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ABSTRACT 
 
Proper diagnosis of ADHD is costly, requiring in-depth evaluation via interview, multi-informant 
and observational assessment, and scrutiny of possible other conditions. The increasing 
availability of data may allow the development of machine-learning algorithms capable of 
accurate diagnostic predictions using low-cost measures. We report on the performance of 
multiple classification methods used to predict a clinician-consensus ADHD diagnosis. 
Classification methods ranged from fairly simple (e.g., logistic regression) to more complex 
(e.g., random forest), and also included a multi-stage Bayesian approach. All methods were 
evaluated in two large (N>1000), independent cohorts. The multi-stage Bayesian classifier 
provides an intuitive approach that is consistent with clinical workflows, and is able to predict 
ADHD diagnosis with high accuracy (>86%)—though not significantly better than other 
commonly used classifiers, including logistic regression. Results suggest that data from parent 
and teacher surveys is sufficient for high-confidence classifications in the vast majority of cases 
using relatively straightforward methods. 
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INTRODUCTION 
 

The accurate diagnosis of attention-deficit/hyperactivity disorder (ADHD) is critically 
important given evidence of both over- and under-treatment (Costello et al. 2014; Simon et al. 
2015; Massuti et al. 2021) of this costly condition. A full evaluation of ADHD, requiring 
significant time and resources, involves a structured or semi-structured clinical interview, 
standardized ratings from parent and teachers, and evaluation of impairment, as well as 
comorbid conditions that might better explain the diagnosis (APA 2013; Committee on Quality 
Improvement, Subcommittee on Attention-Deficit/Hyperactivity Disorder 2000; National 
Guideline Centre (UK) 2018). Yet, surveys suggest that the majority of providers in primary care 
faced with evaluating ADHD report insufficient knowledge or resources to carry out a full 
evaluation (Adler et al. 2009; Faraone et al. 2004) leading to efforts to develop additional 
resources (Loskutova et al. 2021), and perhaps contributing to concerns about diagnostic 
accuracy.  

Other approaches to assist diagnostic evaluation are also possible and are under 
development using various contemporary computational tools. For example, computerized 
adaptive testing is a sophisticated method that uses item response theory and large item banks 
to develop rapid assessment tools (Gibbons et al. 2016; 2020). A similar approach was used to 
develop the ongoing NIMH PROMIS scales (Irwin et al. 2010). A potentially simpler machine-
learning approach is to create a prediction algorithm that clinicians can adapt to their existing 
methods, relying on standard clinical tools.  

This later approach, which we pursue here, has yet to be strongly evaluated for ADHD. 
The first and most basic challenge is to differentiate the clinical diagnosis (in this case, ADHD) 
from cases with no clinical diagnosis. The first question within that domain is whether advanced 
machine learning classifiers can outperform simple algorithms in accurately identifying ADHD, at 
sample sizes that may be typically available in local clinics. This paper tackles that challenge, by 
developing and evaluating multiple machine-learning classifiers, ranging in complexity, to 
differentiate ADHD from non-ADHD youth in a population with a moderate ADHD base rate. 
Once this is solved, the next steps are to address differentiation of ADHD from other disorders 
and prediction of clinical course to guide treatment decisions, while considering different 
settings’ base rates.  

The effort to use machine learning classifiers to identify clinical cases of psychiatric 
disorders on the basis of low-cost clinical data has been surprisingly sparse. Youngstrom et al. 
(Youngstrom et al. 2018) reported on a set of studies attempting to diagnose cases of bipolar 
disorder in a competitive modeling environment, similar to our approach here for ADHD. They 
reported that complex machine learning algorithms, in that case Least Absolute Shrinkage and 
Selection Operation (LASSO) regression, did not markedly outperform the more familiar logistic 
regression classifier when validated on independent data. Scrutiny of other mental health 
conditions along similar lines has been limited. One study of ADHD used a computerized 
interview and teacher and parent rating scales to establish ADHD diagnosis and then related 
teacher ratings to establish prediction, but without cross-validation (Öztekin et al. 2021). They 
found no added benefit of MRI measures.  

Two questions are salient. First, can brief measures aided by machine-learning 
algorithms accurately reproduce clinical diagnoses achieved by time-consuming comprehensive 
semi-structured clinical interviews, or the even more authoritative clinical best-estimate 
diagnosis? If so, the potential cost savings would be substantial. Second, if the answer to the 
first question is yes, do complex contemporary machine learning algorithms outperform simpler 
and more familiar linear models in such prediction at the sample sizes commonly available to 
local clinics and research studies? This is a methodological question that we also undertake.  

To the relative neglect of simple rating scales, much of the recent literature on the 
prediction of ADHD or other psychiatric diagnosis has focused on brain imaging measures, with 
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dozens of studies but with generally small samples, weak accuracy, or overfitting concerns 
(limited cross validation) (Rashid and Calhoun 2020). Indeed, it is now known that effect sizes 
for brain imaging metrics are small (i.e., they explain only a very small fraction of variance in 
behavioral measures) (Marek et al. 2020), and the cost of MRI renders it currently sub-optimal 
for a brief, cost reducing ADHD diagnostic method. Likewise, genetic risk factors (e.g., 
polygenic risk scores or individual variants) still have little utility in terms of clinical 
diagnosis/prognosis (Ronald, Bode, and Polderman 2021; Martin, Kanai, et al. 2019; Martin, 
Daly, et al. 2019; Palk et al. 2019), although they may before long be added to a diagnostic 
algorithm in some form.  

In general, studies using machine learning to predict ADHD diagnosis have been 
conducted with small samples, have lacked external validation (Bledsoe et al. 2016; Wodka et 
al. 2008; Dvorsky et al. 2016; Duda et al. 2016; Mueller et al. 2010; Christiansen et al. 2020) 
and have neglected simpler, lower cost algorithms that might enhance clinical efficiency. 

