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Abstract 

Immune checkpoints (ICPs) consist of paired receptor-ligand molecules that exert 

inhibitory or stimulatory effects on immune defense, surveillance, regulation, and self-tolerance. 

ICPs exist in both membrane and soluble forms in vivo and in vitro. Imbalances between 

inhibitory and stimulatory membrane-bound ICPs (mICPs) in malignant cells and immune cells 

in the tumor immune microenvironment (TIME) have been well documented. Blockades of 

inhibitory mICPs have emerged as an immense breakthrough in cancer therapeutics. However, 

the origin, structure, production regulation, and biological significance of soluble ICPs (sICPs) in 

health and disease largely remains elusive. Soluble ICPs can be generated through either 

alternative mRNA splicing and secretion or protease-mediated shedding from mICPs. Since 

sICPs are found in the bloodstream, they likely form a circulating immune regulatory system. In 

fact, there is increasing evidence that sICPs exhibit biological functions including (1) regulation 

of antibacterial immunity, (2) interaction with their mICP compartments to positively or 

negatively regulate immune responses, and (3) competition with their mICP compartments for 

binding to the ICP blocking antibodies, thereby reducing the efficacy of ICP blockade therapies. 

Here, we summarize current data of sICPs in cancer and infectious diseases. We particularly 

focus on sICPs in COVID-19 and HIV infection as they are the two ongoing global pandemics 

and have created the world's most serious public health challenges. A “storm” of sICPs occurs 

in the peripheral circulation of COVID-19 patients and is associated with the severity of COVID-

19. Similarly, sICPs are highly dysregulated in people living with HIV (PLHIV) and some sICPs 

remain dysregulated in PLHIV on antiretroviral therapy (ART), indicating these sICPs may serve 

as biomarkers of incomplete immune reconstitution in PLHIV on ART. We reveal that HIV 

infection in the setting of alcohol abuse exacerbates sICP dysregulation as PLHIV with heavy 

alcohol consumption have significantly elevated plasma levels of many sICPs. Thus, both 

stimulatory and inhibitory sICPs are present in the bloodstream of healthy people and their 

balance can be disrupted under pathophysiological conditions such as cancer, COVID-19, HIV 



infection, and alcohol abuse. There is an urgent need to study the role of sICPs in immune 

regulation in health and disease. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Introduction 

Immune checkpoints (ICPs) consist of paired receptor-ligand molecules that exert 

inhibitory or stimulatory effects on immune defense, surveillance, regulation, and self-tolerance1-

5. Under normal circumstances, ICPs regulate the breadth, magnitude, and duration of the 

immune responses against malignancy and infection while protecting tissues from excessive 

insult. However, in certain pathological situations such as cancer or persistent infection, the 

balance between ICP stimulatory and inhibitory signals becomes dysregulated1-7. Malignant 

cells can dysregulate the expression of ICPs on the surface of immune cells to evade or subvert 

the immune response, leading to insufficiency or failure of anti-tumor immune attacks. The up-

regulated expression of inhibitory ICPs, including CTLA-4, PD-1, TIM-3, and LAG-3 has been 

found on the surface of both CD4 and CD8 T cells in cancer patients6,8-10. These important 

findings have laid the foundation for the clinical development of ICP blockade therapies, which 

abrogate ICP inhibitory signals, restoring and enhancing the anti-tumor activity of cytotoxic T 

lymphocytes (CTLs)3,5,11,12. Since 2011, ICP blockers targeting CTLA-4, PD-1, and PD-L1 have 

yielded unprecedented responses in a portion of cancer patients, leading to seven FDA-

approved ICP blocking antibodies against these ICPs, including one anti-CTLA-4 antibody 

(Ipilimumab), three anti-PD-1 antibodies (Nivolumab, Pembrolizumab, and Cemiplimab), and 

three anti-PD-L1 antibodies (Avelumab, Durvalumab, and Atezolizumab), for treating several 

types of cancer such as melanoma and lung cancer5,13-15.  

Similar to malignant cells, several pathogens, including HIV (the human immunodeficiency 

virus), HBV (hepatitis B virus), TB (tuberculosis), and malaria have been demonstrated to 

dysregulate ICPs to limit host-protective CTLs6,7,16,17. For example, in antiretroviral therapy 

(ART)-naïve people living with HIV (PLHIV), there is upregulated expression of multiple 

inhibitory ICPs including CTLA-4, PD-1, TIM-3, and LAG-3 on total and HIV-specific CD4 and 

CD8 T cells6-8,17-21, which is associated with an accelerated decline in the number of CD4 T cells 

in PLHIV8,22. Following ART, expression of these ICPs on the surface of T cells declines, but 



remains elevated when compared with healthy controls8-10. Importantly, expression of inhibitory 

ICPs can be used as surrogate immunological biomarkers of ART effectiveness. In ART-treated 

PLHIV, PD-1 expression on CD8 T cells has been associated with impaired reconstitution of 

CD4 T cells and a shorter time to viral rebound after stopping ART23,24. In addition, CD4 T cells 

expressing high levels of PD-1, LAG-3, and TIGIT alone or in combination are enriched for 

integrated HIV DNA during ART25,26. Furthermore, most CD4 T cells expressing at least one of 

these ICPs, carry inducible and replication-competent HIV genomes25. Thus, CD4 T cells 

expressing inhibitory ICPs such as PD-1 and LAG-3 contribute to HIV persistence during ART. 

