences. We then take samples of the derivative of the GP to estimate the261

growth rate. The models are implemented using the Laplace approximation incorporated in the INLA package in R. Both models262

use data on positive reported infections, while the proportions model also incorporates testing counts, enabling us to account for263

changes in test-seeking behaviour. We believe our approach has four benefits over existing methods. Firstly, it is rapid, robust and264

computationally efficient - all of which are considerable advantages when dealing with a rapidly changing epidemic in multiple265

spatial locations. Secondly, by focusing on growth rate rather than the reproduction number, we by-pass the complexities of266

estimating generation-time distributions that can substantially hinder other methods early in an outbreak. Thirdly, the combined267
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F I G U R E 4 Epidemiological trends at the LTLA level in England on 23rd April 2021. (left) Estimated median of posterior of
incidence, with lighter shading corresponding to higher incidence estimates. (center) Estimated median of posterior of growth
rate (red shading when greater than zero, blue shading when less than zero). Regions with thicker borderlines correspond to
LTLAs where the probability that the growth rate is greater than 0 exceeded 95%. (right) Median of heterogeneity (red shading
when greater than zero, blue shading when less than zero). Regions with thicker borderlines correspond to LTLAs where the
probability that the heterogeneity is greater than 0 exceeded 95%.

use of positive reported infections and number of tests allows us to deal with the proportion of tests that are positive, a measure268

that is relatively insensitive to changes in testing behaviour. Finally, the use of Gaussian processes means that the method is also269

relatively robust to missing data, allowing us to provide continuous estimates even if some of the data streams are considered270

unreliable (for instance, the high rate of false negatives reported by the Immensa Health Clinic in some regions in the UK in271

September 2021 (Torjesen, 2021)).272

Throughout we applied our method to reported cases of SARS-CoV-2 infection in England as confirmed by PCR testing. We273

perform our analysis both at a national scale (Figure 2) and at a small regional scale (Figures 4 and 5). Our choice of pathogen274

was determined by the need to quantify and explain the ongoing pandemic, feeding our findings through SPI-M-O (Scientific275

Pandemic Influenza Group on Modelling, Operational sub-group) to policy advisers. England has seen three major waves of276

infection, broadly associated with the wild-type, Alpha and Delta variants. The first wave which began in March 2020 led to large277

numbers of hospital admissions and deaths, but was poorly quantified in terms of infection due to the low level of community278

testing. The second wave began in September 2020 and peaked in late December 2020 or early January 2021 with over 60,000279

cases reported on 29th December 2020. The third wave from June 2021 has been characterised by a prolonged period (over 5280

months) of high cases, but with relatively low hospital admissions and deaths due to high vaccine uptake.281

The national trends in growth rate highlight the complex pattern of growth (r > 0) or decay (r < 0) over time (Figure 2).282

Some notable changes that correspond to mitigation activities include: a pronounced negative growth rate during November283

2020 due to the National 4-week lockdown, although the growth rate had been lower in October 2020 than September 2020;284

the negative growth rate during January-April 2021, during which time England was in lockdown followed by Steps 1 and 2285

of the government’s COVID-19 response (UK Cabinet Office, 2021), which transitioned into high growth rates by late May286

2021; a sharp drop in growth rate (especially as estimated by the positives model) in July 2021 which has been labelled as the287

‘pingdemic’ due to the large number of individuals contacted through the Test-and-Trace App, and the potential changes in288

behaviour to avoid this; finally, we observe that much of August-November 2021 is characterised by growth rates close to zero,289

reflecting the high level of cases that have been maintained through this period.290
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F I G U R E 5 (left) Smooth estimation of positivity (y-axis) and growth rate (x-axis) of every LTLA in England on 23rd April
2021 coloured by probability that the heterogeneity is greater than 0 (dark blue for high probability, white for low probability).
On the top axis we state the doubling time associated with the corresponding growth rate. Vertical bars correspond to the 95%
credible interval of positivity. Horizontal bars correspond to the 95% credible interval of the estimated growth rates. (right)
Trajectory of incidence-growth rate for LTLAs with high prevalence (top 2.5%) or high growth rate (top 5%) from 15th April
2021 and 23rd April 2021 (squares correspond to the 23rd April).

