Xin Guan^{a,1}, Mengying Li^{a,1}, Yansen Bai^a, Yue Feng^a, Guyanan Li^a, Wei Wei^a, Ming Fu^a,

Associations of mitochondrial DNA copy number with incident risks of 1

gastrointestinal cancers: a prospective case-cohort study 2

3

5	Hang Li ^a , Chenming Wang ^a , Jiali Jie ^a , Hua Meng ^a , Xiulong Wu ^a , Qilin Deng ^a , Fangqing
6	Li ^a , Handong Yang ^b , Xiaomin Zhang ^a , Meian He ^a , Huan Guo ^{a,*}
7	
8	Authors' affiliations:
9	^a Department of Occupational and Environmental Health, State Key Laboratory of
10	Environmental Health (Incubating), School of Public Health, Tongji Medical College,
11	Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, China
12	^b Dongfeng Central Hospital, Dongfeng Motor Corporation and Hubei University of
13	Medicine, Shiyan, China.
14	¹ These authors contributed equally to this work.
15	
16	Declaration of competing financial interest:
17	The authors declare no competing financial interest.
18	
19	* Correspondence to:
20	Huan Guo, MD, PhD, Professor, Department of Occupational and Environmental
21	Health, School of Public Health, Tongji Medical College, Huazhong University of
22	Science and Technology, 13 Hangkong Rd, Wuhan 430030, Hubei, China. Tel: 8627-
23	83657914; Fax: 86-27-83657765; E-mail: <u>ghuan5011@hust.edu.cn</u>
24	
25	Word counts: 4335
	NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

26 Abstract

27	Background Epidemiological investigations implied that inter-individual variations of
28	mitochondrial DNA copy number (mtDNAcn) could trigger predisposition to multiple
29	cancers, but evidence regarding gastrointestinal cancers (GICs) was still uncertain.
30	Methods We conducted a case-cohort study within the prospective Dongfeng-Tongji
31	cohort, including incident cases of colorectal cancer (CRC, n=278), gastric cancer (GC,
32	n=138), and esophageal cancer (EC, n=72) as well as a random subcohort (n=1173),
33	who were followed up from baseline to the end of 2018. Baseline blood mtDNAcn was
34	determined with quantitative PCR assay, and associations of mtDNAcn with the GICs
35	risks were estimated by using weighted Cox proportional hazards models.
36	Results Significant <i>U</i> -shaped associations were observed between mtDNAcn and risks
37	of CRC, GC, EC, and total GICs. Compared to subjects within the 2 nd quartile (Q2)
38	mtDNAcn subgroup, those within the 1^{st} (Q1), 3^{rd} (Q3) and 4^{th} (Q4) quartile subgroups
39	showed increased risks of CRC [HR(95%CI)=2.27(1.47-3.52), 1.65(1.04-2.62), and
40	2.81(1.85-4.28), respectively] and total GICs [HR(95%CI)=1.84(1.30-2.60), 1.47(1.03-
41	2.10), and 2.51(1.82-3.47), respectively], and those within Q4 subgroup present
42	elevated GC and EC risks [HR(95%CI)=2.16(1.31-3.54) and 2.38(1.13-5.02),
43	respectively]. Similar associations of mtDNAcn with CRC and total GICs risks
44	remained in stratified analyzes by age, gender, and smoking status. Notably, there were
45	joint effects of age and smoking status with mtDNAcn on CRC and total GICs risks.

- 46 **Conclusions** This prospectively case-cohort study showed *U*-shaped associations
- 47 between mtDNAcn and incident risks of GICs, but further researches are needed to
- 48 confirm these results and uncover underlying biological mechanisms.
- 49
- 50 **Keywords:** gastrointestinal cancers; mitochondrial DNA copy number; U-shaped
- 51 association; case-cohort study.

52 Introduction

53	Gastrointestinal cancers (GICs), including colorectal cancer (CRC), gastric cancer
54	(GC), and esophageal cancer (EC), jointly account for over 22% of all cancer-related
55	deaths and constitute over 21% and 13% of incident cancer cases among men and
56	women, respectively (Sung et al. 2021). The incidences of GICs vary considerably by
57	geographical regions, with approximately 40% of all cases occurring in China . Many
58	risk factors contribute to the development of GICs, including chronic infection (e.g.,
59	Helicobacter pylori), lifestyle-related factors (e.g., alcohol drinking), and unhealthy
60	diet, especially foods conserved with nitrates and nitrites (Brenner, Kloor, and Pox
61	2014, McCormack et al. 2017, Sung et al. 2021, Kumar et al. 2020, Smyth et al. 2020).
62	However, because of the occult onset of GICs and a lack of specific screening methods
63	for these cancers, GICs are always diagnosed at an advanced stage with poor survival
64	outcomes (Brenner, Kloor, and Pox 2014, Codipilly et al. 2018, Zhang et al. 2018),
65	which underlines the great demand to identify early biomarkers to discriminate high risk
66	populations.
67	As a double-membrane organelle of eukaryotic cell, mitochondrion harbors its own
68	DNA and plays a pivotal role in a series of biological process, including reactive
69	oxygen species (ROS) and energy production (Lin and Beal 2006, Mishra and Chan

2016). Mitochondrial DNA copy number (mtDNAcn), a reflection of mitochondrial

71 DNA (mtDNA) levels per cell, is a promising biomarker of mitochondrial function

72 (Castellani et al. 2020). In fact, although the mtDNAcn varies among different cell

73 types, the regulation of mtDNAcn is rigid and specific tissues/cells remain fairly stable

74	mtDNAcn. Abnormal mtDNAcn variation induced by oxidative damage or
75	inflammation was reported to be associated many chronic diseases, e.g. cardiovascular
76	disease, neurodegenerative and metabolic disorders (Carew and Huang 2002, Lee and
77	Wei 2005, Liu et al. 2003, Wu et al. 2017, Nunnari and Suomalainen 2012). More
78	importantly, mtDNAcn alterations have also been observed in many types of cancers
79	(e.g., breast cancer, prostate cancer), and may treated as a latent susceptible or
80	diagnostic biomarker (Shen et al. 2015, Xu et al. 2020). Some epidemiological studies
81	have investigated the associations of mtDNAcn with GICs but with inconsistent
82	findings. Pilot data from two prior retrospective case-control studies in China and India
83	revealed the positive association between high mtDNAcn and increased risk of CRC
84	(Qu et al. 2011, Kumar et al. 2017), but another two CRC nested case-control studies in
85	Shanghai Women's Health Study (SWHS) and Nurse's Health Study (NHS) reported
86	inverse associations (Huang et al. 2014, Yang et al. 2019). Similar divergent results
87	were also observed for the association of mtDNAcn with GC risk. An early case-control
88	study (984 pairs) showed a positive relationship of mtDNAcn with GC risk (Zhu et al.
89	2017), but another nested case-control study of 162 GC cases and 299 controls reported
90	null significant association (Liao et al. 2011). Only one small sample-sized (218 pairs)
91	case-control study investigated the association of mtDNAcn with EC and found lower
92	level of mtDNAcn in EC cases than in controls (Xu et al. 2013). Given the
93	aforementioned conflicting findings, the relationships between mtDNAcn and GICs still
94	need to be illustrated in larger prospective studies.

95	To the best of our knowledge, no prior studies have prospectively evaluated
96	associations of mtDNAcn with GICs risks comprehensively. Here, we performed a
97	prospective case-cohort study based on the Dongfeng-Tongji (DFTJ) cohort, including a
98	random subcohort with 1173 subjects and 488 incident GICs (including 278 CRC, 138
99	GC, and 72 EC), to investigate the associations of blood mtDNAcn with incident risks
100	of CRC, GC, EC, and total GICs.

101 Materials and methods

102 Study population

103	All subjects were participants from the DFTJ cohort, an ongoing population-based
104	longitudinal study initiated in 2008 with enrollment of 27,009 retired employees from
105	Dongfeng Motor Corporation (DMC) in Shiyan, Hubei, China. Details on the
106	methodology for DFTJ cohort have been described previously (Wang et al. 2013). In
107	brief, all participants voluntarily responded to the baseline questionnaires and
108	completed medical examination during the period from September 2008 to June 2010.
109	Meanwhile, a 15 mL of fasting venous blood sample donated by each subject was
110	collected and sorted at -80°C before laboratory determinations.
111	The study protocol was ethically approved by the Ethics and Human Subject
112	Committee of Tongji Medical College, Huazhong University of Science and
113	Technology, and the written informed consent was obtained from each subject.

114 Case-cohort study design and covariates assessment

115	Among the total 27,009 participants, after excluding those without available DNA
116	samples ($n=4784$) or who had previous history of cancer ($n=427$) or who were lost to
117	follow-up ($n=140$), the remained 21,658 participants were treated as the base cohort
118	with the median follow-up time of 10.3 years. Subsequently, we randomly selected a
119	representative subcohort of 1173 subjects within the base cohort by age- and gender-
120	stratified sampling with an overall sampling rate of 5% (Table S1). Incident cases of
121	GICs among the cohort population were identified by conducting the periodic record
122	linkage analysis with the database from the local healthcare service systems, including
123	five designated hospital of DMC, Social Insurance Centers, and the Center of Disease
124	Control and Preventions. Cancer incidence data were available till Dec 31, 2018 and
125	defined by professional physicians using the International Classification of Diseases,
126	10 th Revision (ICD-10). Among the 21,658 participants, we identified a total of 488
127	newly diagnosed GICs, including 278 incident CRC cases (C18.2-C20, 14 were in
128	subcohort), 138 incident GC cases (C16.0-C16.9, 6 were in subcohort), and 72 incident
129	EC cases (C15.0-C15.9, 5 were in subcohort). Hence, a total of 1636 participants were
130	finally enrolled in this case-cohort study. The detailed selection criteria and cases
131	distribution are shown in Fig. 1 .
132	The general information of all participants including demographic characteristics

(e.g., age, gender, and education levels), lifestyles (status of smoking, alcohol drinking,
and physical exercise), and chronic diseases history were recorded by conducting inperson interviews and completing structured questionnaires. Education achievements
were coded as primary school or below, middle school, high school or beyond.