In vitro and ex vivo studies have shown that blocking antibodies against either PD-1, CTLA-4, 

LAG-3, or TIM-3 can significantly restore the proliferative capacities and functions of T cells and 

B cells from PLHIV on ART21. Currently, there are several clinical trials in PLHIV with and 

without cancer using the FDA-approved ICP blockers6,21,27-31. These clinical trials have yielded 

mixed results ranging from little therapeutic benefit to significant expansions of HIV-specific CD4 

and CD8 T cells in a subset of participants27-32, indicating ICP blockade for the treatment of HIV 

infection needs further study.  

ICP molecules exist in both membrane and soluble forms in vivo and in vitro33-44. Similar to 

membrane-bound ICPs (mICPs), soluble ICPs (sICPs) are also present in normal physiological 

conditions and highly dysregulated in patients with cancer, viral infections, or ALD (alcohol-

associated liver disease)33-45. Soluble ICPs can be generated through either alternative mRNA 

splicing and secretion or protease-mediated shedding from mICPs by actions of matrix 

metalloproteinases (MMPs)44,46. Although the detailed structure, production regulation, function, 

and clinical relevance of sICPs largely remain unknown, many sICPs exist in native forms that 

exhibit biological functions such as regulation of antibacterial immunity42,46. Since sICPs are 

paired receptor-ligand molecules and circulate in the bloodstream, they likely form a circulating 

immune regulatory system. In addition, increasing evidence has shown that sICPs interact with 

their mICP compartments to positively or negatively regulate immune responses43. Furthermore, 



sICPs can compete with their mICP compartments for binding to the ICP blocking antibodies, 

thereby interrupting the efficacy of ICP blockade therapies. Thus, there is an urgent need to 

study the role of sICPs in immune regulation in health and disease. Here, we summarize current 

data of sICPs in cancer and infectious diseases. We particularly focus on sICPs in COVID-19 

and HIV infection as they are the two ongoing global pandemics and have created the world's 

most serious public health and development challenges. 

 

Soluble immune checkpoints in the peripheral circulation of healthy people 

As described in our recent report45, we used a multiplex immunoassay (the Human 

Immuno-Oncology Checkpoint Protein Panel, MilliporeSigma, Burlington, MA) to simultaneously 

quantify plasma concentrations of 16 sICPs (sBTLA, sCD27, sCD28, sCD40, sCD80/B7-1, 

sCD86/B7-2, sCTLA-4, sGITR, sGITRL, sHVEM, sICOS, sLAG-3, sPD-1, sPD-L1, sTIM-3, and 

sTLR-2) in healthy blood donors. Plasma levels of two additional ICPs (sCD160 and sLIGHT) 

were quantified using the Human CD160 Matched ELISA Antibody Pair Set (Sino Biological, 

Beijing, China) and the Human LIGHT Duoset ELISA Kit (R&D Systems, Minneapolis, MN), 

respectively. We found that, except for sGITR and sLIGHT, which were only detected in 30-50% 

of plasma samples, all other 16 sICPs were steadily detected in plasma samples from all 

healthy blood donors (Table 1). These sICPs could be generated through either alternative 

mRNA splicing and secretion or protease-mediated shedding from mICPs by actions of 

MMPs44,46. Several studies have demonstrated that sICPs are present in the peripheral blood as 

the native polypeptide products of their genes and have biological functions. For example, 

CTLA-4, also known as CD152, is a member of the immunoglobulin (Ig) gene superfamily47. 

CTLA4 is constitutively expressed in regulatory T cells but can be upregulated in conventional T 

cells after activation47,48. CTLA-4 and CD28 are homologous receptors that share a pair of 

ligands (B7-1 and B7-2) expressed on the surface of antigen-presenting cells (APCs), but 

mediate opposing functions in T-cell activation48. CTLA-4 interacts with its ligands to inhibit T-



cell responses48, while CD28 acts as a major co-stimulatory receptor in promoting full activation 

of T cells in response to T cell receptor (TCR) engagement49. As shown in Table 1, plasma 

levels of sCTLA-4 in healthy individuals were detected at a median concentration of 31 pg/mL 

with the interquartile ranges of 12 – 81 pg/mL (n=39), which are higher than the detection limit 

(9.3 pg/mL) of the multiplex immunoassay. These results argue against a previous report 

showing that circulating CTLA-4 was undetectable in healthy volunteers using an enzyme 

immunoassay (EIA)44. This is because the EIA has limited detection sensitivity (≥ 4 ng/mL)44, 

which is insufficiently sensitive for the detection of sCTLA-4 concentrations in healthy people. 