Although the NIMH PROMIS project has developed brief measures (Cella et al. 2007), 
and computer-assisted assessment is emerging (Hall et al. 2016; Nikolas, Marshall, and Hoelzle 
2019; Slobodin, Yahav, and Berger 2020), it remains unclear what an optimal degree of density 
of assessment would be for ADHD diagnosis in a clinical setting. Conceptually, several 
considerations also bear mention. Parent and teacher ratings are strongly recommended for 
ADHD evaluation, yet these often do not agree. A parent interview may yield different responses 
than a rating scale. Rating scales utilize clinical “cut off scores” for ADHD that may or may not 
be optimal for individual prediction. Finally, cognitive tests remain controversial as ancillary 
information for ADHD evaluation, yet it is unknown whether they can aid a diagnostic algorithm 
secondarily. For example, Nikolas et al. (2019) reported that in a simple regression model, 
certain cognitive measures enhanced ADHD prediction accuracy over and above rating scales 
(Nikolas, Marshall, and Hoelzle 2019). In particular, we examined the relative merits of (a) 
parent ratings alone, (b) parent + teacher ratings, and (c) parent + teacher + cognitive testing in 
predicting both a gold standard best-estimate diagnosis and a clinician structured interview 
diagnosis of ADHD. Relatedly, it has been unclear whether advanced non-linear modeling 
(“machine learning”) is superior to traditional logistic regression in creating a prediction score, 
and whether any will outperform a simple rule-based decision aid (2-level decision tree). Hence, 
we report here on potential optimal assessment depth, as well as a competitive evaluation of 
multiple classification methods, in a proof-of-concept paper. 

Informal Bayesian logic—weighing new information in the context of existing evidence—
is central to clinical decision making (Gill, Sabin, & Schmid 2005). Because of this, we evaluate 
a multi-stage Bayesian prediction approach (a tree-augmented naïve Bayes classifier) to 
roughly parallel the sequential decision-making process that a time- and cost-conscious clinician 
uses. In the case of clinical evaluation for ADHD, the decision making would typically start with 
a brief low-cost assessment (e.g., a single parent symptom checklist), then proceed to decisions 
about whether to add additional measures such as obtaining teacher ratings or cognitive testing, 
and so on. Thus, our sequence starts with the most easily-obtained measures (parent rating 
scales) and proceeds to teacher ratings, and then laboratory cognitive test measures. In 
addition to the tree-augmented naïve Bayes classifier, we implemented a competitive modeling 
logic with the following classifiers, varying in computational complexity: a simple 2-level decision 
tree, standard logistic regression, regularized logistic regression, support vector machine, 
unrestricted-depth decision tree, random forest, and gradient boosted decision trees. All 
classification methods were evaluated in two large (N>1000), well-characterized, case-control 
cohorts to evaluate robustness and generalizability. 
 

MATERIALS AND METHODS 
 
Sample Size and Participants 
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Methodologically, the relation between a machine learning model and sample size is 
highly complex, depending on many factors, such as model nonlinearity and complexity, sample 
noise, dependency among the samples, and effectiveness of model optimization process. It has 
been theoretically derived and empirically demonstrated (Bishop 2006; Abu-Mostafa, Magdon-
Ismail, and Lin 2012; Goodfellow, Bengio, and Courville 2016) that complex machine learning 
models, such as multi-layer deep learning neural networks, are capable of capturing the 
complex, nonlinear relations between the model inputs and outputs. However, they require a 
large amount of data to train, due to the large number of model parameters to specify without 
overfitting. On the other hand, simple models, such as logistic regression models, can still be 
the appropriate model for a given data set, in cases of modest sample size, highly correlated 
samples (which reduces the effective sample size), noisy samples, and close-to-linear input-
output relations. Thus, evaluation is necessary for the particular question at hand. Here, we 
opted for well-characterized samples that had sufficient sample size to test the question, that 
compared well to other similar efforts in the literature, and that might be similar to what most 
real settings would have available to train a local classifier.  

The Oregon-ADHD-1000 is a community recruited case-control cohort (N=1423) of youth 
age 7-11 years (Karalunas et al. 2017; Nigg et al. 2018; 2020; Mooney et al. 2021; 2020). 
ADHD was deliberately oversampled to ensure an adequate range of clinical variation and of 
actual clinical cases in the data set. (We consider base rate issues later). To preserve the 
representativeness of the sample, we did not oversample for sex or other demographics, and 
these were not included in our algorithm to mimic clinician context. Human subjects and ethics 
approval was obtained from the local University Institutional Review Board. A parent/legal 
guardian provided written informed consent, and children provided written assent. 

Recruitment was conducted by community outreach and a case-finding procedure to 
identify cases in the community, regardless of whether they had sought treatment or been 
previously diagnosed. After screening, a state-of-the-art, multi-informant, multi-method research 
diagnostic evaluation was conducted (see below). Children were excluded for disallowed 
medications (Supplemental Table S1), history of seizures or head injury, psychosis, mania, 
current major depressive episode, Tourette’s syndrome, autism and IQ<80. An ADHD 
assignment required all DSM-5 criteria to be met including parent-teacher convergence (both 
having either above-threshold rating scale scores or symptom counts). To increase the difficulty 
of the diagnostic case and make it more similar to real world decisions, the sample retained 
youth who were subthreshold for ADHD (5 symptoms + impairment) and those who had 
symptoms or impairment explained by other disorders or had situational ADHD symptoms 
(home or school problems only). As explained below, sensitivity analyses evaluated the effect of 
these cases.  

Replication in a completely independent sample was evaluated with the Michigan-
ADHD-1000 (Nikolas and Nigg 2013; 2015). It is a cohort of 1064 youth ages 6-21 years, with 
the same recruitment and assessment procedures, but in a very different demographic 
population (central Michigan versus northwest Oregon). Its inclusion enabled a test of 
generalizability and performance in a completely independent sample to control any conclusions 
that might derive from single-sample over-fitting.  
 
