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Abstract 
Understanding who is at risk of progression to severe COVID-19 is key to effective 

treatment. We studied correlates of disease severity in the COMET-ICE clinical trial that 

randomized 1:1 to placebo or to sotrovimab, a monoclonal antibody for the treatment of 

SARS-CoV-2 infection. Several laboratory parameters identified study participants at 

greater risk of severe disease, including a high neutrophil-lymphocyte ratio (NLR), a 

negative SARS-CoV-2 serologic test and whole blood transcriptome profiles. Sotrovimab 

treatment in these groups was associated with normalization of NLR and the 

transcriptomic profile, and with a decrease of viral RNA in nasopharyngeal samples. 

Transcriptomics provided the most sensitive detection of participants who would go on to 

be hospitalized or die. To facilitate timely measurement, we identified a 10-gene signature 

with similar predictive accuracy. In summary, we identified markers of risk for disease 

progression and demonstrated that normalization of these parameters occurs with 

antibody treatment of established infection. 

 

Introduction 

Sotrovimab is a human monoclonal antibody (mAb) derived from an antibody isolated 

from a person recovered from SARS-CoV infection. This mAb broadly neutralizes SARS-

CoV-2, SARS-CoV and other related animal sarbecoviruses1-3. Sotrovimab targets a 

highly conserved epitope in the SARS-CoV-2 Spike protein located in a site outside the 

receptor-binding motif (RBM), thus retaining in vitro activity against current SARS-CoV-2 

variants of concern (VOC) (Alpha, Beta, Gamma, Delta, Omicron) and variants of interest 

(VOI)4,5. The majority of mAbs developed for COVID-19 bind to the RBM, which engages 

the angiotensin-converting enzyme 2 (ACE2) receptor. The RBM is one of the most 
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mutable and immunogenic regions of the virus6. As a result, RBM antibodies as single 

agents and even when used in combination have not retained activity against some 

VOC/VOI7-10, particularly against Omicron VOC 5,11,12. 

 

Sotrovimab was recently tested in a multicenter, double-blind, phase 3 clinical trial 

(COMET-ICE, ClinicalTrials.gov NCT04545060) that recruited non-hospitalized 

participants with symptomatic COVID-19, and at least one known risk factor (age and/or 

comorbidities) for severe disease progression. Participants were randomized to a single 

intravenous infusion of sotrovimab 500 mg or placebo. In the interim analysis of the trial, 

sotrovimab significantly reduced the risk of all-cause hospitalization (>24 hours) or death 

from COVID-191. The final data, now presented in preprint2, shows that among 1057 

participants randomized (sotrovimab, 528; placebo, 529), all-cause hospitalization longer 

than 24 hours or death was significantly reduced with sotrovimab (6/528 [1%]) vs placebo 

(30/529 [6%]) by 79% (95% CI, 50% to 91%; p<0.001). 

 

While the impact of sotrovimab was profound, the relatively low rate of hospitalization or 

death amongst participants considered at risk for poor disease outcomes in the placebo 

arm led us to investigate if additional biomarkers or biomarker profiles beyond the known 

demographic and comorbid conditions could be identified. The setting of a randomized, 

controlled clinical trial presented a unique opportunity to identify signals of disease 

progression that resolved in response to treatment and could thus be used both to provide 

insights into COVID-19 pathogenesis, and as potential surrogate endpoints in the design 

of future trials. Thus, the present study aimed at identifying baseline correlates of 
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hospitalization and severe disease/death in an at-risk population based on routine 

laboratory parameters, SARS-CoV-2 serology and on transcriptome analysis. It then 

sought to assess the impact of antibody treatment on these parameters. This approach 

enabled assessment of the impact of antibody treatment on populations with different 

intrinsic risks of disease progression, and the identification and testing of surrogates of 

treatment response.  

 

Results 

Identification of study participants at high risk of progression of COVID-19 using 

clinical laboratory values. COMET-ICE2 included 1057 adults with a positive local 

polymerase-chain-reaction or antigen SARS-CoV-2 test result and onset of symptoms 

within the prior 5 days (Table 1). We analyzed 63 available central laboratory parameters 

for their association to hospitalization or death (Suppl. File 1). On Day 1, pre-dose, white 

blood cell proportions were most predictive of eventual hospitalization or death (Table 2). 