Immunoprecipitation and Western blotting analyses of serum sCTLA-4 revealed a polypeptide 

consistent with the predicted size (23 kDa) from an alternative transcript of the CTLA-4 gene, 

suggesting sCTLA-4 is present as a native molecule rather than a product of proteolytic 

digestion or shedding of mCTLA-444. Functional studies have shown that sCTLA-4 

immunoreactivity can be blocked by B7.1 (also known as CD80), one of its known ligands. This 

supports the notion that sCTLA-4 is present as a soluble functional molecule. Thus, sCTLA-4 

likely has important immunoregulatory functions, which is similar to soluble cytokine receptors 

such as soluble forms of TNF receptor, IL-2α receptor, IL-4 receptor, and IL-7 receptor that exist 

in the biological fluids and regulate cytokine activity in vitro and in vivo50-55. 

In contrast to sCTLA-4, several sICPs including sHVEM (also known as TNFRSF14 or 

CD270), sCD160, sLAG-3, and sTIM-3 were present at high concentrations (Table 1) in healthy 

people. These are potent inhibitory ICPs. HVEM was initially identified as the receptor of herpes 

simplex virus 1 (HSV-1) through binding to the HSV-1 glycoprotein D (gD)56. Since then, HVEM 

has been identified as a co-signaling molecular switch through interacting with BTLA (also 

known as CD272), CD160, and LIGHT57. In addition, HVEM can bind to SALM5 (synaptic 

adhesion-like molecule 5) to regulate neuroinflammation58. We have recently reported that 

recombinant sHVEM affects TNF-α and IFN-γ production by anti-CD3/anti-CD28-stimulated T 

cells from healthy volunteers45, indicating sHVEM may act as a circulating immune regulator. 



Like sCTLA-4 and sHVEM, other sICPs such as sLAG-3, sTIM-3, sPD-1, and sPD-L1 are 

biologically active and participate in immune regulation39,59-61. Thus, the majority (if not all) of 

ICPs have soluble forms that are detectable in the peripheral blood of healthy individuals. 

Different sICPs are likely produced at different levels and at distinct checkpoints to fine-tune 

immune homeostasis in health, although their origin, production regulation, and biological 

function are yet to be discovered. Of note, these data related to plasma sICPs were obtained 

from adults with a median age of 42 years (26-52) and 64% were from males45. Future study is 

needed to investigate whether sICP levels and functions in healthy people are affected by age, 

gender, and race.  

 

Soluble immune checkpoints in cancer 

ICPs act as gatekeepers for immune responses and play a central role in immune 

homeostasis that is maintained by a precise balance between stimulatory and inhibitory ICPs on 

the surface of effector and regulatory immune cells. The immune homeostasis is a tightly 

regulated network which fails during tumor development due to an imbalance between inhibitory 

and stimulatory ICPs. Indeed, high levels of inhibitory ICPs on the surface of tumor cells is a 

hallmark of the tumor immune microenvironment (TIME) that is infiltrated with many types of 

innate and adaptive immune cells62. Increased inhibitory ICPs are responsible for tumor immune 

escape and thereby have become major targets for cancer immunotherapy5,13-15.  

While mICPs have been extensively studied in cancer immunity and cancer 

immunotherapy, the origin, production regulation, and biological significance of sICPs largely 

remains elusive. Due to their function in both positive and negative immune regulation, sICPs 

and their levels change in the peripheral blood, which may affect the development, prognosis, 

and treatment of cancer. Studies have shown that plasma or serum levels of sICPs can serve 

as biomarkers and/or predictors of cancer patient outcomes or therapeutic responses43,63. 

Plasma or serum levels of numerous sICPs including sPD-L1, sPD-1, sLAG-3, sTIM-3, sCTLA-



4, sHVEM, sCD80, sCD86, sCD27, sCD40, and sBTLA are highly elevated in patients with 

various types of tumors and serve as prognostic markers for solid tumors such as non-small cell 

lung cancer, gastric cancer, colon cancer, and cervical cancer42,60,64-67. Soluble ICPs are also 

biologically active in cancer patients. Studies have revealed that plasma/serum levels of 

sCD40L are highly elevated in patients with lung cancer and undifferentiated nasopharyngeal 

carcinoma68,69. The elevated sCD40L in cancer patients is likely derived from activated platelets 

rather than T cells, because cancer patients have significant platelet activation, but inadequate 