ADHD Gold-Standard Diagnosis 

In both cohorts, diagnostic assignment followed a standard protocol. It included 
standardized, nationally-normed rating scales from parent and teacher, parent semi-structured 
clinical interview by a trained clinician with acceptable inter-clinician reliability and validity, child 
intellectual testing with carefully trained and supervised psychometrician administrators, and 
clinical observation and notes from two research assistants. Then, a best-estimate diagnostic 
team of two experienced clinicians (board certified child psychiatrist and a child clinical 
psychologist) reviewed all available data and arrived at a best-estimate diagnostic assignment, 
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considering whether symptoms were better explained by an associated condition and whether 
impairment was severe enough to warrant diagnosis. The two clinicians agreed well 
(kappa>0.80) on ADHD assignment. Their consensus rating became the gold standard 
assignment.  

These clinician consensus diagnoses, which we refer to as best-estimate diagnoses, 
were used as the ground-truth classifications. The best-estimate team classified each subject as 
ADHD, control, subthreshold, or other. The subthreshold category were children judged by the 
consensus best-estimate team to have impairing ADHD symptoms but insufficient to meet full 
diagnostic criteria. The other category included subthreshold cases in which only one reporter 
saw symptoms, or cases with impairment that was judged not due to ADHD symptoms. Non-
ADHD cases had 4 or fewer ADHD symptoms and had never been identified or treated for 
ADHD. Other psychopathology was free to vary in these community volunteers, although we 
excluded children with mania, a history of probable or definite psychosis, intellectual delay, or 
autism spectrum disorder or neurological injury.  

For our primary analyses we collapse the children into two classes (ADHD, and non-
ADHD); the subthreshold and other cases were all labeled as non-ADHD for that primary 
analysis. In sensitivity analyses we explored the effect of this type of decision versus a broader 
ADHD definition that included subthreshold cases and also how inclusion or exclusion of these 
cases from the training set affected classification learning.  

The best-estimate team used some of the rating scales that were included in our low-
cost classification models, our first analysis focused on whether those results could be 
approximated with a subset of their information. However, to control the potential “double-dip” of 
that approach, we also evaluated classifiers trained to predict diagnosis based on the Kiddie 
Schedule for Affective Disease and Schizophrenia-version E modified for DSM-IV (at the time of 
data collection) and checked for DSM-5 compliance (after DSM-5 was published). The KSADS-
E was administered by a masters-degree or higher clinician (either masters in social work, in 
counseling, or in clinical psychology) trained to reliability and validity with a master coder who 
was in turn trained to validity with an outside expert. These interviewers all achieved adequate 
inter-rater reliability (kappa>0.80) with the master trainer. Recordings of their interviews were 
regularly reviewed by senior clinicians to prevent administration drift.  
 
Predictive Measures 

The initial modeling used the Oregon cohort. The following symptom measures were 
used as predictors in the classifiers: parent reported inattention and hyperactivity symptom 
counts from the ADHD Rating Scale (ADHDRS) (DuPaul et al. 1998) parent reported 
inattention, hyperactivity, executive functioning, learning problems, aggression, and peer 
relations scales from the Conners Rating Scale 3rd edition (Conners-3) (Conners 2008), and 
teacher reported inattention and hyperactivity symptom counts from the ADHDRS. All parent 
and teacher reported measures were converted to T-scores to adjust for age and gender and 
again to simulate clinical decision making. These symptom measures or others like them are 
often the first pieces of information used by a clinician when evaluating a child for ADHD. 

In addition, cognitive measures from the following laboratory tests were used as 
predictors: Stop-Go task (Nigg 1999; Schachar et al. 1995); Spatial Span forward and backward 
(De Luca et al. 2003); Digit Span forward and backward from the Wechsler Intelligence Scale 
for Children, Fourth Edition (WISC-IV) (Wechsler 2003); Delis, Kaplan, and Kramer (DKEF) 
(Delis, Kaplan, & Kramer 2001) version of the Stroop task (color, word, and color-word 
conditions); and DKEF Trail Making test (number sequencing and number-letter sequencing 
conditions). 

For the Michigan cohort, parent reported symptoms were assessed with the ADHDRS 
(same as the Oregon cohort), and the cognitive problems and hyperactivity-impulsivity scales 
from the Revised Conners Parent Rating Scale (Conners-R) (Conners et al. 1998), due to the 
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earlier era of data collection prior to publication of the Conners-3. Teacher reported inattention 
and hyperactivity symptoms were available from the ADHDRS. Again, these symptom 
measures were converted to T-scores to simulate clinician decision making.  

All of the cognitive measures available in the Oregon cohort were also available for the 
Michigan cohort, although a different version of the Trail Making test was used in Michigan 
(Reitan and Wolfson 1985)). Supplemental Table S2 shows all predictive features available in 
each data set.  
 
Data Cleaning / Pre-processing 

Subjects without a best-estimate team diagnosis and those missing >80% of predictive 
features were excluded, leaving a total N=1423 and N=1057 subjects for analyses in the 
Oregon and Michigan cohorts, respectively. KSADS diagnoses were available for 1422 in the 
Oregon cohort and 1055 in the Michigan cohort.  

For the primary analyses in the Oregon cohort, a stratified split of the data was done to 
maintain equal proportions of ADHD and non-ADHD cases in the sub-samples used for training 
(75%) and testing (25%) the classifiers. All variables were standardized (mean=0, standard 
deviation=1) using the StandardScaler method in the Scikit-learn Python package (Pedregosa 
et al. 2011). The test data was standardized relative to the mean and standard deviation of the 
training set, to bring the test data into the same range without data leakage from the test set.  

 
Missing Data Imputation 

For machine learning applications, addressing missing data must be done before the 
optimal predictive model is known (i.e., prior to classifier training). Because of this, model-based 
methods for handling missing data (e.g., maximum likelihood or regression), which depend on 
assumptions about the distributions of variables or the relationships between variables, are 
typically not appropriate. The best approach for machine learning tasks is unknown (and likely 
data set-specific), but almost certainly listwise deletion is suboptimal. Here, a k-nearest 
neighbor (KNN) imputation approach, implemented with the KNNImputer method (number of 
neighbors, k=7) in Scikit-learn, was used to impute missing values. The imputer model was fit 
with the training data only, to avoid data leakage from the test set, and was then applied to both 
the training and test sets. KNN imputation has been used in similar applications and has 
outperformed model-based methods and listwise deletion in terms of classification performance 
(Jerez et al. 2010). Alternative imputation methods were tested in simulated data (see 
Supplemental Materials), but provided little advantage at the cost of interpretive difficulty, hence 
we relied on the KNN approach here. 
 