137	Individuals who had smoked >1 cigarette per day for more than half a year were
138	considered as current smokers and those who quitted smoking for more than six months
139	were defined as former smokers, while the other subjects were never smokers.
140	Participants who had drunk alcohol more than once a week for at least six months were
141	defined as current alcohol drinkers, and former alcohol drinkers were those who had
142	ever drunk alcohol but quitted for more than half a year. Otherwise, individuals were
143	considered as never drinkers. Because of the low proportions of former smokers
144	(<11.5%) and former drinkers $(<6%)$ in the base cohort, we categorized current and
145	former smokers into ever smokers, while former and never drinkers were merged into
146	non-current drinkers. Regular physical exercises were considered as >20 min a time
147	with at least five times per week and kept over half a year. The body mass index (BMI)
148	was calculated according to the weight in kilograms divided by the square of height in
149	meters (kg/m ²). Basing on the first-degree familial information recorded, family history
150	of cancer was defined as yes or no. The measurement of peripheral blood cells was
151	conducted by using CELL-DYN 3700 (Abbott, USA) in accordance with standardized
152	protocols.

153 Determination of blood mtDNAcn at baseline

The total genomic DNA was extracted from peripheral blood samples by using
Whole Blood DNA Extraction kit (BioTeke, Beijing, China). The quantitative real-time
PCR (RT-PCR) was performed to measure relative mtDNAcn by using a highthroughput 384-well format with the QuantStudioTM 7 Flex Real-Time System (Applied

158 Biosystems, CA, USA) as prior description with minor modifications (Janssen et al.

159	2012). In brief, each PCR reaction was conducted by wielding 1uL DNA sample (10
160	ng/uL) in a final volume of 10 uL per well. For mitochondrion amplification mixture,
161	$1 \times$ PowerUp SYBR Green Master Mix (Applied Biosystems, 5uL/reaction), ND1
162	primer [(300nmol/L FP 5'-ATGGCCAACCTCCTACTCCT-3', 300nmol/L RP 5'-
163	CTACAACGTTGGGGGCCTTT -3'), (4 uL/reaction)] and RNase free water were
164	contained, while the single-copy gene reaction mixture consisted of $1 \times PowerUp SYBR$
165	Green Master Mix (Applied Biosystems, 5 uL/reaction), ACTB primer [(300nmol/L FP
166	5'-ACTCTTCCAGCCTTCCTTCC-3', 300nmol/L RP 5'-
167	GGCAGGACTTAGCTTCCACA-3'), 4 uL/reaction] and RNase free water. The RT-
168	PCR detection for ND1 and ACTB copy number was assayed in triplicates in the same
169	run, with thermal cycling profile proceeded at 50°C and 95 °C for 2 min respectively,
170	followed by 40 cycles of 95°C for 15s and 60°C for 1min. The mtDNAcn was
171	determined by using the ratio of mitochondrial gene (ND1) copy number to the single -
172	copy reference gene (ACTB) copy number. For each 384-well plate, 200 DNA samples
173	randomly selected from our study were equally pooled as the reference and
174	subsequently serially diluted 1:2 to generate a six-point standard curve (SC) with
175	concentration ranging from 1.25~40 ng/ μ L, and R ² coefficient derived from the SC
176	was >0.99. To ensure the quality of the measurement, the detection would be repeated if
177	standard deviations (SD) of three cycle threshold (Ct) for any primers were greater than
178	0.30. Hence, the coefficient of variation (CV) calculated from the difference between
179	ND1 and ACTB Ct values presented preferable results that the inter- and intra- CV
180	values were both less than 3%. To minimize the batch effects, all samples were tested

randomly and values of mtDNAcn were normalized to the calibrator samples derived
from the SC with concentration of 10 ng/uL.

183 Statistical analysis

184	To explore the normality of continuous data, one-sample Kolmogorov-Smirnov
185	test was performed. Mann-whitney U and Student's t -test were conducted to estimate
186	the difference of continuous variables between the incident GICs cases and controls in
187	the subcohort, while Chi-square test was used for categorical data. Notably, since
188	participants in the subcohort were free of cancer at baseline visit, for each specific
189	subtype of GICs occurring, cases of the remaining cancer types in the subcohort were
190	treated as controls (Pritchett et al. 2020). The mtDNAcn was log2-transformed to
191	approach normality for further analysis. The associations of baseline characteristics with
192	mtDNAcn were assessed by performing generalized linear models, with adjustment for
193	age and gender.
194	Follow-up time was calculated from the date of enrollment to the date of GICs
195	diagnosis, death, or December 31, 2018, whichever occurred first. Considering the
196	difference of mtDNAcn between males and females, we categorized all participants into
197	four subgroups according to the sex-specific quartiles of mtDNAcn in the subcohort
198	subjects to evaluate the associations of mtDNAcn with incident risks of GICs
199	(Thyagarajan et al. 2012). Subsequently, to handle with the oversampling of cases, the
200	inverse probability weights and the robust sandwich variance estimators were
201	performed, and adjusted hazard ratios (HRs) and 95% confidence intervals (CIs) were
202	estimated by weighted Cox proportional hazards models (Barlow et al. 1999), with

203	subjects in the 2 nd quartile (Q2) subgroup of mtDNAcn used as the reference group.
204	Models were adjusted for age, gender, BMI, education levels (primary school or below,
205	middle school, high school or beyond), smoking status (ever smokers/ non-smokers),
206	alcohol drinking status (current/non-current drinkers), physical exercise (yes/no), and
207	family history of cancer (yes/no). Furthermore, in order to explore the non-linear
208	associations of mtDNAcn with GICs risks, the restricted cubic spline (RCS) regression
209	models were conducted with knots at corresponding 5 th , 50 th , and 95 th percentiles, and
210	the median of log2-transformed mtDNAcn was used as the reference value.
211	Next, we conducted stratified analysis by age (<65 y or \geq 65 y), gender, and
212	smoking status (ever smokers/ non-smokers) to explore the associations of mtDNAcn
213	with CRC and total GICs risks in each stratum. The joint effects of mtDNAcn with age
214	and smoking status were also evaluated. Given the comparative limited incident
215	numbers of GC ($n=138$) and EC ($n=72$), the effects of mtDNAcn in aforementioned
216	stratums were not evaluated for these two cancer types. To verify the robustness of our
217	results, we subsequently implemented sensitivity analyses by adjusting for peripheral
218	blood cells counts, or excluding participants diagnosed as GICs within the first two
219	years of follow-up in the associations of mtDNAcn with GICs risks.
220	All statistical analyses were two-sided with $P < 0.05$ defined as statistically
221	significant. SAS program (version 9.4, SAS Institute, Carry, NC) and R software
222	(version 4.0.2) were used for data processing.

223 Results

224 General characteristics of study participants

225	Baseline characteristics, as well as levels of mtDNAcn, among the incident GICs
226	cases and 1173 subcohort participants were presented in Table 1. The median follow-up
227	period for the entire subcohort was 10.3 years. Compared to non-cases in the subcohort,
228	the incident GICs cases were elder, more males and cigarette smokers, less educated
229	(except for EC cases), and had a higher proportion of alcohol consumption (only for EC
230	and total GICs cases) (All P <0.05). The incident cases of GC and total GICs both
231	showed significantly higher level of mtDNAcn than the controls [median (interquartile
232	range, IQR) of 1.00(0.78, 1.41) for GC and 1.00(0.73, 1.37) for total GICs v.s.
233	0.93(0.77, 1.15) for controls, both $P < 0.05$)], while the levels of mtDNAcn in incident
234	CRC and EC cases were suggestive elevated but did not reach the statistical significance
235	(<i>P</i> =0.063 and 0.377, respectively).
236	As Fig. S1 depicted, the normality of mtDNAcn was improved by log2-
237	transformation. Females had a significantly higher level of mtDNAcn than males
238	[0.96(0.81, 1.18) vs. 0.89(0.72, 1.11), P<0.001]. The associations of baseline
239	characteristics with mtDNAcn were presented in Table S2.
240	Associations of mtDNAcn with GICs risks
241	The associations of blood mtDNAcn with GICs risks were summarized in Table 2.