T-cell activation70-72. A functional study has shown that the upregulated sCD40L seen in cancer 

patients exerts an immunosuppressive effect through enhancement of MDSC (myeloid-derived 

suppressor cell)-mediated suppression of T cell proliferation and IFN-γ production, expansion of 

regulatory T cells (Treg), and enrichment of PD-1+ T cells73. On the other hand, sPD-1 is likely 

generated through mRNA splicing and secretion, as four PD-1 splice variants have been 

identified74. In vitro and in vivo studies have shown sPD-1 is able to bind its membrane-bound 

ligands (mPD-L1 and mPD-L2) to block mPD-1/mPD-L1/mPD-L2 interaction, thereby restoring T 

cell immunity60. Indeed, local delivery of sPD-1 in the tumor microenvironment through adeno-

associated virus-mediated delivery vector induces antitumor immunity through improving T cell 

function75,76. The origin, production regulation, function, and biological significance of sICPs in 

tumors have been systematically reviewed43,60,77,78. Collectively, the levels of sICPs in the 

peripheral circulation in cancer patient are frequently altered, which likely has clinical 

significances. That said, a better understanding of the underlying mechanisms of the sICP 

network could lay the foundation for the development of new strategies for treating cancers with 

immunotherapies. 

 

Soluble immune checkpoints in patients with COVID-19 

Two recent studies, reported by Kong Y et al. (2020) and Avendano-Ortiz J et al. (2021), 

have demonstrated that a “storm” of sICPs occurs in COVID-19 patients and is associated with 



the severity of COVID-1979,80. The Kong study quantified 14 sICPs including sBTLA, sCTLA-4, 

sGITR, sHVEM, sIDO, sLAG-3, sPD-1, sPD-L1, sPD-L2, sTIM-3, sCD27, sCD28, sCD80, and 

s4-1BB in the serum samples from patients with asymptomatic, mild/moderate, and 

severe/critical COVID-19 using the ProcartaPlex Human ImmunoOncology Checkpoint Panel 

(Invitrogen, Carlsbad, CA)79, while the Avendano-Ortiz study quantified 9 sICPs including 

sCD25, sCD86, sCTLA-4, Galectin-9, sLAG-3, sPD-1, sPD-L1, sTim-3, and s4-1BB using the 

LEGENDplex HU Immune Checkpoint Panel 1 (BioLegend, San Diego, CA)80. After merging the 

overlapping 6 sICPs that were detected in both studies, a total of 17 sICPs including sBTLA, 

sCTLA-4, sGalectin-9, sGITR, sHVEM, sIDO, sLAG-3, sPD-1, sPD-L1, sPD-L2, sTIM-3, sCD25, 

sCD27, sCD28, sCD80, sCD86, and s4-1BB were studied in the serum or plasma samples from 

COVID-19 patients79,80. The Kong study showed that, except for sPD-L2, each of the other 13 

sICPs was significantly higher in the severe/critical group than in the mild/moderate and 

asymptomatic groups79. On the other hand, the Avendano-Ortiz study showed that plasma 

levels of sCD25, sCD86, Galectin-9, sPD-1, sPD-L1, and sTim-3, but not sLAG-3, sCTLA-4, and 

s4-1BB, were significantly higher in the severe/critical group than in the mild/moderate groups80. 

Therefore, both studies demonstrated that the serum or plasma levels of sPD-1, sPD-L1, and 

sTIM-3 were significantly higher in the severe/critical group than in the mild/moderate and 

asymptomatic groups, but their data conflicted regarding the serum or plasma levels of sLAG-3, 

sCTLA-4, and s4-1BB between healthy controls and COVID-19 patients80. The Kong study also 

showed that serum levels of 11 sICPs (sGITR, s4-1BB, sTIM-3, sCD27, sLAG-3, sPD-1, sCD28, 

sCTLA-4, sBTLA, sHVEM, and sCD80) were persistently higher in severe/critical patients than 

in mild/moderate cases during hospitalization. In addition, the levels of 8 sICPs (sIDO, sGITR, 

s4-1BB, sTIM-3, sCD27, sLAG-3, sPD-1, and sCD28) were negatively correlated with absolute 

counts of CD4 and CD8 T cells. The Avendano-Ortiz study also demonstrated that plasma 

levels of sCD25, sTIM-3, Galectin-9, and sPD-L1, but not sCD86, showed a negative correlation 

with the absolute lymphocyte count (ALC). These results suggest that sICPs are dysregulated in 



COVID-19 and sICP dysregulation may be linked to COVID-19 lymphopenia, an abnormal 

reduction in lymphocyte numbers. Lymphopenia is a prominent clinical feature of COVID-19 

patients and has been associated with the severity of COVID-1981-86. Indeed, non-survivors of 

COVID-19 have a significantly lower lymphocyte count than survivors82,87. The absolute cell 

counts of lymphoid lineage cells, including T cells, B cells, and NK cells, are abnormally reduced 

with a more pronounced decrease in CD8 T cells88-90. In contrast, myeloid lineage cells such as 

neutrophils are highly increased in the blood of patients with severe COVID-1983, which is noted 

as a major clinical feature of severe COVID-1991. The mechanisms of COVID-19 lymphopenia 

remain unclear, although several hypotheses are proposed including a cytokine storm impact92-