Both the positives model and proportions model aim to capture the instantaneous growth rate of new cases and, if the efforts291

in testing are constant, both methods provide equivalent results. However, the estimations can differ when testing behaviour has292

a temporal trend - as seen during the COVID-19 outbreak in England. For instance, if the testing rate increases, the positives293

model can underestimate the actual growth rate (Figure 3, panel B). In contrast, the proportions model accounts for changes in294

the number of tests and can give more reliable estimates. However, both models can be affected by more nuanced changes in295

testing behaviour; our proportions model assumes that any change in test-seeking behaviour affects all sections of the population296

equally - if this is not true (such as the introduction of twice-weekly lateral flow testing for secondary school children) then there297

can be biases. We propose to include both approaches into routine analysis since they give different perspectives to the same data,298

particularly when there is little knowledge of the processes driving testing behaviour in the population.299

Another strength of our growth rate estimation method is the relatively low computational expense and run time, using the300

Laplace approximation implemented in INLA (Rue et al., 2009), permitting the application of the model at a local level (to each301

of the 317 LTLAs in England). Spatially, the English COVID-19 case data is either broken into seven National Health Service302

regions, or into 317 Lower Tier Local Authorities (LTLA). LTLAs range in size from just over 2000 people (Isles of Scilly) to303

well over a million (Birmingham), but most contain around 140,000 inhabitants. Performing our analysis at this spatio-temporal304

scale allows us to identify both highly localised outbreaks (as seen in the maps in (Figure 4) or wider regional trends, enabling305

scrutiny of locations exhibiting atypical data patterns. Furthermore, introducing a heterogeneity measure enabled comparisons306

of the growth rates between neighbouring LTLAs. The heterogeneity measure has been used during the pandemic to highlight307

places with abnormal growth patterns, generally identifying LTLAs with significantly higher growth. The process has also be308

extended (by considering S-gene target failure) to quantify the spread of new variants (e.g. Alpha and Delta) to pinpoint localities309

that were increasing above mere noise (Challen et al., 2021).310

Our analysis of LTLAs was focused around 23rd April 2021; at this time the Delta variant had begun to establish across311

England (with about 20% of cases attributed to Delta), hospital admissions and deaths were continuing to decline, but community312

cases had reached a nadir. Understanding the spatial patterns of growth at this time, and linking it to the prevalence of the313
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Delta variant, was important for assessing the invasion of the new variant. We observe a mixed mosaic of growth rates across314

England (Figure 4) with a few regions where the growth rate is significantly above zero. Many of these regions also appear in the315

heterogeneity map as islands of growth amid a sea of declining cases; which suggests a rapid localised growth in these areas.316

Focusing on LTLAs that either have high growth rates or high prevalence (Figure 5) we identify three main grouping that may317

require further epidemiological investigation. Firstly there are four LTLAs (South Hams, South Northamptonshire, Erewash and318

Hyndburn) that have high positive growth rates and where we expect cases to continue to rise. Secondly, there is a group of319

fifteen LTLAs where a high proportion of tests (between 2-4%) are positive; of these Bolton, Trafford and again Hyndburn (all in320

the North-West of England) are of the greatest concern due to their positive growth rate. Finally, Selby in the North-East of321

England (clearly identifiable on the incidence map of Figure 4) has an extremely high proportion of tests that are positive, and322

while the mean growth rate is slightly below zero this is not statistically significant suggesting that cases will remain high over323

the short-term.324

Our approach for estimating the growth rate is a purely statistical method and therefore has limitations. First, the model is325

non-mechanistic and does not incorporate any epidemiological assumptions. Therefore, it is not suitable for predicting future326

changes in infections or making long term forecasts, particularly as it cannot account for the depletion of susceptible through327

infection or vaccination. Second, we assume that the spatial regions investigated are independent and homogeneous, we do not328

account for the movement of infection between regions (Kraemer et al., 2021) nor the spatial and social structure within a region.329

A lack of internal structure could be important for public-health concerns; for example, an outbreak that is primarily increasing in330

the young has very different health implications compared to one that is increasing in the elderly. There is no reason why richer331

data structures cannot be incorporated within our methodology (for example looking at the growth rate in a set of age-groups),332

but such an analysis requires large amounts of data and is increasing complex to interpret. Third, the data analysed in this study333

comes from PCR testing (or individuals that have performed a lateral flow test followed by PCR). Therefore, there are limitations334

due to specificity and sensitivity of the test and the ability of individuals to swab reliably. Associated with this, and discussed335

above, changes to test-seeking behaviour beyond a simple increase in testing could introduce a range of biases. It is important to336

stress that throughout we are fitting to positive tests not infections, although we believe the two are highly correlated. Finally,337

though Gaussian processes provide a flexible tool, some prior knowledge of the patterns of the disease is required to inform the338

subjective choice of the covariance function and its priors. If the data sources are not consistent over the time course of the study,339

it will affect both models. Moreover, abrupt changes in the epidemic curve are harder to pick for certain covariance functions340

(e.g. smooth covariance functions). This highlights the need for further studies around how to design more complex covariance341

functions that allow such abrupt changes to be captured.342

In summary, we have presented a general structure for estimating instantaneous growth rates that uses a Bayesian hierarchical343

model to fit a Gaussian process to the epidemiological data. Applied to high-resolution spatio-temporal SARS-CoV-2 case and344

testing data from England, we have demonstrated the ability of parsimonious models estimating instantaneous growth rate to both345

determine long-term patterns of growth at a national-scale, and highlight growth and spatial heterogeneity at a regional-scale.346
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