- 242 Compared to subjects within the Q2 subgroup of mtDNAcn, there was a significantly
- elevated risk of incident CRC for those within the 1^{st} (Q1), 3^{rd} (Q3) and 4^{th} (Q4) quartile
- subgroups of mtDNAcn [HR(95%CI)=2.27(1.47, 3.52), 1.65(1.04, 2.62) and
- 245 2.81(1.85,4.28), respectively]. Similar results were also observed for the associations of
- 246 Q1, Q3 and Q4 mtDNAcn subgroups with incident risk of total GICs when compared to

247	the Q2 mtDNAcn subgroup, with HR(95%CI) presented as 1.84(1.30, 2.60), 1.47(1.03,
248	2.10), and 2.51(1.82, 3.47) respectively. However, only the Q4 subgroup of mtDNAcn
249	revealed significantly increased risks of GC and EC with the comparison of Q2
250	subgroup [HR(95%CI)=2.16 (1.31, 3.54) and 2.38(1.13, 5.02), respectively]. We further
251	estimated the non-linear correlations between mtDNAcn and GICs risks by using RCS
252	function, and observed the evident U-shaped associations of mtDNAcn with incident
253	risks of CRC, GC, EC, and total GICs (all <i>P</i> for non-linear associations <0.05, Fig. 2).
254	The above findings were not materially altered after further adjustment for platelet and
255	white blood cell counts (Table S3), or excluding the incident GICs cases diagnosed
256	within two years of follow-up, or excluding the other cancer cases when performing
257	analysis for one specific type of GICs (Table 2).

258 Stratification analysis

Since there were limited numbers of GC (n=138) and EC (n=72) cases, the further

stratification analyses by age, gender, and smoking status were only conducted for CRC

and total GICs. Individuals with age <65 years old showed increased risks of CRC and

total GICs in Q1 and Q4 mtDNAcn subgroups when compared with the Q2 subgroup

263 [CRC: HR(95%CI) = 2.34(1.23, 4.46) and 2.58(1.36, 4.88); total GICs:

264 HR(95%CI)=1.95(1.20, 3.18) and 2.22(1.38, 3.56)] (**Fig. 3A**). We also observed

elevated risks of CRC [v.s. Q2 subgroup of mtDNAcn, HR(95%CI)=2.19(1.22, 3.92)

for Q1 and 2.84(1.63, 4.94) for Q4 subgroups] and total GICs [v.s. Q2 subgroup of

267 mtDNAcn, HR(95%CI)=1.80(1.11, 2.91), 1.82(1.10, 3.04)], and 2.71(1.73, 4.25) for

268 Q1, Q3, and Q4 subgroups] among participants with age \geq 65 (**Fig. 3A**).

270 subgrou	ps consistently showed raised risks of CRC [Q1: HR(95%CI)=2.19(1.25, 3.85),
271 Q4: HR	(95%CI)=2.54(1.47, 4.40)] and total GICs [Q1: HR(95%CI)=1.75(1.13, 2.71),
272 Q4: HR	(95%CI)=2.05(1.34, 3.12)], while the corresponding effects were strengthened
273 among f	emales that the Q1, Q3 and Q4 mtDNAcn subgroups presented 2.41-fold
274 (95%CI	: 1.17, 4.95), 2.66-fold (95%CI: 1.29, 5.49), and 3.48-fold (95%CI: 1.75, 6.92)
275 risk of C	CRC, and 2.10-fold (95%CI: 1.16, 3.77), 2.19-fold (95%CI: 1.22, 3.94), and
276 3.63-fol	d (95%CI: 2.11, 6.25) risk of total GICs (Fig. 3B).
277 An	nong ever smokers, we only observed elevated risks of CRC and total GICs in
278 Q4 mtD	NAcn subgroups when compared with the Q2 subgroup [HR (95%
279 CI)=3.7	2(1.81, 7.61) and 2.43(1.45, 4.08), respectively] (Fig. 3C). Among non-
280 smokers	, the significant increased risks of CRC and total GICs were observed among
281 Q1, Q3,	and Q4 subgroups [CRC: HR(95%CI)=2.41(1.41, 4.14), 2.01(1.15, 3.52),
282 2.39(1.4	1, 4.04), respectively; GICs: HR(95%CI)=2.07(1.32, 3.26), 1.82(1.15, 2.88),
283 2.62(1.1	7, 4.01), respectively] (Fig. 3C). However, we did not observe the modification
284 effects of	of age, gender, and smoking status on the associations of mtDNAcn with CRC
and tota	I GICs risks (all $P_{\text{interaction}} > 0.05$, Fig. 3).
286 Joint efj	fects of mtDNAcn with age and smoking status
287 We	e further investigate the joint effects of mtDNAcn with age and smoking status

on the incident risks of CRC and total GICs. When using subjects aged < 65 and within

- the Q2 mtDNAcn subgroup as the reference group, there were significantly increased
- 290 incident risk of CRC [HR(95%CI)=3.75(2.01, 6.99), 2.71(1.37, 5.37), and 4.89(2.69,

298	(Fig. 4).
297	[HR(95%CI)=2.67(1.58, 4.53), 1.88(1.08, 3.28), and 4.10(2.46, 6.81), respectively]
296	and increased risk of total GICs among ever smokers within Q1, Q3, and Q4 subgroups
295	mtDNAcn subgroups [HR(95%CI)=2.54(1.32, 4.91) and 4.48(2.39, 8.37), respectively],
294	observed significant increased risk of CRC among ever smokers within Q1 and Q4
293	subgroups (Fig. 4). Compared to non-smokers within Q2 mtDNAcn subgroup, we also
292	5.90), respectively] among subjects with age \geq 65 and within Q1, Q3, and Q4 mtDNAcn
291	8.92)] and total GICs [HR(95%CI)=2.51(1.56, 4.03), 2.52(1.52, 4.17), and 3.78(2.43,

299 Discussion

In this prospective case-cohort study, we observed that comparatively lower and 300 higher levels of blood mtDNAcn were associated with 47% to 181% increased incident 301 302 risks of GICs. The nonlinear U-shaped associations of mtDNAcn with CRC, GC, EC and total GICs were further manifested by the RCS curves. In addition, we observed the 303 joint effects of mtDNAcn with elder age (≥65 years-old) and tobacco smoking on 304 305 increased risks of CRC and total GICs. These findings provided novel prospective epidemiological evidence for the effect of mtDNAcn on the development of GICs. 306 Chronic accumulation in oxygen radical generation in mitochondria could result in 307 catastrophic cycle of mtDNA damage as well as functional impairment. This would 308 promote ROS (e.g., superoxide and hydroxyl radicals) production, and cause cellular 309 defective apoptosis regulation, which might generate increased nuclear DNA damage 310 311 and potentiated carcinogenesis (Chan 2020, Idelchik et al. 2017). Recently, increasing studies have assessed that either low or high level of mtDNAcn was correlated with 312

313	elevated risk of cancer in type-specific manner (Sun et al. 2016, Zheng et al. 2019, He et
314	al. 2014). However, relevant epidemiological evidence on the associations between
315	mtDNAcn and GICs is limited. In this prospective case-cohort study, we observed
316	significant nonlinear U-shaped associations of blood mtDNAcn with the developments
317	of CRC, GC, and EC, which indicated that individuals with low and high mtDNAcn had
318	elevated incident risks of GICs. To be consistent with our results, Thyagarajan et al.
319	also observed a significant U-shaped relationship between mtDNAcn and CRC risk
320	($P_{\text{curvilinearity}} < 0.001$) in a nested case-control study of 422 CRC cases and 874 controls,
321	while this effect was presented in both men and women participants (Thyagarajan et al.
322	2012). But another Chinese nested case-control study did not observe the significant
323	association between mtDNAcn and GC risk (Liao et al. 2011, Sun et al. 2014). Relevant
324	population-based evidence for the association between mtDNAcn and EC risk was
325	actually scanty. Hence, our finding of U -shaped pattern in the relationship between
326	mtDNAcn and EC risk is novel and could be an objective supplement of prospective
327	epidemiological evidence. In general, the contradictory in reported relationship
328	directions between mtDNA and GICs risks could be partially attributed to the nonlinear
329	U-shaped pattern, as well as the population select bias, sample size limitation, random
330	chance, and reverse causality. Therefore, larger and well-designed studies, especially
331	the longitudinal cohort designs, are warranted to replicate our findings in different
332	ethnic populations.
333	The mechanisms underlying the associations of blood mtDNAcn with GICs

etiology are not completely understood, but some existed evidence demonstrates that

the U-shaped associations are biologically plausible. Mitochondria play a vital role in 335 the evolution of tumor cell genome, acting as a double-edged sword in cancer 336 337 developing. An *in vitro* study found that the H₂O₂ treated lung fibroblast (MRC-5) could be blocked at G(0) and G(1) phases accompanying with ROS generation, and 338 further mtDNA content was significantly elevated in the concentration and time 339 dependent manner, indicating that mild oxidative stress may trigger increase of mtDNA 340 through the cell-cycle arrest pathway (Lee et al. 2000). Also, one previous two-stage 341 case-control study reported that high level of 8-hydroxy-2'-deoxyguanosine (8-OHdG) 342 343 (Zheng et al. 2019), an widely used biomarker of DNA oxidative damage and well documented in GICs development(Guo et al. 2016, Ma et al. 2013), were associated 344 with increased mtDNAcn. Another two independent studies revealed that mtDNAcn 345 346 was significantly higher in tumor tissue of CRC patients than the corresponding normal tissues (Lim et al. 2012, Gao et al. 2015). These findings propose the hypothesis that 347 ROS might induce mtDNAcn and further cause more oxidative damage to intracellular 348 349 DNA and other constituents, which might accelerate the initiation and progression of tumorigenesis (Dizdaroglu 2015). Whereas, it should not be neglect that increased 350 mtDNAcn generated from ageing cells as a result of the feedback response 351 compensating for aberrant mitochondria respiratory chain or mtDNAcn mutation (Lee 352 and Wei 2005), might mask the association between elevated mtDNAcn and raised risks 353 of GICs. 354 355 Once the rate of oxidative injury overwhelms the capacity of the compensation