94, direct infection of immune cells95, overaggressive T cell responses96, and lymphocyte 

infiltration and sequestration in the lungs87. However, these hypotheses have been challenged, 

because (1) most COVID-19 patients do not have remarkably high levels of inflammatory 

cytokines, as only 4% of critically ill COVID-19 patients develop cytokine storm symptom (CSS) 

and anti-CSS medications have no benefit for most COVID-19 patients83,97-101, (2) direct viral 

infection is an unlikely cause of immune cell loss102, as infectious SARS-CoV-2 has not been 

successfully isolated from peripheral blood cells in COVID-19 patients94, (3) the overall 

magnitude of the T cell response in COVID-19 patients is either insufficient or excessive 

remains debated96, as T cell responses are insufficient in some COVID-19 patients, but 

excessive in others96, and (4) post-mortem biopsies from COVID-19 patients with marked 

lymphopenia reveal prominent infiltration of neutrophils, but neither T cells nor B cells, in the 

lungs103-106. Thus, studies are urgently needed to determine the cause and impact of the 

commonly observed lymphopenia in patients with severe COVID-19, and whether dysregulated 

sICPs are associated with the pathogenesis of COVID-19 lymphopenia. 

We also used a multiplex immunoassay (the Human Immuno-Oncology Checkpoint 

Protein Panel, MilliporeSigma, Burlington, MA) to simultaneously quantify the concentrations of 

16 sICPs in plasma samples from healthy controls (n=23) and patients with asymptomatic 



(n=15) or hospitalized (severe/critical) COVID-19 (n=24). Among these 16 sICPs, 4 (sCD40, 

sGITRL, sICOS, and sTLR-2) were not previously studied in COVID-19 patients, while 12 were 

already tested in the two studies by Kong and Avendano-Ortiz et al. In our studies, the healthy 

control subjects were matched with the COVID-19 patients in terms of age, sex, and race. We 

found that plasma levels of the majority of 16 sICPs were significantly higher in COVID-19 

patients when compared with healthy controls (data not shown). The 4 sICPs (sCD40, sGITRL, 

sICOS, and sTLR-2) that had not previously been studied in COVID-19 were significantly higher 

in the plasma from patients with asymptomatic or severe/critical COVID-19 when compared with 

healthy controls (Fig. 1A). Plasma levels of sGITRL, sICOS, and sTLR-2, but not sCD40 were 

further elevated in severe/critical COVID-19 patients than in asymptomatic cases (Fig. 1A). We 

also found that sCTLA-4 and sLAG-3, 2 sICPs that were studied by Kong and Avendano-Ortiz 

et al. with conflicting results, were elevated in plasma from patients with severe/critical COVID-

19 when compared with healthy controls (Fig. 1B), which is in agreement with Kong’s results.  

Taken together, a storm of sICPs occurs in the peripheral circulation of COVID-19 patients 

and is associated with the disease severity. The circulating sICP levels on admission appear to 

be better mortality predictors than inflammatory cytokines and chemokines80, and thereby can 

potentially serve as biomarkers of COVID-19 progress and outcome. Given that some, if not all, 

sICPs are biological active, they may also serve as circulating immune regulators or 

pharmaceutical targets for COVID-19 therapy. To this end, mechanistic studies and large-scale, 

cross-sectional and longitudinal studies are needed to investigate the origin, production 

regulation, and clinical significance of sICPs in patients with COVID-19. 

 

Soluble immune checkpoints in people living with HIV (PLHIV) 

Chronic immune activation and exhaustion are important features of persistent viral 

infections such as infection with HIV. Indeed, immune exhaustion represents a barrier to 

effective and specific immunity against HIV infection. Chronic immune activation and exhaustion 



are at least in part attributed to the dysregulation of ICPs. In addition to mICPs that have been 

demonstrated to play a critical role in immune homeostasis in PLHIV, sICPs may also be 

dysregulated in PLHIV and thereby contribute to immune exhaustion in PLHIV. A recent study 

used ELISA to quantify plasma levels of sPD-L1 in PLHIV and healthy controls and found that 

plasma levels of sPD-L1 were significantly elevated in PLHIV and remained high despite control 

of HIV infection by ART107. In addition, PLHIV on ART with virological failure had the highest 

plasma levels of sPD-L1107. Thus, sPD-L1 in the peripheral blood represents a potential 

biomarker of immune exhaustion and virological failure in PLHIV. 