Classification Methods 

We performed t-Distributed Stochastic Neighbor Embedding (t-SNE) (van der Maaten 
and Hinton 2008) on the training data set for preliminary data exploration and visualization of 
how well the predictive features are able to separate the class labels. The TSNE method 
implemented in Scikit-learn was used with the following parameters: perplexity=30, 
distance=Euclidean.  

Bayesian Classifier. As noted earlier, to attempt to simulate the process of clinical 
decision making so that the results would, in theory, be readily adapted to clinical use, we 
implemented a Bayesian classifier. Here, we chose a multi-stage tree-augmented naïve Bayes 
(TAN) classifier. This model was chosen because it models dependencies between predictive 
features, which we know exist. This is in contrast with standard naïve Bayes classifiers, which 
assume independence among predictors. The TAN classifiers were implemented using the 
bnclassify R package (Mihaljević, Bielza, and Larrañaga 2018). This multi-stage approach 
produces an initial prediction (class probability) based on a small subset of predictors. If a 
subject’s class probability is below a specified threshold (i.e., low-confidence), additional 
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predictors are added to the classifier and the class probability is updated in subsequent stages. 
This is illustrated in Figure 1. We conducted a 4-stage approach as follows: Stage 1: parent 
ADHDRS; stage 2: parent Conners; stage 3: teacher ADHDRS; stage 4: cognitive measures 
(see Predictive Measures above).  

This multi-stage procedure was evaluated in two ways: (1) the final classification for all 
participants from stage 4 (i.e., all participants are classified using all predictive features; we refer 
to this as ‘TAN-stage4’; Figure 1A), or (2) treating an individual’s final classification as the 
earliest high-confidence classification (i.e., some children are classified using only a subset of 
predictive features; we refer to this as ‘TAN-earliest’; Figure 1B).  

All predictive features were discretized before being input into the TAN classifier—that 
is, the continuous measures were summarized into a finite set of bins. This was necessary 
because the TAN classifier depends on the calculation of conditional probability tables from the 
training data. After standardizing and imputing the data, a z score of +/- 1.0 was equivalent to a 
one-standard deviation position above or below the sample mean, roughly approximating what a 
clinician might use to gauge whether or not to further pursue a problem (Conners 2003; 2008). 
In this way, the continuous measures were discretized into four bins: (𝑥 ≤ −1), (−1 > 𝑥 ≤ 0), 
(0 < 𝑥 ≤ 1), (𝑥 > 1). However, alternative methods were evaluated in sensitivity analyses and 
results, which were generally supportive of the approach chosen, are included in the 
Supplemental Materials. 

Competitive Modeling. Using a competitive modeling framework, we compared the 
performance of multiple classification methods ranging in complexity. We first implemented two 
relatively simple classification methods, unregularized logistic regression (LR-unregularized) 
and a decision tree limited to two levels (DT-simple), representing a simple algorithm that could 
easily be implemented in a clinic unaided by machine learning.  

These methods were compared to the multi-stage TAN classifier (described above) and 
five other advanced methods: regularized logistic regression (LR), unrestricted-depth decision 
tree (DT), random forest (RF), support vector machine (SVM), and gradient boosted decision 
trees (GBDT). These classifiers were chosen because many have been used previously in 
similar applications (Duda et al. 2016; Bledsoe et al. 2016; Dvorsky et al. 2016), they span a 
reasonable range in terms of complexity and interpretability, and all are easily implemented 
using the popular Scikit-learn Python package (Pedregosa et al. 2011). Finally, we evaluated an 
ensemble classifier, which made classifications based on the average class probability across 
all of the six advanced classifiers (TAN, LR, DT, SVM, RF, and GBDT). 

The Bayesian TAN classifier can naturally accommodate a multi-stage approach, by 
updating the class prior probability at each stage. While other methods could be adapted to a 
step-wise approach by building independent classifiers with different subsets of features, it is 
not clear the best way to incorporate information from one step to the next (i.e., the Bayesian 
logic is not automatic for these other methods). Therefore, we focus on the multi-stage 
approach for the TAN classifier only. Recognizing this fundamental difference between the 
methods, we later discuss the relative importance of specific predictive features, and prediction 
confidence.  

General procedure for machine learning models. A select set of classifier 
hyperparameters (Supplemental Table S3) were optimized using a grid search with 5-fold cross-
validation as implemented in Scikit-learn (Olson et al. 2018). Default values were used for all 
other parameters. The hyperparameters that resulted in the highest mean cross-validation 
accuracy were then used for all subsequent classifier comparisons.  

The Oregon cohort data set was split into training and test sets as described above 
(“Data Cleaning / Pre-processing” section) and the performance of each classifier was 
evaluated in three ways. First, we performed 5-fold cross validation within the Oregon cohort 
training set (i.e., mean performance across the 5 folds). Second, we trained the classifiers on 
the Oregon training set and then classified participants in the hold-out (Oregon) test set. Finally, 
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to evaluate external cross-validation and generalizability, we training classifiers on the full 
Oregon cohort and then classified participants in the independent Michigan cohort. Accuracy, 
sensitivity (ADHD being the positive class), specificity, positive predictive value (PPV), and area 
under the receiver operating characteristic curve (AUC-ROC) are reported for all classifiers. 
PPV was calculated assuming both a 5% prevalence (PPV5) of ADHD in the general population 
(Song, Dieckmann, and Nigg 2019) (as might be seen in a general pediatrics practice) and a 
50% prevalence (PPV50) (which may be more representative of the population seen in many 
outpatient psychiatric settings). 

Differences in the 5-fold cross-validation accuracy among classifiers was tested with a 
paired T-test. Given we were primarily interested in determining whether the more advanced 
methods outperformed unregularized logistic regression, we used a p-value threshold of 0.0071 
(a Bonferroni correction for seven comparisons: TAN, LR, DT, DT-simple, SVM, RF, and GBDT) 
to denote significance. Significant differences observed for the 5-fold cross validation 
performance were confirmed with an additional 2-fold cross validation repeated 5 times (5x2-
fold cross validation) (Dietterich 1998).  
 