356 mechanism of mtDNA, the impermanent increased mtDNAcn can no longer deal with

357	the oxidative stress, and followed by eventual attrition of mtDNA that would trigger a
358	net decrease in mtDNAcn, since the mtDNA was degraded by the intracellular enzyme
359	system to prevent excessive accumulation damage of oxidative stress (Shokolenko et al.
360	2009, Lee and Wei 2005). A prior in vitro study observed that a decrease in
361	mitochondria in HeLa cells would result in raised lipid peroxidation and reduced
362	activity of antioxidant enzyme (e.g., catalase), and further induced elevated DNA
363	damage in response to the oxidative stress (Delsite et al. 2003). More recently, an in
364	vivo study conducted among mice revealed that impaired mitochondrial would release
365	oxidized mtDNA into cytosol and subsequently activate the inflammasomes (Shimada
366	et al. 2012), which can trigger the production of proinflammatory cytokines including
367	interleukin-1 β (IL-1 β) and interleukin-18 (IL-18) (Zhong, Liang, and Zhong 2019).
368	Consistent with the vital role of the inflammasomes in activating inflammatory reaction,
369	high levels of released IL-1 β and IL-18 have been correlated with increased risks of
370	CRC and GC (Kolb et al. 2014, Haghshenas et al. 2009). In general, the aforementioned
371	findings support the plausible biologic mechanisms by which the lower mtDNAcn
372	might be related with elevated risks of GICs, but the pathogenesis effects of mtDNAcn
373	still need validations and further in-depth investigations.
374	Since the gastrointestinal system owned similar mucosa epithelial barrier, the
375	homeostasis of epithelial cell played a vital role in the normal gastrointestinal functional
376	progression (Shalapour and Karin 2020). It should be realized that mitochondrial
377	dysfunction and mtDNA variation may cause abnormal epithelium energy metabolism,
378	which would lead to the loss of epithelial barrier integrity (Hu et al. 2018). Once the

379	protective barrier was compromised, numerous microbes and their products would
380	result in activation of inflammation factor NF- κ B and induction of IL-6 and TNF, which
381	can promote the development of colon and liver cancers (Greten et al. 2004, Pikarsky et
382	al. 2004). These roles might explain the consistent effects of mtDNAcn on CRC, GC,
383	and EC incident risks found in our study. Also, the present study showed robust U-
384	shaped association of mtDNAcn with CRC and total GICs risks among subjects with the
385	strata of age, smoking status, and gender, which were consistent with two prior studies
386	(Thyagarajan et al. 2012, Wang et al. 2018). Especially, our findings of more robust
387	effects among women than men were in line with previous results (Thyagarajan et al.
388	2012). One possible mechanism might because females seem be more susceptible to
389	oxidative damage induced by hormone stimulation. As shown in experimentally human
390	breast cancer cell lines MCF7, estrogen exposure revealed increased mitochondrial ROS
391	production, suggesting that estrogen might contribute to susceptibility of oxidative
392	injury among females (Parkash, Felty, and Roy 2006). Additionally, we observed the
393	combined effect of mtDNAcn with age and smoking status on risks of developing CRC
394	and total GICs, which might result from the shared features of increasing ROS by aging
395	and smoking, as well as mitochondrial dysfunction (Parajuli et al. 2013, Liguori et al.
396	2018, Shokolenko et al. 2009). Nevertheless, the associations of blood mtDNAcn with
397	incident risks of CRC and total GICs could not be modified by age, gender, and
398	smoking status, indicating that mtDNAcn was an independent risk factor.
399	This study was the first to provide prospective epidemiological evidence on the
400	nonlinear U-shaped associations of mtDNAcn with GC, EC, and total GICs risks, as

401	well as validating U-shaped pattern between mtDNAcn and CRC risk reported in a prior
402	nested-case control study (Thyagarajan et al. 2012). The prospective design here owns
403	more power to illuminate time order and causal relationships than the case-control
404	designs. Additionally, the case-cohort analysis including three types of GICs can be
405	performed with the same comparison group, improving the statistical efficiency and
406	coping with multiple outcomes of interest (Barlow et al. 1999). Since large longitudinal
407	designs with few observed outcomes might require massive resources to identify
408	covariate information, the case-cohort frame can complete data collection with less cost
409	and be more flexibility, providing both a window on the entire cohort and the chance to
410	evaluate quality control (Barlow et al. 1999). Meanwhile, after excluding GICs
411	diagnosed within 2 years of cohort entry or adjusting possible confounds (e.g., platelet
412	and white blood cell counts), the U-shaped pattern still existed, indicating the robust
413	associations between mtDNAcn and GICs risks found in our study.
414	However, several limitations should also be noted. Firstly, we only measured the
415	blood mtDNAcn in a single time-point at baseline, which may not reflect mtDNAcn
416	variation over a lifetime and therefore might result in an attenuated estimation.
417	However, Campa et al. measured two-time point mtDNAcn over 15-year period among
418	96 participants showed satisfactory stability with a high intraclass correlation
419	(ICC=0.60) (Campa et al. 2018). In addition, we measured the levels of mtDNAcn in
420	peripheral blood but not in the target GICs tissues, but another study identified a
421	relatively high correlation between mtDNAcn derived from colorectal tissues and their
422	corresponding peripheral blood (r=0.659, P=0.038) (Qu et al. 2011). Secondly, the

423	sample size in our study was suggested sufficient for overall analysis, but was limited
424	for stratification and interaction analysis as well as joint effect estimation, especially for
425	GC and EC cases. Further studies with larger sample size are needed to validate the
426	current findings. Thirdly, our study did not collect information of <i>H. pylori</i> infection
427	status, so we could not assess the effects of <i>H. pylori</i> on the association of mtDNAcn
428	with GC. Finally, the current investigations were conducted only in a Chinese
429	population, which might restrict the generalizability of the current findings to other
430	ethnic populations. More epidemiology researches with larger sample size and diverse
431	human races are needed to confirm our findings and the underlying biological
432	mechanisms warrant further investigations by in vivo and vitro studies.

433 Conclusions

434 In summary, the current prospective case-cohort study indicates that both low and

high mtDNAcn in peripheral blood are associated with 47% to 181% increased risks of

436 CRC, GC, EC and total GICs in a middle-aged and older Chinese population. The

437 robustness U-shaped association pattern provides valuable clues for better

438 understanding the biological roles of mitochondrial underlying GICs development, and

implies the potential of mtDNAcn as non-invasive biomarker for GICs risk prediction.

440 Acknowledgements

- 441 The authors want to thank all volunteers and medical assistants from the Dongfeng
- 442 Motor Corporation in Shiyan, Hubei, China.

443 Authors' contributions

- 444 Xin Guan: Conceptualization, Methodology, Writing- Original Draft, Writing-Review
- 445 & Editing. Mengying Li: Conceptualization, Methodology, Formal analysis. Yansen
- 446 Bai: Formal analysis, Methodology, Investigation. Yue Feng, Guyanan Li, Wei Wei,
- 447 Ming Fu and Hang Li: Investigation. Chenming Wang, Jiali Jie, Hua Meng,
- 448 Xiulong Wu, Qilin Deng, Fangqing Li: Methodology. Handong Yang, Xiaomin
- 449 **Zhang, and Meian He**: Resources. **Huan Guo***: Project administration,
- 450 Conceptualization, Writing- Original Draft, Writing-Review & Editing, Funding
- 451 acquisition. All authors critically reviewed the manuscript and approved the final
- 452 version of the manuscript.

453 Funding

- 454 This study was supported by the funds from the National Key Research and
- 455 Development Program of China (Grant No.2018YFC2000203) and National Youth Top
- 456 Talent Support Program to H.G., as well as supported by the Fundamental Research
- 457 Funds for the Central Universities, HUST: 2020JYCXJJ020.

458 Availability of data and materials

- 459 Data sharing is not applicable to this paper as the datasets generated needed to be
- 460 confidential.