White blood cell proportions were also quantified by the neutrophil to lymphocyte ratio 

(NLR; area under a receiver operating characteristic curve, AUC=0.81). We found that an 

NLR greater or equal 6 provided an optimal cutoff for the highest enrichment for disease 

progression and is hereafter defined as ‘high NLR’ (Suppl. Fig. S1). Of the 36 

hospitalizations or deaths that occurred in the COMET-ICE study, 29 of these were 

observed among the 903 participants with available NLR at Day 1, the day of dosing. NLR 

had a sensitivity of 45% [28%-63%] and a specificity of 95% [93%-96%] for the prediction 

of all-cause hospitalization or death (Fisher’s exact p<0.001). NLR normalized more 

rapidly in participants receiving sotrovimab (Figure 1). 
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The role of SARS-CoV-2 serostatus in defining risk of progression of COVID-19. 

Having SARS-CoV-2 anti-nucleocapsid antibodies provides protection against SARS-

CoV-2 re-infection13. There is more limited information, however, on how serostatus may 

associate with severity of disease during acute infection. In the current study, 

seropositivity at baseline may indicate prior infection by SARS-CoV-2 or that a participant 

is already seroconverting during an acute infection episode. Seropositivity rates varied 

significantly by race/ethnicity, Table 3. Seropositivity was also associated with lower viral 

RNA in nasopharyngeal swabs at baseline: mean 4.2 vs 6.4 log10 viral RNA in 

seropositive versus seronegative participants (Mann-Whitney U p=1e-36); Table 3. Of 

the participants who received placebo and the serology results were available, 4/97 (4%) 

of seropositive participants progressed to hospitalization and/or death compared with 

25/375 (7%) of the seronegative who progressed to hospitalization and/or death before 

Day 29. In participants who received placebo, there were no deaths or ICU admissions in 

those who were seropositive at baseline compared to 4 deaths (2 deaths before Day 29 

and 2 additional deaths that occurred after Day 29) and 9 ICU admissions (2.4%) in those 

who were seronegative at baseline. 

 

 Of the 202 seropositive participants at baseline, 6 (3%) were hospitalized or died: 4/96 

(4.2%) received placebo and 2/106 (1.9%) received sotrovimab. Notably, as the COMET-

ICE study captured all-cause hospitalizations or death, all 4 seropositive participants in 

the placebo arm were hospitalized with COVID-19 diagnoses, while the two seropositive 

participants in the sotrovimab arm were hospitalized with events potentially unrelated to 
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COVID-19 (one instance of diabetic foot, and one instance of non-small cell lung cancer). 

No sotrovimab-treated participants died or were admitted to the ICU.  

 

Identification of high-risk cluster using transcriptomics. We used whole blood 

transcriptomics to define additional laboratory-based predictors of disease progression 

and response to treatment. In theory, such transcriptome signatures could provide 

complementary insight into the biology of risk and recovery. The sub-study included 

samples collected prior to treatment on Day 1 and at Day 8 from 303 patients. Among 

these 303 patients, 6/152 (3.9%) participants were hospitalized in the placebo group and 

2/151 (1.3%) participants were hospitalized in the sotrovimab group.  

 

We visualized the transcriptomes of each patient using Uniform Manifold Approximation 

and Projection (UMAP). We noted that from Day 1 to Day 8, the distribution of all 

transcriptome profiles tended to shift towards higher values of UMAP component 2 

(Figure 2a). We defined a putative risk cluster based on the differences in the distributions 

of Day 1 and Day 8 samples in the UMAP (see Methods). The described risk cluster 

includes Day 1 and Day 8 transcriptomics profiles for 6 of 8 hospitalized participants 

(Figure 2b). Participants in the high-risk cluster were significantly older, white, with a 

higher NLR, and higher viral RNA levels in nasopharyngeal samples (Suppl. Table S1). 

The cluster analysis also highlighted that baseline seropositive participants were less 

likely to be associated with the high-risk transcriptome cluster on Day 1 and no 

seropositive patient remained in the high-risk cluster by Day 8 (Figure 2c).  
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The two hospitalized participants mis-identified by the baseline transcriptome analysis 

were in the sotrovimab arm. One of the two participants had undetectable viral RNA in 

nasopharyngeal swabs at enrollment, and through 8 days post-enrollment when blood 

was drawn for the transcriptome analysis. This patient was then hospitalized by Day 21 

with elevated viral load, suggestive of a unique clinical course. The second misidentified 

patient treated with sotrovimab was hospitalized due to a small intestinal obstruction 

deemed unrelated to COVID-19. Therefore, we found support for the hypothesis that the 

area outlined in red in Figure 2 corresponded to an UMAP-defined high-risk cluster for 

COVID-19 progression where protective responses had failed to engage appropriately 

between Day 1 and Day 8. Although statistical power was limited due to only 8 

hospitalizations in the transcriptomic sub-study, the transcriptome high risk group 

demonstrated a strong association to all-cause hospitalization and death (Fisher’s exact 

p=0.004) with a sensitivity of 75% [41%-94%] and a specificity of 76% [71%-80%]. 