RESULTS 
 
Description of Samples and cohorts 

An overview of the datasets used for training and testing the ADHD classifiers in the 
Oregon-ADHD-1000 and for the generalizability analysis in the Michigan-ADHD-1000 is 
provided in Table 1. For primary analysis in the Oregon-ADHD-1000 data set, 75% of 
participants were randomly selected for training the classifiers (and to estimate performance 
using 5-fold cross validation), and the remaining 25% were used to validate classifier 
performance in a hold-out sample. Table 1 reveals no statistically significant differences 
between the training and test data sets in terms of demographic or clinical features. Differences 
between the Oregon and Michigan cohorts are notable in regard to generalizability and are 
discussed later.  

As an initial, qualitative examination of how well the predictive features were able to 
separate diagnostic classes, we visualized the Oregon training set by performing t-SNE (van der 
Maaten and Hinton 2008), a non-linear dimensionality reduction technique, using the same 
subsets of predictive features as will be used in our multi-stage classifier (parent-reported 
symptom, teacher-reported symptoms, and cognitive measures). Since t-SNE maps the 
distribution of similarities between pairs of high-dimensional entities to a distribution in a low-
dimensional space (here two dimensions), it can be useful for assessing the structure (e.g., 
presence of clusters) in high-dimensional data. Supplemental Figure S1 shows that parent and 
teacher ratings alone provided initial meaningful separation between ADHD and non-ADHD 
groups or clusters. As might be expected, those participants who the best-estimate procedure 
considered as either subthreshold or other appeared more difficult to classify.  
 
Comparison of Classifier Performances on Predicting Best-estimate Diagnosis 

The 5-fold cross-validation and test-set accuracies for all classifiers evaluated on the 
Oregon cohort are reported in Table 2. The table also includes accuracies on the subset of 
participants given a high-confidence prediction (class probability >0.9). Additional performance 
measures for all classifiers are reported in Supplemental Tables S4 and S5. All classifiers were 
trained, using all discretized predictive features, to distinguish ADHD cases from controls 
(including subthreshold and other to partially mimic the difficulty in clinical diagnosis). Receiver 
operating characteristic (ROC) curves for all classifiers are shown in Supplemental Figure S2.  

All classifiers were able to predict the best-estimate team diagnosis with 5-fold cross-
validation accuracy >85% (base rate ~51%), except for the simple 2-level decision tree. 
Gradient boosted decision trees performed significantly better (89% mean 5-fold cross-
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validation accuracy) than both “simpler” methods, unregularized logistic regression (85%) and 
the 2-level decision tree (84%). However, there were no significant differences among the more 
advanced classifiers (Supplemental Table S6). Cross-validation performance was 
representative of performance on the held-out Oregon test set, with test set accuracies ranging 
from 87.4% for TAN to 93% for gradient boosted decision trees. 

For the TAN classifier, using the earliest high-confidence prediction (“TAN-earliest” in 
Table 2; Figure 1B) resulted in very similar overall performance compared to using the 
prediction after all 4 stages. However, the accuracy of high-confidence predictions in the test set 
was slightly lower for TAN-earliest.  

Sensitivity analysis. The performance of all classifiers, except for TAN, when using the 
continuous predictive measures, as well as the performance for different discretization methods, 
is reported in the Supplemental Materials (Supplemental Tables S7 and S8). We saw no 
significant differences in cross-validation accuracy when using discretized predictors vs. 
continuous predictors for any of the classification methods.  
 
Classifier Performance Predicting KSADS Diagnosis 

Because the best-estimate team used some of the same predictive features as used in 
the classifiers, we also evaluated the ability of the classifiers to predict ADHD status defined 
using KSADS measures (i.e., the labels were determined independently from all predictive 
features used in the classifier). Agreement between best-estimate team and KSADS ADHD 
versus non-ADHD status was 85% (see Supplemental Table S9).  

The performance of classifiers trained to predict KSADS labels in the Oregon cohort is 
reported in Supplemental Tables S10, S11, and S12. Overall, classification accuracy of KSADS 
diagnoses was slightly lower than seen for the best-estimate team diagnoses. All classifiers 
achieved mean 5-fold cross-validation accuracy >82%, with the TAN classifier showing the 
highest cross-validation accuracy (84.8%) and regularized logistic regression the lowest 
(82.8%). There were no significant differences in mean 5-fold cross-validation accuracies across 
the classification methods (Supplemental Table S13). And again, the 5-fold cross-validation 
accuracies were fairly representative of performance on the test set, which ranged from 81.5% 
accuracy for the decision tree to 84.8% accuracy for gradient-boosted decision trees.  
 
The Value of Confidence Thresholds to Determine Classifications 

The multi-stage TAN approach allows for classifications to be assigned based on only a 
subset of the data, if that data produces a high-confidence classification (i.e., a class probability 
>0.9 in this case). Given the cost of gathering diagnostic data, particularly from laboratory tests, 
this approach could potentially save significant resources without sacrificing classification 
performance. Resources could be saved for difficult-to-classify cases. 

We examined the proportion of subjects who could be classified with high confidence at 
each stage of the TAN classifier, as well as the accuracy of these high-confidence 
classifications. Figure 2 shows that a significant portion of the test-set subjects (312/356, 
87.6%) are classified with high-confidence (class probability >0.9) using only parent and teacher 
reported symptom scales (i.e., stages 1-3). The accuracy of these high-confidence 
classifications at stage 3 was 88.8% in the Oregon hold-out test set.  