461 **Ethics approval and consent to participate**

- 462 The study protocol was ethically approved by the Ethics and Human Subject Committee
- 463 of Tongji Medical College, Huazhong University of Science and Technology. Informed
- 464 consent was obtained from all participants.
- 465

466 **Consent for publication**

- 467 The authors have consented to publication after having read the final manuscript.
- 468

469 **Competing interests**

470 The authors declare that they have no conflict of interest.

References 471

World Health Organization. The Global Cancer Observatory Reports. International Agency for Research 472 473 on Cancer 2021. Available from: http://globocan.iarc.fr, accessed on 11/12/2021. 474 Barlow, W. E., L. Ichikawa, D. Rosner, and S. Izumi. 1999. Analysis of case-cohort designs. Journal of 475 clinical epidemiology 52 (12):1165-1172. DOI: http://10.1016/s0895-4356(99)00102-x, PMID: 476 10580779. Brenner, Hermann, Matthias Kloor, and Christian Peter Pox. 2014. Colorectal cancer. Lancet 383 477 (9927):1490-1502. DOI: http://10.1016/S0140-6736(13)61649-9, PMID: 24225001. 478 479 Campa, Daniele, Myrto Barrdahl, Aurelia Santoro, Gianluca Severi, Laura Baglietto, Hanane 480 Omichessan, Rosario Tumino, H. B. As Bueno-de-Mesquita, Petra H. Peeters, Elisabete 481 Weiderpass, Maria-Dolores Chirlaque, Miguel Rodríguez-Barranco, Antonio Agudo, Marc 482 Gunter, Laure Dossus, Vittorio Krogh, Giuseppe Matullo, Antonia Trichopoulou, Ruth C. 483 Travis, Federico Canzian, and Rudolf Kaaks. 2018. Mitochondrial DNA copy number variation, 484 leukocyte telomere length, and breast cancer risk in the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Breast Cancer Res 20 (1):29. DOI: http://10.1186/s13058-485 486 018-0955-5, PMID: 29665866. 487 Carew, Jennifer S., and Peng Huang. 2002. Mitochondrial defects in cancer. Molecular cancer 1:9. DOI: http://10.1186/1476-4598-1-9, PMID: 12513701. 488 489 Castellani, Christina A., Ryan J. Longchamps, Jason A. Sumpter, Charles E. Newcomb, John A. Lane, 490 Megan L. Grove, Jan Bressler, Jennifer A. Brody, James S. Floyd, Traci M. Bartz, Kent D. 491 Taylor, Penglong Wang, Adrienne Tin, Josef Coresh, James S. Pankow, Myriam Fornage, Eliseo 492 Guallar, Brian O'Rourke, Nathan Pankratz, Chunyu Liu, Daniel Levy, Nona Sotoodehnia, Eric 493 Boerwinkle, and Dan E. Arking. 2020. Mitochondrial DNA copy number can influence mortality 494 and cardiovascular disease via methylation of nuclear DNA CpGs. Genome medicine 12 (1):84. 495 DOI: http://10.1186/s13073-020-00778-7, PMID: 32988399. 496 Chan, David C. 2020. Mitochondrial Dynamics and Its Involvement in Disease. Annual review of 497 pathology 15:235-259. DOI: http://10.1146/annurev-pathmechdis-012419-032711, PMID: 498 31585519. 499 Codipilly, Don C., Yi Qin, Sanford M. Dawsey, John Kisiel, Mark Topazian, David Ahlquist, and Prasad 500 G. Iyer. 2018. Screening for esophageal squamous cell carcinoma: recent advances. Gastrointestinal endoscopy 88 (3):413-426. DOI: http://10.1016/j.gie.2018.04.2352, PMID: 501 502 29709526. 503 Delsite, Robert L., Lene Juel Rasmussen, Anne Karin Rasmussen, Amanda Kalen, Prabhat C. Goswami, 504 and Keshav K. Singh. 2003. Mitochondrial impairment is accompanied by impaired oxidative 505 DNA repair in the nucleus. *Mutagenesis* 18 (6):497-503. DOI: http://10.1093/mutage/geg027, 506 PMID: 14614184. 507 Dizdaroglu, Miral. 2015. Oxidatively induced DNA damage and its repair in cancer. Mutation research. Reviews in mutation research 763:212-245. DOI: http://10.1016/j.mrrev.2014.11.002, PMID: 508 509 25795122. 510 Gao, Jinhang, Shilei Wen, Hongying Zhou, and Shi Feng. 2015. De-methylation of displacement loop of 511 mitochondrial DNA is associated with increased mitochondrial copy number and nicotinamide 512 adenine dinucleotide subunit 2 expression in colorectal cancer. Molecular medicine reports 12 (5):7033-7038. DOI: http://10.3892/mmr.2015.4256, PMID: 26323487. 513

514	Greten, Florian R., Lars Eckmann, Tim F. Greten, Jin Mo Park, Zhi-Wei Li, Laurence J. Egan, Martin F.
515	Kagnoff, and Michael Karin. 2004. IKKbeta links inflammation and tumorigenesis in a mouse
516	model of colitis-associated cancer. Cell 118 (3):285-296. DOI: http://10.1016/j.cell.2004.07.013,
517	PMID: 15294155.
518	Guo, Cheng, Xiaofen Li, Rong Wang, Jiekai Yu, Minfeng Ye, Lingna Mao, Suzhan Zhang, and Shu
519	Zheng. 2016. Association between oxidative DNA damage and risk of colorectal cancer:
520	Sensitive determination of urinary 8-hydroxy-2'-deoxyguanosine by uplc-ms/ms analysis.
521	Scientific reports 6:32581. DOI: http://10.1038/srep32581, PMID: 27585556.
522	Haghshenas, Mohammad Reza, Seyed Vahid Hosseini, Mahmoud Mahmoudi, Mehdi Saberi-Firozi,
523	Shirin Farjadian, and Abbas Ghaderi. 2009. IL-18 serum level and IL-18 promoter gene
524	polymorphism in Iranian patients with gastrointestinal cancers. Journal of gastroenterology and
525	hepatology 24 (6):1119-1122. DOI: http://10.1111/j.1440-1746.2009.05791.x, PMID: 19638090.
526	He, Yonggang, Yilei Gong, Jian Gu, J. Jack Lee, Scott M. Lippman, and Xifeng Wu. 2014. Increased
527	leukocyte mitochondrial DNA copy number is associated with oral premalignant lesions: an
528	epidemiology study. Carcinogenesis 35 (8):1760-1764. DOI: http://10.1093/carcin/bgu093,
529	PMID: 24743515.
530	Hu, Qiongyuan, Huajian Ren, Jianan Ren, Qinjie Liu, Jie Wu, Xiuwen Wu, Guanwei Li, Gefei Wang,
531	Guosheng Gu, Kun Guo, Zhiwu Hong, Song Liu, and Jieshou Li. 2018. Released Mitochondrial
532	DNA Following Intestinal Ischemia Reperfusion Induces the Inflammatory Response and Gut
533	Barrier Dysfunction. Scientific reports 8 (1):7350. DOI: http://10.1038/s41598-018-25387-8,
534	PMID: 29743484.
535	Huang, Bo, Yu-Tang Gao, Xiao-Ou Shu, Wanqing Wen, Gong Yang, Guoliang Li, Regina Courtney, Bu-
536	Tian Ji, Hong-Lan Li, Mark P. Purdue, Wei Zheng, and Qiuyin Cai. 2014. Association of
537	leukocyte mitochondrial DNA copy number with colorectal cancer risk: Results from the
538	Shanghai Women's Health Study. Cancer Epidem Biomar Prev 23 (11):2357-2365. DOI:
539	http://10.1158/1055-9965.EPI-14-0297, PMID: 25139937.
540	Idelchik, María Del Pilar Sosa, Ulrike Begley, Thomas J. Begley, and J. Andrés Melendez. 2017.
541	Mitochondrial ROS control of cancer. Seminars in cancer biology 47:57-66. DOI:
542	http://10.1016/j.semcancer.2017.04.005, PMID: 28445781.
543	Janssen, Bram G., Elke Munters, Nicky Pieters, Karen Smeets, Bianca Cox, Ann Cuypers, Frans Fierens,
544	Joris Penders, Jaco Vangronsveld, Wilfried Gyselaers, and Tim S. Nawrot. 2012. Placental
545	mitochondrial DNA content and particulate air pollution during in utero life. Environmental
546	health perspectives 120 (9):1346-1352. DOI: http://10.1289/ehp.1104458, PMID: 22626541.
547	Kolb, Ryan, Guang-Hui Liu, Ann M. Janowski, Fayyaz S. Sutterwala, and Weizhou Zhang. 2014.
548	Inflammasomes in cancer: a double-edged sword. Protein & cell 5 (1):12-20. DOI:
549	http://10.1007/s13238-013-0001-4, PMID: 24474192.
550	Kumar, Bhupender, Zafar Iqbal Bhat, Savita Bansal, Sunil Saini, Afreen Naseem, Khushnuma Wahabi,
551	Archana Burman, Geeta Trilok Kumar, Sundeep Singh Saluja, and M. Moshahid Alam Rizvi.
552	2017. Association of mitochondrial copy number variation and T16189C polymorphism with
553	colorectal cancer in North Indian population. Tumour Biol 39 (11):1010428317740296. DOI:
554	http://10.1177/1010428317740296, PMID: 29182103.
555	Kumar, Shria, David C. Metz, Susan Ellenberg, David E. Kaplan, and David S. Goldberg. 2020. Risk
556	Factors and Incidence of Gastric Cancer After Detection of Helicobacter pylori Infection: A