Here, we simultaneously quantified plasma levels of 16 sICPs from 23 healthy controls, 46 

PLHIV who were ART-naïve, and 65 PLHIV who were on ART using a multiplex immunoassay 

as detailed above. These three groups of study subjects were matched in terms of demographic 

parameters including age, gender, and race. As shown in Fig. 2, except GITR which was only 

detected in 34.8% (8/23) of healthy controls, each of the other 15 sICPs was detectable in the 

plasma samples from healthy controls, indicating that they could play biological roles in immune 

homeostasis under physiologic conditions. Compared to healthy controls, ART-naïve PLHIV had 

significantly higher plasma levels of the 15 sICPs tested. Specifically, only sTIM-3 was not 

elevated in ART-naïve PLHIV. In comparison to healthy controls, PLHIV on ART only had higher 

plasma levels of 3 sICPs (sCD40, sCTLA-4, and sHVEM) (Fig. 2). These findings appear to 

indicate that ART effectively, but not completely, restores ICP homeostasis. Among these 3 

sICPs that remained at higher levels in the peripheral blood of PLHIV on ART, sHVEM and 

sCD40 were not affected by ART, while sCTLA-4 was dramatically reduced, but did not return to 

a normal level (Fig. 2). Both CD40 (also known as TNFRSF5) and HVEM (also known as 

TNFRSF14) are members of the tumor necrosis factor receptor superfamily. CD40 is a co-

stimulatory molecule that is mainly expressed on the surface of APCs such as dendritic cells, 

monocytes/macrophages, and B cells. CD40 is required for APC activation via binding to CD154 

(also known as CD40 ligand or CD40L) on T cells. CD40-CD40L interaction leads to the 



initiation of bidirectional intracellular signaling in both CD40+ APCs and CD40L+ T cells, resulting 

in APC activation and T cell responses108-110. Dysregulation of CD40/CD40L expression and 

interactions contributes to the severity in numerous diseases such as HIV infection111-113, 

cancer108,114, and autoimmune disorders115-117. However, the role of sCD40 in the peripheral 

circulation of PLHIV largely remains elusive. We found that ART-naïve PLHIV had excessive 

production of sCD40, which was minimally affected by ART, suggesting that circulating sCD40 

may represent an indicator of dysregulation of APC and T cell function that is a hallmark of HIV-

associated deficiency in cell-mediated immunity. 

Similar to sCD40, sHVEM was also excessively produced in PLHIV and was barely 

affected by ART (Fig. 2). HVEM serves as a shared receptor/ligand for stimulatory and inhibitory 

ligands/receptors, including LIGHT, BTLA, and CD160 that are expressed on both 

hematopoietic and non-hematopoietic cells. HVEM acts as a bifunctional ligand/receptor that 

exhibits costimulatory signals upon binding to LIGHT and co-inhibitory signals upon binding to 

BTLA or CD160118,119. Due to its role of bifunctional ligand/receptor, HVEM serves as a 

molecular switch between stimulatory and inhibitory signaling120,121, thereby playing a unique 

role in immune homeostasis. We have recently reported that expressions of both sHVEM and 

mHVEM were highly dysregulated in heavy alcohol users with ALD, specifically alcoholic 

hepatitis (AH), when compared with heavy alcohol users without AH45. Plasma levels of 

upregulated sHVEM in AH patients remained high for 6 months of complete alcohol 

abstinence45, indicating sHVEM might serve as a prognostic marker for AH. We also found that 

sHVEM-his, consisting of the soluble extracellular domain of human mHVEM linked to a 

polyhistidine tag at the C-terminus, significantly inhibited TCR-induced TNF-α production by 

both CD4 T cells and CD8 T cells from AH patients and healthy controls45, indicating sHVEM 

plays an inhibitory role in HVEM axis-mediated TNF-α production. Currently, the regulation and 

function of sHVEM in HIV immunopathogenesis is not known. Thus, studies are needed to 



elucidate the mechanisms of action for the sHVEM axis and the interplay between sHVEM and 

mHVEM in HIV infection. 

 

Soluble immune checkpoints in heavy alcohol users with HIV infection 

Alcohol abuse and HIV infection are both major health issues worldwide. Globally, more 

than 2 billion people consume alcohol on a regular basis, and approximately 76 million suffer 

from alcohol-related disorders122,123. Long-term heavy alcohol users develop a spectrum of ALD, 

ranging from AH, fibrosis/cirrhosis, to hepatocellular carcinoma (HCC)124. Alcohol 

overconsumption contributes to 5.1% of the global burden of diseases and causes 

approximately 3.3 million deaths every year125,126. HIV is the causative agent of AIDS and has 

claimed over 36 million lives with an estimated 38 million PLHIV worldwide at the end of 