For the remaining 44 test-set subjects with low-confidence classifications (class 
probability <0.9) after stage 3 of the TAN classifier, the addition of data from cognitive tests 
resulted in: (1) a class probability increase for N=26 (22 of which became high-confidence; 20 
classified correctly), (2) a class probability decrease for N=18, and (3) a change in predicted 
class for N=10 (including 9 correctly classified; 4 with high confidence). Overall, when cognitive 
measures were included in the classifier (stage 4), the TAN classifier predicted 92% (326/356) 
of the Oregon test set with high confidence. The accuracy of these high-confidence predictions 
was 90.8%. The misclassified cases are discussed further below. 
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As expected, the accuracy of high-confidence predictions is significantly better than 
lower-confidence predictions. Therefore, we examined how often each classifier provided a 
high-confidence prediction (predicted class probability >0.9). As shown in the parenthetical 
numbers in the right hand column of Table 2, the TAN-stage4 classifier strongly outperformed 
other methods in providing the most high-confidence predictions (92% of the test set; accuracy 
of 91% on this subset of high-confidence, test-set predictions), likely due to its ability to 
incorporate prior probabilities in subsequent stages of the classifier. The proportion of high-
confidence classifications for other methods was far lower (Table 2).  

In other words, the TAN classifier was able to provide high-confidence predictions for a 
higher percentage of the sample than the other methods. These results translate into the TAN 
classifier correctly classifying an additional 61 participants (17.1% of Oregon test set; 21 true 
positive ADHD cases) with high confidence, and incorrectly classifying an additional 14 
participants (3.9% of Oregon test set; 7 false positives) with high-confidence, compared to the 
classifier with the next highest number of high-confidence classifications (DT-simple).  

At the same time, small number of participants in the Oregon cohort test set were 
misclassified with high confidence by the TAN classified (N=30; 8.4% of the test set). Of the 18 
high-confidence false positives, 16 were either subthreshold (N=5) or other (N=11), highlighting 
the diagnostic difficulty of those cases. Of the 12 high-confidence false negatives, 10 had 
scores of 1=”minimal” on the KSADS for ADHD current impairment (scores range from 0=”none” 
to 3=”severe”; the other two had scores of 2=”moderate”), and all had a parent-reported SDQ 
impact score of 0 (0=“normal”, 1=”borderline”, 2=”abnormal”). Thus, addition of a separate 
impairment rating in the algorithm would improve accuracy. 

Class probabilities, at all stages of the TAN classifier, for all subjects in the Oregon test 
set are shown in Figure 2. It shows that (1) most participants were classified with high 
confidence (probability of ADHD ³0.9) at Stage 3, prior to incorporating the cognitive measures; 
(2) a small subset were never classified with high confidence, even when all predictors were in 
the classifier; and (3) some participants have conflicting data at different stages (their class 
probabilities are highly variable, or “unstable”, across the stages).  

The online supplement provides a sensitivity analysis regarding the classification 
difficulty of the sub-threshold and “other” cases.  

Sensitivity analysis: Impact of “other” or borderline classified participants. Given 
the diagnostic uncertainty implied by the subthreshold and other categories, we investigated the 
effect of re-labeling or excluding these subjects from the data used to train the classifiers. The 
performance of classifiers trained on the full training data, with subthreshold and other cases all 
labeled as non-ADHD, is referred to as Training Scheme A. It was compared to the performance 
of two other training schemes. The results are displayed in Table 3. In Training Scheme B, the 
full training data set was used, but subthreshold cases were selected and re-labeled as ADHD 
cases. In Training Scheme C, all subthreshold and other cases were excluded from the training 
set. Scheme B led to reduced accuracy (Table 3). Scheme C resulted, not surprisingly, in 
slightly increased sensitivity (test set sensitivity 0.939 vs. 0.917), but reduced specificity (test set 
specificity 0.760 vs. 0.829).  
 
Generalization to the Michigan-ADHD-1000 Cohort 

Finally, we evaluated whether a classifier trained on the entire Oregon data set would 
perform well on the independent Michigan cohort. As in the primary analyses done in the 
Oregon cohort, subjects categorized as subthreshold or other were labeled as controls for the 
purposes of training the classifiers in the full Oregon cohort. Because a different version of the 
Conners rating scale (with fewer subscales) was used in the Michigan cohort (due to its earlier 
period of collection), new classifiers were trained on the Oregon data excluding the subscales 
that were not available in the Michigan data.  
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Several differences between the two cohorts were expected to challenge the 
generalizability of the model but also provided an important opportunity to examine real-world 
generalizability/reproducibility questions (Table 1). Notably, the Michigan cohort included a 
significantly wider age range, and higher average age (12.5 vs. 9.4 years), a lower proportion of 
ADHD cases, a lower proportion of males, and higher proportion of non-white individuals. 
Finally, the overall distribution of symptom measures is shifted further into the clinical range in 
the Michigan cohort compared to the Oregon cohort—this difference remains when examining 
ADHD cases only (data not shown), suggesting the Michigan cohort is a somewhat more 
clinically severe ADHD sample.   

Thus, it was encouraging that despite these differences, most classifiers showed 
impressive generalizability to the Michigan cohort, for classifying best-estimate team diagnosis.  
Table 4 shows these results. The TAN, RF, SVM, and GBDT methods were all able to classify 
ADHD and non-ADHD (including “other” and subthreshold) with >79% accuracy. Again, there 
appears to be a slight advantage to the more advanced classifiers, with GBDT performing best 
(82% accuracy) and the 2-level decision tree worst (76% accuracy) in the Michigan cohort. As 
seen in the Oregon cohort, the TAN provided considerably more high-confidence predictions 
(91%) than other methods (41%-69%). 

Again, we observed slightly poorer performance across all methods when classifying 
KSADS diagnoses. The TAN performed best in that case, with an accuracy of 78.9% 
(Supplemental Tables S15 – S18). Overall, generalizability to a new cohort was supportive of 
the potential for these algorithms to achieve useful accuracy.  
 
DISCUSSION 
 

Classification of gold-standard research diagnosis of ADHD was achieved with fairly high 
accuracy overall (>85%), including generally with only parent and teacher total rating scale 
scores. In terms of classification accuracy, advanced methods appear to provided only 
incremental improvement over unregularized logistic regression and a simple (2-level) decision 
tree. However, this slight benefit diminished when predicting KSADS diagnosis, and when 
examining generalizability to a completely independent cohort. Likewise, overall performance 
was statistically similar across the more advanced classifiers.  