557	Large Cohort Study. Gastroenterology 158 (3):527-536.e7. DOI:
558	http://10.1053/j.gastro.2019.10.019, PMID: 31654635.
559	Lee, H. C., P. H. Yin, C. Y. Lu, C. W. Chi, and Y. H. Wei. 2000. Increase of mitochondria and
560	mitochondrial DNA in response to oxidative stress in human cells. Biochem J 348 Pt 2:425-432,
561	PMID: 10816438.
562	Lee, Hsin-Chen, and Yau-Huei Wei. 2005. Mitochondrial biogenesis and mitochondrial DNA
563	maintenance of mammalian cells under oxidative stress. Int J Biochem Cell B 37 (4):822-834.
564	DOI: http://10.1016/j.biocel.2004.09.010, PMID: 15694841.
565	Liao, Linda M., Andrea Baccarelli, Xiao-Ou Shu, Yu-Tang Gao, Bu-Tian Ji, Gong Yang, Hong-Lan Li,
566	Mirjam Hoxha, Laura Dioni, Nathaniel Rothman, Wei Zheng, and Wong-Ho Chow. 2011.
567	Mitochondrial DNA copy number and risk of gastric cancer: a report from the Shanghai
568	Women's Health Study. Cancer epidemiology, biomarkers & prevention 20 (9):1944-1949. DOI:
569	http://10.1158/1055-9965.EPI-11-0379, PMID: 21784958.
570	Liguori, Ilaria, Gennaro Russo, Francesco Curcio, Giulia Bulli, Luisa Aran, David Della-Morte, Gaetano
571	Gargiulo, Gianluca Testa, Francesco Cacciatore, Domenico Bonaduce, and Pasquale Abete.
572	2018. Oxidative stress, aging, and diseases. Clinical interventions in aging 13:757-772. DOI:
573	http://10.2147/CIA.S158513, PMID: 29731617.
574	Lim, Sang Woo, Hye Ran Kim, Hwan Young Kim, Jung Wook Huh, Young Jin Kim, Jong Hee Shin,
575	Soon Pal Suh, Dong Wook Ryang, Hyeong Rok Kim, and Myung Geun Shin. 2012. High-
576	frequency minisatellite instability of the mitochondrial genome in colorectal cancer tissue
577	associated with clinicopathological values. International journal of cancer 131 (6):1332-1341.
578	DOI: http://10.1002/ijc.27375, PMID: 22120612.
579	Lin, Michael T., and M. Flint Beal. 2006. Mitochondrial dysfunction and oxidative stress in
580	neurodegenerative diseases. Nature 443 (7113):787-795. DOI: http://10.1038/nature05292,
581	PMID: 17051205.
582	Liu, Chin-San, Ching-Shan Tsai, Chen-Ling Kuo, Haw-Wen Chen, Chong-Kuei Lii, Yi-Shing Ma, and
583	Yau-Huei Wei. 2003. Oxidative stress-related alteration of the copy number of mitochondrial
584	DNA in human leukocytes. Free radical research 37 (12):1307-1317. DOI:
585	http://10.1080/10715760310001621342, PMID: 14753755.
586	Ma, Yongsheng, Lin Zhang, Shengzhong Rong, Hongyan Qu, Yannan Zhang, Dong Chang, Hongzhi
587	Pan, and Wenbo Wang. 2013. Relation between gastric cancer and protein oxidation, DNA
588	damage, and lipid peroxidation. Oxidative medicine and cellular longevity 2013:543760. DOI:
589	http://10.1155/2013/543760, PMID: 24454985.
590	McCormack, V. A., D. Menya, M. O. Munishi, C. Dzamalala, N. Gasmelseed, M. Leon Roux, M. Assefa,
591	O. Osano, M. Watts, A. O. Mwasamwaja, B. T. Mmbaga, G. Murphy, C. C. Abnet, S. M.
592	Dawsey, and J. Schüz. 2017. Informing etiologic research priorities for squamous cell
593	esophageal cancer in Africa: A review of setting-specific exposures to known and putative risk
594	factors. International journal of cancer 140 (2):259-271. DOI: http://10.1002/ijc.30292, PMID:
595	27466161.
596	Mishra, Prashant, and David C. Chan. 2016. Metabolic regulation of mitochondrial dynamics. J Cell Biol
597	212 (4):379-387. DOI: http://10.1083/jcb.201511036, PMID: 26858267.
598	Nunnari, Jodi, and Anu Suomalainen. 2012. Mitochondria: in sickness and in health. Cell 148 (6):1145-
599	1159. DOI: http://10.1016/j.cell.2012.02.035, PMID: 22424226.

600	Parajuli, Ranjan, Eivind Bjerkaas, Aage Tverdal, Randi Selmer, Loïc Le Marchand, Elisabete
601	Weiderpass, and Inger T. Gram. 2013. The increased risk of colon cancer due to cigarette
602	smoking may be greater in women than men. Cancer Epidemiol Biomarkers Prev 22 (5):862-
603	871. DOI: http://10.1158/1055-9965.EPI-12-1351, PMID: 23632818.
604	Parkash, Jai, Quentin Felty, and Deodutta Roy. 2006. Estrogen Exerts a Spatial and Temporal Influence
605	on Reactive Oxygen Species Generation that Precedes Calcium Uptake in High-Capacity
606	Mitochondria: Implications for Rapid Nongenomic Signaling of Cell Growth. Biochemistry 45
607	(9):2872-2881. DOI: http://10.1021/bi051855x, PMID: 16503642.
608	Pikarsky, Eli, Rinnat M. Porat, Ilan Stein, Rinat Abramovitch, Sharon Amit, Shafika Kasem, Elena
609	Gutkovich-Pyest, Simcha Urieli-Shoval, Eithan Galun, and Yinon Ben-Neriah. 2004. NF-
610	kappaB functions as a tumour promoter in inflammation-associated cancer. Nature 431
611	(7007):461-466. DOI: http://10.1038/nature02924, PMID: 15329734.
612	Pritchett, Natalie R., Marlena Maziarz, Xiao-Ou Shu, Farin Kamangar, Sanford M. Dawsey, Jin-Hu Fan,
613	Bu-Tian Ji, Yu-Tang Gao, Yong-Bing Xiang, You-Lin Qiao, Honglan Li, Gong Yang, Shao-
614	Ming Wang, Frank Z. Stanczyk, Wong-Ho Chow, Hormuzd A. Katki, Wei Zheng, Qing Lan,
615	Neal D. Freedman, Nat Rothman, Christian C. Abnet, and Gwen Murphy. 2020. Serum ghrelin
616	and esophageal and gastric cancer in two cohorts in China. International journal of cancer 146
617	(10):2728-2735. DOI: http://10.1002/ijc.32597, PMID: 31351006.
618	Qu, Falin, Xiaonan Liu, Feng Zhou, Hushan Yang, Guoqiang Bao, Xianli He, and Jinliang Xing. 2011.
619	Association between mitochondrial DNA content in leukocytes and colorectal cancer risk: a
620	case-control analysis. Cancer 117 (14):3148-3155. DOI: http://10.1002/cncr.25906, PMID:
621	21246538.
622	Shalapour, Shabnam, and Michael Karin. 2020. Cruel to Be Kind: Epithelial, Microbial, and Immune Cell
623	Interactions in Gastrointestinal Cancers. Annual review of immunology 38:649-671. DOI:
624	http://10.1146/annurev-immunol-082019-081656, PMID: 32040356.
625	Shen, Jie, Jie Wan, Renduo Song, and Hua Zhao. 2015. Peripheral blood mitochondrial DNA copy
626	number, length heteroplasmy and breast cancer risk: a replication study. Carcinogenesis 36
627	(11):1307-1313. DOI: http://10.1093/carcin/bgv130, PMID: 26363030.
628	Shimada, Kenichi, Timothy R. Crother, Justin Karlin, Jargalsaikhan Dagvadorj, Norika Chiba, Shuang
629	Chen, V. Krishnan Ramanujan, Andrea J. Wolf, Laurent Vergnes, David M. Ojcius, Altan
630	Rentsendorj, Mario Vargas, Candace Guerrero, Yinsheng Wang, Katherine A. Fitzgerald, David
631	M. Underhill, Terrence Town, and Moshe Arditi. 2012. Oxidized mitochondrial DNA activates
632	the NLRP3 inflammasome during apoptosis. Immunity 36 (3):401-414. DOI:
633	http://10.1016/j.immuni.2012.01.009, PMID: 22342844.
634	Shokolenko, Inna, Natalia Venediktova, Alexandra Bochkareva, Glenn L. Wilson, and Mikhail F.
635	Alexeyev. 2009. Oxidative stress induces degradation of mitochondrial DNA. Nucleic acids
636	research 37 (8):2539-2548. DOI: http://10.1093/nar/gkp100, PMID: 19264794.
637	Smyth, Elizabeth C., Magnus Nilsson, Heike I. Grabsch, Nicole Ct van Grieken, and Florian Lordick.
638	2020. Gastric cancer. Lancet 396 (10251):635-648. DOI: http://10.1016/S0140-6736(20)31288-
639	5, PMID: 32861308.
640	Sun, Yuhui, Jian Gu, Jaffer A. Ajani, David W. Chang, Xifeng Wu, and John R. Stroehlein. 2014.
641	Genetic and intermediate phenotypic susceptibility markers of gastric cancer in Hispanic
642	Americans: a case-control study. Cancer 120 (19):3040-3048. DOI: http://10.1002/cncr.28792,
(1)	PMID: 24962126