2020127. Alcohol overconsumption is common among PLHIV and adversely influences the 

health outcomes by increasing HIV-associated comorbidities such as liver disease, 

cardiovascular disease, pulmonary disease, bone disease, and cancer128-130. It is well known 

that alcohol overconsumption and HIV infection independently damage the gastrointestinal (GI) 

tract mucosal barrier, leading to a leaky gut that allows microbial translocation and accumulation 

of microbial components such as lipopolysaccharide (LPS) in the blood. Specifically, alcohol 

disrupts gap junction integrity of gut mucosal epithelial cells, leading to increased GI 

permeability and translocation of microbial components such as LPS from the GI tract into the 

blood and liver131-133. Alcohol-induced microbial translocation has been considered a major 

driver of chronic immune activation and inflammation in AH patients134-137. In PLHIV, microbial 

translocation is a cause of chronic immune activation and inflammation, which is a hallmark of 

progressive HIV infection and a stronger predictor of disease outcome compared to plasma viral 

load138,139. We therefore hypothesize that alcohol overconsumption and HIV infection 

exacerbate microbial translocation, immune dysregulation, and inflammation, thereby 

accelerating disease progression of HIV infection and ALD. To test this hypothesis, we 



established a cohort of heavy alcohol users with and without HIV infection. We analyzed and 

compared the profiles of sICPs in the peripheral blood in heavy drinkers without overt ALD 

(HDC) versus PLHIV on ART (HIV) versus PLHIV on ART who were heavy drinkers, but did not 

have ALD (HDC+HIV). We found that plasma levels of all 16 sICPs were similar between HDC 

and HIV groups (Table 2). Fourteen out of sixteen sICP examined were dramatically elevated in 

the peripheral blood in HDC+HIV when compared with either HDC or HIV (Table 2). sCD27 and 

sTIM-3 were not elevated in HDC+HIV compared with either HDC or HIV (Table 2). These 

results indicate that sICPs were highly dysregulated in HDC+HIV even though these individuals 

had no clinical evidence of overt ALD and their liver enzyme parameters including the circulating 

levels of AST and ALT and AST:ALT ratio were similar to healthy individuals (data not shown). 

Previous studies from our group and others have demonstrated that chronic excessive drinking 

leads to immune abnormalities in heavy drinkers even when there are no obvious signs of 

clinical liver disease137,140-142. HDCs have increased bacterial translocation as they have higher 

serum levels of LPS and markers of monocyte/macrophage activation (sCD14 and sCD163) 

than non-excessive drinkers141. In addition, mucosal-associated invariant T (MAIT) cells in the 

peripheral blood are significantly decreased in HDCs compared to healthy controls142. Moreover, 

HDCs have increased levels of MAIT activation-associated cytokines such as IL-18 and IL-12142. 

MAIT cells are innate-like lymphocytes that are highly enriched in liver, mucosa, and peripheral 

blood, and play a protective role in antimicrobial immunity143,144. These results highlight the 

presence of immune dysregulation in HDCs. HIV infection and alcohol abuse dramatically 

exacerbate immune abnormalities such as sICP dysregulation. Future study is needed to 

investigate the mechanisms underlying exacerbated sICP dysregulation in heavy drinkers with 

HIV infection. 

 

Conclusion 



ICP molecules exist in both membrane and soluble forms in vivo and in vitro. Imbalance 

between inhibitory and stimulatory mICPs in malignant cells and immune cells in tumor 

microenvironment has been well documented and blockade of inhibitory mICPs has emerged as 

an immense breakthrough in cancer therapeutics. While mICPs have been extensively studied, 

their soluble compartments have not been adequately studied. sICPs can be generated through 

either alternative mRNA splicing and secretion or protease-mediated shedding from mICPs. 

However, the cellular resource, structure, production regulation, and biological significance of 

sICPs in health and disease largely remain elusive.  Here, we summarize current data of sICPs 

in cancer and infectious diseases. A storm of sICPs occurs in the peripheral circulation of 

COVID-19 patients and is associated with the severity of COVID-19. Similarly, sICPs are highly 

dysregulated in PLHIV and some sICPs remain dysregulated in PLHIV on ART, indicating these 

sICPs may serve as biomarkers of incomplete immune reconstitution for PLHIV on ART. 

Strikingly, HIV infection and alcohol abuse dramatically exacerbate sICP dysregulation. Thus, 

both stimulatory and inhibitory sICPs are present in the bloodstream of healthy people and their 

balance can be disrupted under pathophysiological conditions such as cancer, COVID-19, HIV 

infection, and alcohol abuse. Further studies are needed to investigate whether sICPs act as 

critical circulating immune regulators in health and disease. 
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Table 1. Plasma levels of sICPs in healthy adults 
Stimulatory 
ICPs 

Healthy adults 
(n=34-39) 

Sensitivity 
(pg/mL) 

Inhibitory 
ICPs 

Healthy adults 
(n=34-39) 

Sensitivity 
(pg/mL) 

CD27 881 
(603-1,180) 

24.1 BTLA 370 
(139-668) 

43.8 

CD28 108 
(496-2,106) 

84.5 CD160 5,590 
(3,801-10,605) 

93.8 

CD40 285 
(148-385) 

  4.3 CTLA-4 31 
(12-81) 

9.3 

CD80 21 
(13-31) 

11.2 HVEM 1,197 
(885-1,651) 

0.8 

CD86 718 
(457-1,228) 

86.1 LAG-3 3,459 
(2,120-4,852) 

66.0 

GITR 16 
(6-48) 

18.8 PD-1 361 
(219-744) 

13.7 

GITRL 169 
(81-427) 