At same time, however, because the TAN classifier was readily able to incorporate prior 
probabilities from early-stage predictions into the later-stages, it provided high-confidence 
predictions for many more subjects than other classifiers. This may be a particularly 
advantageous feature of the TAN, given that prediction confidence will be an important factor for 
determining clinical utility. In the Oregon held-out test set (N=356), the high-confidence 
predictions from the TAN classifier resulted in an additional 40 high-confidence true negatives, 
21 high-confidence true positives, 7 high-confidence false positives, and 7 high-confidence false 
negatives, compared to other methods. In other words, an additional 17% of the sample was 
correctly classified with high confidence, with only a 4% increase in high-confidence 
misclassifications.  

Although overall accuracies were comparable across the more advanced classification 
methods, the Bayesian nature of the TAN classifier may align better with clinical decision-
making processes, increasing interpretability and potential clinical utility. The multi-stage TAN 
classifier demonstrated performance comparable to other advanced methods, generalized well, 
and provided evidence that a large majority of subjects can be classified accurately with only 
low-cost parent and teacher symptom reports, even with very difficult borderline cases in the 
sample. The addition of data from laboratory cognitive tests provided a benefit, in terms of 
prediction confidence, for only a small subset of cases. For instance, of the participants with 
low-confidence classifications based on parent and teacher measures alone, half (or 6% of the 
total test sample) benefited from further data from cognitive tests. This was largely consistent 
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with results from a smaller study of younger children (Öztekin et al. 2021). Identifying those 
subjects who will benefit from further assessment (of all kinds) should be a priority for future 
work. 

The posterior class probability is an intuitive way to judge the confidence of a 
classification. Here we used a class probability cutoff of 0.9 to define a “high-confidence” 
prediction, but there is no firm guidance and this criterion was ultimately arbitrary. The optimal 
threshold to use for a particular classifier and outcome is still an open question, and should be 
studied further with the potential costs of misclassification in mind.  

Another conclusion suggested by our findings is that a training data set representing the 
full spectrum of ADHD presentations, including subthreshold cases and non-ADHD subjects 
with other psychiatric conditions, may be important for reducing false-positive classifications. A 
full spectrum provides better granularity which might help better defined decision boundaries for 
the ADHD class. This finding should be confirmed with additional data, given that the impact of 
uncertain diagnoses may change as the size of training sets increase.  

The current study has a number of strengths, including: a larger sample size than most 
prior attempts at single case prediction in ADHD using machine learning, the inclusion of a 
completely independent validation cohort for independent generalizability (rare in this literature), 
the inclusion of difficult borderline diagnostic cases, a competitive modeling approach, and the 
examination of the relative importance of predictive measures in a multi-stage classification 
approach. Each of these provides a valuable contribution to the literature and in general, results 
are promising. 

Certain limitations do bear mention. First, despite the large samples used for training 
and evaluating the classifiers, and the availability of a generalizability cohort, substantial further 
work would be needed to evaluate generalizability and site-specific algorithms for clinical use. 
Second, the large amount of missing data among the cognitive measures, and the confound 
between diagnostic category and availability of these data, limited our ability to make strong 
conclusions about the utility of those measures. Finally, our reliance on a method (TAN) that 
required discretized measures could have resulted in loss of information, and therefore could 
have hurt performance—although our sensitivity analysis did not suggest this was the case. 
That symptom thresholds are typically used for diagnosis suggests that discretization of 
measures is appropriate (and possibly beneficial, due to removing redundant information) for 
the current application. The sensitivity analyses conducted, regarding missing data and 
discretization, lend confidence to our conclusions.  

In conclusion, the findings reported here point to the potential utility of machine learning 
to aid in fast, low-cost diagnosis of ADHD in children. Future research should focus on (1) 
further validation of classifiers in larger and more diverse samples, including investigating 
predictive ability across a wider age range, (2) identification of difficult-to-classify subjects and 
those who will benefit from additional, more costly assessment (including, e.g., genetic risk 
scores), and (3) evaluation of the cost/benefit of prediction confidence thresholds that could 
guide clinical deployment of advanced classification algorithms. 
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TABLES 
 
 Oregon-1000 Michigan-1000 
 Training Set Test Set  
Total N 1067 356 1057 
ADHD cases 543 (50.9%) 181 (50.8%) 458 (43.3%)* 
Controls 318 (29.8%) 104 (29.2%) 472 (44.7%)* 
Other 206 (19.3%) 71 (19.9%) 127 (12.0%)* 
% Males 60.1 62.4 56.5* 
Mean Age (SD) 9.4 (1.5) 9.4 (1.7) 12.5 (3.1)* 
% White / 
Caucasian 

79.9% 77.0% 72.5%* 

P-ADHDRS Int 62.3 (16.5) 61.3 (16) 55.0 (14.7)* 
P-ADHDRS Hyp 59.2 (15.9) 58.6 (15.9) 51.6 (12.9)* 
P-Conners Int 64.5 (16.4) 64.3 (15.8) 60.5 (14.8)* 
P-Conners Hyp 63.0 (17.3) 62.2 (16.9) 59.0 (15.4)* 
T-ADHDRS Int 51.8 (10.1) 52.1 (10.1) 48.8 (9.8)* 
T-ADHDRS Hyp 51.0 (9.3) 51.3 (9.8) 48.3 (8.2)* 

Table 1. Overview of samples used in the training and testing of the classifiers. ‡The percentage 
of subjects with any current diagnosis of anxiety, mood, or disruptive (ODD/CD) disorder. *P-
values <0.05 for statistical tests comparing the Michigan-1000 cohort to the entire Oregon-1000 
cohort. P-ADHDRS=parent ADHD Rating Scale, T-ADHDRS=teacher ADHD Rating Scale. 
 