644	Sun, Yuhui, Liren Zhang, Simon S. Ho, Xifeng Wu, and Jian Gu. 2016. Lower mitochondrial DNA copy
645	number in peripheral blood leukocytes increases the risk of endometrial cancer. Molecular
646	carcinogenesis 55 (6):1111-1117. DOI: http://10.1002/mc.22373, PMID: 26258624.
647	Sung, Hyuna, Jacques Ferlay, Rebecca L. Siegel, Mathieu Laversanne, Isabelle Soerjomataram, Ahmedin
648	Jemal, and Freddie Bray. 2021. Global Cancer Statistics 2020: GLOBOCAN Estimates of
649	Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: a cancer journal for
650	clinicians 71 (3):209-249. DOI: http://10.3322/caac.21660, PMID: 33538338.
651	Thyagarajan, Bharat, Renwei Wang, Helene Barcelo, Woon-Puay Koh, and Jian-Min Yuan. 2012.
652	Mitochondrial copy number is associated with colorectal cancer risk. Cancer epidemiology,
653	biomarkers & prevention 21 (9):1574-1581. DOI: http://10.1158/1055-9965.EPI-12-0138-T,
654	PMID: 22787200.
655	Wang, Feng, Jiang Zhu, Ping Yao, Xiulou Li, Meian He, Yuewei Liu, Jing Yuan, Weihong Chen, Li
656	Zhou, Xinwen Min, Weimin Fang, Yuan Liang, Youjie Wang, Sheng Wei, Jichun Liu, Xiaoping
657	Miao, Mingjian Lang, Xixiang Jiang, Peng Zhang, Dongfeng Li, Chuanwen Lu, Xiaozheng
658	Wang, Wenhu Shi, Jianru Zheng, Huan Guo, Xiaomin Zhang, Handong Yang, Frank B. Hu, and
659	Tangchun Wu. 2013. Cohort Profile: the Dongfeng-Tongji cohort study of retired workers.
660	International journal of epidemiology 42 (3):731-740. DOI: http://10.1093/ije/dys053, PMID:
661	22531126.
662	Wang, Lihua, Hong Lv, Pei Ji, Xun Zhu, Hua Yuan, Guangfu Jin, Juncheng Dai, Zhibin Hu, Yuxiong Su,
663	and Hongxia Ma. 2018. Mitochondrial DNA copy number is associated with risk of head and
664	neck squamous cell carcinoma in Chinese population. Cancer medicine 7 (6):2776-2782. DOI:
665	http://10.1002/cam4.1452, PMID: 29673117.
666	Wu, I. Chien, Cheng-Chieh Lin, Chin-San Liu, Chih-Cheng Hsu, Ching-Yu Chen, and Chao A. Hsiung.
667	2017. Interrelations Between Mitochondrial DNA Copy Number and Inflammation in Older
668	Adults. J Gerontol A-Biol 72 (7):937-944. DOI: http://10.1093/gerona/glx033, PMID: 28329339.
669	Xu, Enping, Wenjie Sun, Jian Gu, Wong-Ho Chow, Jaffer A. Ajani, and Xifeng Wu. 2013. Association of
670	mitochondrial DNA copy number in peripheral blood leukocytes with risk of esophageal
671	adenocarcinoma. Carcinogenesis 34 (11):2521-2524. DOI: http://10.1093/carcin/bgt230, PMID:
672	23803692.
673	Xu, Junfeng, Wen-Shin Chang, Chia-Wen Tsai, Da-Tian Bau, John W. Davis, Timothy C. Thompson,
674	Christopher J. Logothetis, and Jian Gu. 2020. Mitochondrial DNA copy number in peripheral
675	blood leukocytes is associated with biochemical recurrence in prostate cancer patients in African
676	Americans. Carcinogenesis 41 (3):267-273. DOI: http://10.1093/carcin/bgz139, PMID:
677	31408512.
678	Yang, Keming, Xin Li, Michele R. Forman, Patrick O. Monahan, Bret H. Graham, Amit Joshi, Mingyang
679	Song, Dong Hang, Shuji Ogino, Edward L. Giovannucci, Immaculata De Vivo, Andrew T.
680	Chan, and Hongmei Nan. 2019. Pre-diagnostic leukocyte mitochondrial DNA copy number and
681	colorectal cancer risk. Carcinogenesis 40 (12):1462-1468. DOI: http://10.1093/carcin/bgz159,
682	PMID: 31556446.
683	Zhang, Xing, Meng Li, Shuntai Chen, Jiaqi Hu, Qiujun Guo, Rui Liu, Honggang Zheng, Zhichao Jin,
684	Yuan Yuan, Yupeng Xi, and Baojin Hua. 2018. Endoscopic Screening in Asian Countries Is
685	Associated With Reduced Gastric Cancer Mortality: A Meta-analysis and Systematic Review.
686	Gastroenterology 155 (2):347-354.e9. DOI: http://10.1053/j.gastro.2018.04.026, PMID:
687	29723507.

- 688 Zheng, Jian, Ning-Hua Cui, Shuai Zhang, Xue-Bin Wang, and Liang Ming. 2019. Leukocyte Mitochondrial DNA Copy Number and Risk of Thyroid Cancer: A Two-Stage Case-Control 689
- Study. Front Endocrinol 10:421. DOI: http://10.3389/fendo.2019.00421, PMID: 31312182. 690
- 691 Zhong, Fei, Shuang Liang, and Zhenyu Zhong. 2019. Emerging Role of Mitochondrial DNA as a Major
- 692 Driver of Inflammation and Disease Progression. Trends in immunology 40 (12):1120-1133. 693 DOI: http://10.1016/j.it.2019.10.008, PMID: 31744765.
- 694 Zhu, Xun, Yingying Mao, Tongtong Huang, Caiwang Yan, Fei Yu, Jiangbo Du, Juncheng Dai, Hongxia
- 695 Ma, and Guangfu Jin. 2017. High mitochondrial DNA copy number was associated with an
- increased gastric cancer risk in a Chinese population. Molecular carcinogenesis 56 (12):2593-696 2600. DOI: http://10.1002/mc.22703, PMID: 28688194. 697
- 698

Characteristics ^a	Base cohort	Subcohort	Incident cases				
Characteristics			CRC	GC	EC	Total GICs ^b	
Number of subjects	21658	1173	278	138	72	488	
Age at enrollment, years	63.2 ± 7.5	63.4 ± 7.7	$67.2 \pm 7.2^{**}$	$65.8 \pm 7.5^{**}$	$65.7\pm6.9*$	$66.5 \pm 7.3 **$	
Males	9653 (44.6)	518 (44.2)	162 (58.3)**	83 (60.1)**	55 (76.4)**	300 (61.5)**	
BMI, kg/m ²	24.5 ± 3.3	24.5 ± 3.2	24.9 ± 3.4	24.3 ± 3.3	$23.7 \pm 3.4*$	24.6 ± 3.4	
Education							
Primary school or below	6458 (29.8)	331 (28.2)	100 (36.0)*	54 (39.1)*	25 (34.7)	179 (36.7)**	
Middle school	7943 (36.7)	443 (37.8)	97 (34.9)	44 (31.9)	28 (38.9)	169 (34.6)	
High school or beyond 7257 (33)		399 (34.0)	81 (29.1)	40 (29)	19 (26.4)	140 (28.7)	
Smoking status							
Never	15296 (70.6)	840 (71.6)	174 (62.6)*	78 (56.5)**	27 (37.5)**	279 (57.2)**	
Former	2469 (11.4)	126 (10.7)	39 (14.0)	27 (19.6)	16 (22.2)	82 (16.8)	
Current	3893 (18.0)	207 (17.7)	65 (23.4)	33 (23.9)	29 (40.3)	127 (26)	
Alcohol drinking status							
Never	15796 (72.9)	857 (73.0)	201 (72.3)	89 (64.5)	35 (48.6)**	325 (66.6)*	
Former	1167 (5.4)	77 (6.6)	22 (7.9)	10 (7.2)	5 (6.9)	37 (7.6)	
Current	4695 (21.7)	239 (20.4)	55 (19.8)	39 (28.3)	32 (44.4)	126 (25.8)	
Physical activity, yes	19286 (89.0)	1061 (90.5)	251 (90.3)	117 (84.8)*	62 (86.1)	430 (88.1)	
Family history of cancer, yes	793 (3.7)	37 (3.2)	8 (2.9)	2 (1.4)	2 (2.8)	12 (2.5)	
Blood mtDNAcn	-	0.93 (0.77, 1.15)	1.01 (0.71, 1.35)	1.00 (0.78, 1.41)*	0.96 (0.77, 1.39)	1.00 (0.73, 1.37)**	

Table 1. Baseline c	characteristics	of subcohort	participants a	and incident	GICs cases.
---------------------	-----------------	--------------	----------------	--------------	-------------

Abbreviations: BMI, body mass index; mtDNAcn, mitochondrial DNA copy number; CRC, colorectal cancer; GC, gastric cancer; EC, esophageal cancer; GICs, gastrointestinal cancers.

Notes: Comparisons were made between incident cancer cases and non-case controls in the subcohort. In particular, when analyses were performed as for one specific type of cancer, cases of the remaining cancer types were treated as controls.

P values were derived from Student's *t*-test, Mann-Whitney *U* test, or Pearson's χ^2 test. *0.01<*P*<0.05; ***P*<0.01.

^aData were presented as mean ± SD, n (%), or median (25th, 75th). ^b Total GICs includes CRC, GC, and EC.

Table 2. Associations of blood mtDNAcn with incident risks of GICs.

.