20.5 PD-L1 19 
(10-41) 

1.3 

ICOS 370 
(139-668) 

55.6 TIM-3 1,228 
(1,021-1,875) 

1.5 

LIGHT 240 
(39-1,274) 

62.5 

TLR-2 466 
(286-935) 

24.1 

 

Note: Data are represented as median and (interquartile ranges) in pg/mL. Characteristics of 

study subjects were described in our previous report45. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 2. Plasma levels of sICPs in heavy alcohol users with HIV infection 
sICP HDC (n=26) HIV (n=28) HDC+HIV (n=21) P value 

sBTLA 2,89 (126-533) 336 (203-453) 650 (407-948) nsP1, ***P2, **P3 

sCD27 1,375 (746-1,855) 1,701 (697-3,244) 1,727 (805-4,214) nsP1, nsP2, nsP3 

sCD28 1,201 (341-2,481) 1,254 (665-1,979) 3,043 (1,796-5,934) nsP1, **P2, **P3 

sTIM-3 1,789 (1,240-2,526) 2,023 (1,084-2,348) 2,715 (1,529-3,339) nsP1, nsP2, nsP3 

sHVEM 1,809 (762-2,385) 2,208 (1,980-2,808) 3,723 (2,459-5,148) nsP1, ***P2, *P3 

sCD40 589 (158 – 706) 643 (439-815) 1,207 (909-1,519) nsP1, ***P2, ***P3 

sLAG-3 3,138 (1,136-5,776) 3,932 (1,688-5,632) 7,282 (4,232-8,709) nsP1, **P2, **P3 

sTLR-2 579 (44-165) 788 (554-1,027) 1,437 (1,067-1,739) nsP1, ***P2, ***P3 

sGITRL 123 (140-905) 120 (85-178) 245 (163-345) nsP1, ***P2, ***P3 

sPD-1 647 (201-980) 675 (467-1,148) 1,962 (1,206-2,290) nsP1, ***P2, ***P3 

sCTLA-4 78 (16-124) 56 (19-99) 250 (142-386) nsP1, ***P2, ***P3 

sCD80 30 (17-45) 34 (18-45) 51 (28-77) nsP1, **P2, *P3 

sCD86 870 (222-1,619) 912 (673-1,585) 2,521 (1,355-3,747) nsP1, ***P2, **P3 

sPD-L1 30 (10-51) 29 (20-48) 65 (46-90) nsP1, ***P2, ***P3 

sGITR 86 (0-291) 21 (0-137) 696 (332-935) nsP1, ***P2, ***P3 

sICOS 166 (52-296) 205 (134-269) 340 (242-450) nsP1, ***P2, ***P3 

Note: Data are represented as median (interquartile range). Kruskal-Wallis test with Dunn’s 

corrections was used to calculate differences among 3 groups of HDCs, HIV, and HDC+HIV. 

HDCs, heavy alcohol drinkers without overt liver disease; HIV, people living with HIV (PLHIV) on 

antiviral therapy (ART); HDC+HIV, HDCs with HIV infection on ART, but without overt liver 

disease. P1, statistical analysis between HDC and HIV; P2, statistical analysis between HDC 

and HDV+HIV; P3, statistical analysis between HIV and HDC+HIV. nsP, no significant; *P<0.05; 

**P<0.01; ***P<0.001. Detailed definitions of HDC and the inclusion and exclusion criteria were 

previously described137,145. 

 



 
 
Figure 1. Plasma levels of sICPs were highly elevated in COVID-19. A) Scatter plots 

demonstrating the plasma levels of 4 sICPs that were not previously studied in COVID-19. B) 

Scatter plots demonstrating the plasma levels of 2 sICPs in COVID-19 that were previously 

reported with different results. Kruskal-Wallis test with Dunn’s corrections for pairwise 

comparisons among hospitalized (severe/critical) COVID-19 patients (Hosp), SARS-CoV-2-

infected individuals without symptoms (Asym), and healthy controls (HCs). Red lines represent 

the mean and the standard error of the mean. ns, no significant; *p<0.05; **p<0.01; ***p<0.001. 

 
 
 
 
 

 



 
 
Figure 2. Plasma levels of sICPs were highly dysregulated in PLHIV. Scatter plots 

demonstrating the plasma levels of sICPs in HCs (healthy controls), ART-naïve PLHIV, and 

PLHIV on ART. Kruskal-Wallis test with Dunn’s corrections for pairwise comparisons among 

PLHIV on ART, ART-naïve PLHIV, and HCs. Red lines represent the mean and the standard 

error of the mean. ns, no significant; *p<0.05; **p<0.01; ***p<0.001. Abbreviations: HC, healthy 

control; ART-, people living with HIV (PLHIV) who were not treated with antiretroviral therapy 

(ART); and ART+, people living with HIV (PLHIV) who were treated with antiretroviral therapy 

(ART). 