 

Classifier 5-fold CV (SD) Test Set 
Test Set, High-
confidence* 

LR-unregularized 0.851 (0.011) 0.882 0.964 (N=223; 63%) 
DT-simple 0.840 (0.011) 0.860 0.936 (N=251; 71%) 
TAN-stage4 0.868 (0.014) 0.874 0.908 (N=326; 92%) 
TAN-earliest 0.869 (0.015) 0.860 0.870 (N=339; 95%) 
LR 0.859 (0.012) 0.876 0.971 (N=208; 58%) 
DT 0.870 (0.015) 0.882 0.953 (N=191; 54%) 
RF 0.884 (0.005) 0.910 0.969 (N=191; 54%) 
SVM 0.877 (0.009) 0.924 0.975 (N=237; 67%) 
GBDT 0.890 (0.004) 0.930 0.974 (N=229; 64%) 
Ensemble 0.875 (0.013) 0.899 0.968 (N=219; 62%) 

Table 2. Mean 5-fold cross-validation (CV) and test-set accuracies for the classifiers predicting 
best-estimate team diagnoses in the Oregon cohort. The classifiers included all discretized 
parent, teacher, and cognitive predictive features. The optimal hyperparameters used for each 
classifier are given in Supplemental Table S3. The test set is the Oregon 25% hold out sample 
(N=356). *Accuracies on the subset of the test set with high-confidence predictions (predicted 
class probability >0.9); the number of high-confidence predictions and the corresponding 
percentage of the test set are given in parentheses. SD=standard deviation, LR=logistic 
regression, DT=decision tree, TAN=tree-augmented naïve Bayes, RF=random forest, 
SVM=support vector machine, GBDT=gradient-boosted decision trees.  
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 Scheme A Scheme B Scheme C 
Full CV/Test Set* 5-fold CV Test 5-fold CV Test 5-fold CV Test 

Accuracy 0.868 0.874 0.866 0.854 0.857 0.851 
Sensitivity 0.912 0.917 0.900 0.900 0.959 0.939 
Specificity 0.823 0.829 0.818 0.805 0.750 0.760 

PPV5 0.213 0.220 0.206 0.194 0.168 0.171 
PPV50 0.837 0.843 0.832 0.820 0.793 0.796 

AUC-ROC 0.947 0.942 0.937 0.921 0.910 0.915 
High-confidence 
Predictions Only 

N=972 N=326 N=986 N=323 N=1017 N=336 

Accuracy 0.903 0.908 0.886 0.885 0.870 0.872 
Sensitivity 0.943 0.930 0.923 0.910 0.973 0.960 
Specificity 0.862 0.884 0.835 0.851 0.761 0.778 

PPV5 0.264 0.296 0.227 0.243 0.176 0.185 
PPV50 0.872 0.889 0.848 0.859 0.803 0.812 

AUC-ROC 0.959 0.950 0.949 0.934 0.913 0.918 
Table 3. Comparison of TAN classifier performance with three different training schemes. 
Training scheme A includes all training set subjects, with subthreshold and not-clean controls 
labeled as controls; Training scheme B re-labels subthreshold subjects as ADHD cases; and 
Training scheme C excludes subthreshold and not-clean control subjects from the training set 
(but they are retained in the test set). *CV performance measures are the average of measures 
across all 5-folds of the training set (average N=213). The full independent test set consists of 
N=356 subjects. Performance is also reported for only those subjects given a high-confidence 
(P ³ 0.9) prediction (N=326, 323, and 336 for the three training schemes, respectively). Bolded 
values are the highest among the three training schemes for the test set, while italicized values 
are the highest among the three training schemes for CV. PPVX=positive predictive value 
assuming X% prevalence of ADHD.  
 
 
Classifier Training Set 

(Oregon; N=1423) 
Test Set 
(Michigan; 
N=1057) 

Test Set (Michigan; 
High-confidence) 

LR-unregularized 0.878 0.779 0.895 (N=636; 60%) 
DT-simple 0.850 0.761 0.879 (N=725; 69%) 
TAN-stage4 0.877 0.792 0.820 (N=957; 91%) 
LR 0.874 0.785 0.906 (N=585; 55%) 
DT 0.878 0.770 0.917 (N=435; 41%) 
RF 0.940 0.807 0.932 (N=474; 45%) 
SVM 0.916 0.799 0.902 (N=673; 64%) 
GBDT 0.909 0.822 0.909 (N=635; 60%) 
Ensemble 0.919 0.807 0.916 (N=585; 55%) 

Table 4. Accuracy of the classifiers predicting best-estimate team diagnoses in the Michigan 
cohort. Also show (last column) are the accuracies for the subset of Michigan cohort subjects 
given high-confidence predictions (predicted class probability >0.9); the number of high-
confidence predictions and the corresponding percentage of the Michigan cohort are given in 
parentheses. The classifiers were trained on data from the entire Oregon cohort, using all 
available (discretized) parent, teacher, and cognitive predictive features.  
 

 . CC-BY-NC 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 30, 2021. ; https://doi.org/10.1101/2021.12.23.21268330doi: medRxiv preprint 

https://doi.org/10.1101/2021.12.23.21268330
http://creativecommons.org/licenses/by-nc/4.0/


FIGURES 
 

 
Figure 1. Schematic of the multi-stage classification approach. Each step in the process is a 
tree-augmented naïve Bayes (TAN) classifier. At each stage, a subject’s prior class probability 
is updated based on a subset of predictors, and a posterior class probability is produced. In (A), 
each subject is carried through all stages and the final prediction is based on all data. In (B), if a 
subject’s posterior probability is above a specified threshold (>0.9; i.e., high-confidence) at any 
Stage, the final prediction is made at that point and subsequent Stages are skipped. 
 
 

 
Figure 2. Predicted probability of an ADHD diagnosis (best-estimate team), at each stage of the 
TAN classifier for all participants in the Oregon test set. Most ADHD cases converge correctly 
towards a probability of ADHD of 1.0 across the 4 stages. Likewise, most controls converge 
correctly towards a probability of ADHD of 0. The majority of participants are predicted with high 
confidence (i.e., a predicted probability >0.9 or <0.1; dashed horizontal lines), by stage 3. Yet a 
small subset of participants had unstable predictions (large changes in predicted probability in 
subsequent stages)—these are significantly more likely to be “other” or subthreshold individuals 
(see Supplemental Materials). Stage 1 = parent ADHD Rating Scale, Stage 2 = parent Conners, 
Stage 3 = teacher ADHD Rating Scale, and Stage 4 = cognitive measures.  
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