		Quartiles of blood mtDNAcn ^a					
Incident GIC	_S	Q1	Q2	Q3	Q4		
CRC							
	All subjects						
	No. of cases / subcohort	83 / 295	37 / 292	56 / 292	102 / 294		
	HR (95% CI) ^b	2.27 (1.47, 3.52)	reference	1.65 (1.04, 2.62)	2.81 (1.85, 4.28)		
	Excluding subjects who diagn	osed during first two	years of follov	v-up			
	No. of cases / subcohort	73 / 295	37 / 292	50 / 292	89 / 294		
	HR (95%CI) ^b	2.00 (1.28, 3.12)	reference	1.47 (0.92, 2.35)	2.47 (1.61, 3.78)		
	Excluding other incident canc	er cases					
	No. of cases / subcohort	83 / 272	37 / 280	56 / 277	102 / 263		
	HR (95%CI) ^b	2.31 (1.49, 3.59)	reference	1.69 (1.07, 2.69)	2.95 (1.93, 4.51)		
GC							
	All subjects						
	No. of cases / subcohort	32 / 295	26 / 292	26 / 292	54 / 294		
	HR (95% CI) ^b	1.28 (0.73, 2.24)	reference	1.10 (0.61, 1.97)	2.16 (1.31, 3.54)		
	Excluding subjects who diagn	osed during first two	years of follov	v-up			
	No. of cases / subcohort	29 / 295	23 / 292	23 / 292	46 / 294		
	HR (95%CI) ^b	1.33 (0.73, 2.40)	reference	1.11 (0.60, 2.06)	2.10 (1.24, 3.56)		
	Excluding other incident canc	er cases					
	No. of cases / subcohort	32 / 267	26 / 281	26 / 274	54 / 262		
	HR (95%CI) ^b	1.32 (0.75, 2.32)	reference	1.15 (0.64, 2.06)	2.30 (1.40, 3.80)		
EC							
	All subjects						
	No. of cases / subcohort	18 / 295	11 / 292	18 / 292	25 / 294		
	HR (95% CI) ^b	1.75 (0.80, 3.85)	reference	1.82 (0.82, 4.04)	2.38 (1.13, 5.02)		
	Excluding subjects who diagnosed during first two years of follow-up						
	No. of cases / subcohort	14 / 295	11 / 292	14 / 292	22 / 294		
	HR (95%CI) ^b	1.36 (0.59, 3.13)	reference	1.46 (0.62, 3.42)	2.13 (0.99, 4.57)		
	Excluding other incident canc	er cases					
	No. of cases / subcohort	18 / 268	11 / 278	18 / 275	25 / 262		
	HR (95%CI) ^b	1.75 (0.80, 3.86)	reference	1.88 (0.84, 4.22)	2.57 (1.22, 5.45)		
Total GICs							
	All subjects						
	No. of cases / subcohort	133 / 295	74 / 292	100 / 292	181 / 294		
	HR (95% CI) ^b	1.84 (1.30, 2.60)	reference	1.47 (1.03, 2.10)	2.51 (1.82, 3.47)		
	Excluding subjects who diagnosed during first two years of follow-up						
	No. of cases / subcohort	116 / 295	71 / 292	87 / 292	157 / 294		
	HR (95%CI) ^b	1.68 (1.18, 2.40)	reference	1.34 (0.93, 1.94)	2.88 (1.64, 3.19)		
	Excluding other incident cancer cases						
	No. of cases / subcohort	133 / 273	74 / 283	100 / 278	81 / 269		
	HR (95%CI) ^b	1.89 (1.34, 2.68)	reference	1.52 (1.06, 2.17)	2.64 (1.90, 3.66)		

Abbreviations: HR, hazard ratio; CI, confidence interval; mtDNAcn, mitochondrial DNA copy number; CRC, colorectal cancer; GC, gastric cancer; EC, esophageal cancer; GICs, gastrointestinal cancers.

Notes: a Quartile groups were divided by sex-specific cut-off values of mtDNAcn among sub-cohort participants. For males: <0.722 (Q1), 0.722-0.887 (Q2), 0.888-1.110 (Q3), ≥1.11 (Q4); for females: <0.806 (Q1), 0.806-0.957 (Q2), 0.958-1.179 (Q3), ≥1.180 (Q4).

^b Weighted Cox proportional hazards models, with adjustment for age, BMI, gender, smoking (smokers/never smokers), alcohol drinking (current/non-current alcohol drinkers), physical activity (yes/no), education status (primary school or below, middle school, high school or beyond), and family history of cancer.

Figure legends

Figure 1. Case-cohort design nested within the DFTJ cohort.

Abbreviations: DFTJ, Dongfeng-tongji; CRC, colorectal cancer; GC, gastric cancer; EC,

esophageal cancer; GICs, gastrointestinal cancers.

Figure 2. Associations of blood mtDNAcn with incident risks of GICs based on the restricted cubic spline function.

(A) Association between mtDNAcn and incident risk of CRC.

(B) Association between mtDNAcn and incident risk of GC.

(C) Association between mtDNAcn and incident risk of EC.

(D) Association between mtDNAcn and incident risk of total GICs.

Abbreviations: mtDNAcn, mitochondrial DNA copy number; CRC, colorectal cancer; GC,

gastric cancer; EC, esophageal cancer; GICs, gastrointestinal cancers.

Notes: The three black solid dots represent the knots of 5th, 50th and 95th percentiles of log2, transformed mtDNAcn, while the separate median value of log2-transformed mtDNAcn was used as the reference.

Figure 3. Stratified analyses for the associations of blood mtDNAcn with CRC and total GICs risk by age, gender, and smoking status.

(A) Stratified by age; (B) Stratified by gender; (C) Stratified by smoking status.

Abbreviations: HR, hazard ratio; CI, confidence interval; mtDNAcn, mitochondrial DNA copy number; CRC, colorectal cancer; GC, gastric cancer; EC, esophageal cancer; GICs,

gastrointestinal cancers.

Notes: Weighted Cox proportional hazards models, with adjustments for age, BMI, gender, smoking status, alcohol drinking status, physical exercise, education status, and family history of cancer, except for the stratification variable. The pink solid square and green whisker line in panels represent hazard ratios (HRs) and 95% confidence intervals (CIs), respectively. The green arrow means that the 95% CI exceeds the limitation of axis and not shown in this figure.

Figure 4. Joint effects of blood mtDNAcn with age and smoking status on CRC and total GICs risks.

(A) Joint effect of mtDNAcn with age on CRC.

(B) Joint effect of mtDNAcn with smoking status on CRC.

(C) Joint effect of mtDNAcn with age on total GICs.

(D) Joint effect of mtDNAcn with smoking status on total GICs.

Abbreviations: HR, hazard ratio; CI, confidence intervals; mtDNAcn, mitochondrial DNA copy number; CRC, colorectal cancer; GICs, gastrointestinal cancers.

Notes: Weighted Cox proportional hazards models, with adjustments for age, BMI, gender, smoking status, alcohol drinking status, physical exercise, education status, and family history of cancer, except for variables in the combined terms.

Item No Recommendation		Recommendation	Reported on	
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	Title and abstract	
	_	(b) Provide in the abstract an informative and balanced summary of what was done and what was found	-	
Introduction				
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	Introduction	
Objectives	3	State specific objectives, including any prespecified hypotheses	Introduction	
Methods				
Study design	4	Present key elements of study design early in the paper	Study population	
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	Study population, Case- cohort study design and covariates assessment	
Participants	6	 (a) Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up (b) For matched studies, give matching criteria and number of exposed and unexposed 	Study population, Case- cohort study design and	
Variables	7	(b) For matched studies, give matching effects and number of exposed and unexposed	Cose-cohort study design	
v arrables	7	diagnostic criteria, if applicable	and covariates assessment	
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	Materials and methods	
Bias	9	Describe any efforts to address potential sources of bias	Materials and methods	
Study size	10	Explain how the study size was arrived at	Materials and methods	
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	Case-cohort study design and covariates assessment, statistical analysis	
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	Case-cohort study design	
	—	(b) Describe any methods used to examine subgroups and interactions	and covariates assessment,	
		(c) Explain how missing data were addressed	- statistical analysis	
		(d) If applicable, explain how loss to follow-up was addressed	-	
		(<u>e</u>) Describe any sensitivity analyses	-	
Results				
Participants	13*	 (a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed (b) Give reasons for non-participation at each stage 	General characteristics of study participants	
			-	

STROBE Statement—Checklist of items that should be included in reports of *cohort studies*

(c) Consider use of a flow diagram

Descriptive data	criptive data 14* (a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders		General characteristics of study participants, Table 1,
		(b) Indicate number of participants with missing data for each variable of interest	figure 1, table S1, figure S1
		(c) Summarise follow-up time (eg, average and total amount)	-
Outcome data	15*	Report numbers of outcome events or summary measures over time	Table 2, figure 2, figure 3,figure 4, table S2, table S3
Main results	16	(<i>a</i>) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	Table 2, figure 2, figure 3,figure 4
		(b) Report category boundaries when continuous variables were categorized	
		(<i>c</i>) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	-
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and sensitivity analyses	Table S2, table S3
Discussion			
Key results	18	Summarise key results with reference to study objectives	Discussion
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	Discussion
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	Discussion
Generalisability	21	Discuss the generalisability (external validity) of the study results	Discussion
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	Support statement

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at http://www.strobe-statement.org.

A. CRC

C. EC

CRC

Q1

Q2

Q3

04

Q1

02

Q3

04

No.of cases

30

13

15

46

59

34

37

79

HR (95%CI)

1.99 (0.92, 4.28)

reference

1.17 (0.51, 2.71)

3.72 (1.81, 7.61)

1.54 (0.89, 2.67)

reference

1.11 (0.63, 1.99)

2.43 (1.45, 4.08)

Q1

Q2

Q3

Q4

Ever smokers

2 3 4 5

The estimates

0 1

53

24

41

56

74

40

63

102

29

12

30

45

42

21

44

81

The estimates

A. CRC

C. Total GICs