 

Response to treatment identified by transcriptomics. Given the effect of sotrovimab 

demonstrated in COMET-ICE, we determined whether treatment altered the probability 

of remaining in the transcriptome-defined high-risk cluster. To perform this analysis, we 

compared the rate of exiting the high-risk cluster for participants receiving sotrovimab 

versus placebo (Figure 2d). Among those who were high risk on Day 1, on Day 8, 29% 

of placebo-treated (n=11, including the hospitalized participants) versus 10% of 

sotrovimab-treated participants (n=4) remained high risk as defined by the transcriptome 

analysis. This corresponds to a 2.8-fold lower prevalence of risk-correlated transcriptional 

signatures for sotrovimab relative to placebo (Fisher’s exact p=0.045). Receipt of 
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sotrovimab was also associated with a more rapid decline in viral RNA in nasopharyngeal 

samples by Day 8 (Figure 3).  

 

Examining the biology of the transcriptome-defined high-risk cluster. For both Day 

1 and Day 8 visits, we scored genes for differential expression between high versus low-

risk clusters. We found a widespread transcriptional shift with thousands of genes 

identified as differentially expressed after adjusting for multiple comparisons (Figure 4a, 

Suppl. File 2). We characterized differentially expressed genes via gene-set enrichment 

analysis using the MSigDB Hallmark Gene Set annotation14. The most enriched Hallmark 

Gene Sets were associated with innate immune responses, in particular the complement 

system set, inflammatory response set, as well as the interferon alpha and gamma 

response gene expression modules (Figure 4b). Overexpression of genes in these 

pathways agrees well with previous work showing strong associations between increased 

innate immune system activation and disease severity15. In summary, whole 

transcriptome analysis is consistent with a significant inflammatory response and 

identifies participants on Day 1 that have a high risk of disease progression, a finding that 

is further supported by the lack of normalization of the high-risk transcriptome profile in 

participants who were subsequently hospitalized. 

 

Identifying a set of genes whose expression captures the risk-defining elements of 

the overall transcriptome 

Having established a transcriptomic profile associated with risk of COVID-19 progression, 

recovery, and treatment response, we next determined whether a smaller number of 
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mRNAs that might practically be measured by RT-PCR captured the predictive power of 

the overall transcriptome. Such an approach is preferable due to lower cost and greatly 

reduced turnaround time relative to whole transcriptome sequencing. To select a gene 

panel, we clustered genes into 10 groups according to their co-expression patterns across 

participants (Suppl. Fig. S2). This was accomplished using UMAP and K-means 

clustering. We then selected the top gene from each group as candidate for identification 

of a risk-predictive set of 10 genes. The 10 gene panel (CD38, DAB2, EFHC2, EIF2D, 

EIF4B, MYO18A, NUDT3, OAS2, RPL10, TADA3) accurately recapitulated the whole 

transcriptome risk clusters at both Day 1 (AUC=0.96) and Day 8 (AUC=0.99; Figure 5a). 

The expression of each gene in the panel is shown in Figure 5b. Expression of the 10-

gene-panel was highly associated to viral load and hospitalization, and strongly affected 

by sotrovimab (Suppl. Fig. S3). On the transcriptomic subset, the 10-gene risk 

stratification had a sensitivity of 75% [41%-94%] and a specificity of 76% [72%-82%] for 

the prediction of all-cause hospitalization and death (Fisher’s exact p-value=0.003). The 

sensitivity increased to 83% and specificity to 80% when the analysis was limited to the 

placebo arm, reflecting the real case scenario where there is no modification of the 

outcome by sotrovimab. A comparison of this performance across risk predictors is 

presented in Supp Table S2.  
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Discussion 

We defined clinical laboratory and molecular biomarkers that can potentially identify 

participants with mild to moderate COVID-19 who are at highest risk of progression to 

severe disease and hospitalization or death using data collected in the prospective, phase 

3 pivotal study COMET-ICE. Baseline NLR and a 10-gene transcriptomic signature 

associated with all-cause hospitalization or death with respective sensitivity and 

specificity of 33% and 93% (NLR) and of 87% and 64% (10-gene panel) on the 

transcriptomics sub-cohort. Changes in these biomarkers were also associated with 

response to treatment with the monoclonal antibody sotrovimab. 

 

Currently, the risk of developing severe COVID-19 has been associated with a number of 

demographic factors such as age and specific comorbidities. However, there is 

considerable heterogeneity in disease outcome that would benefit from additional 

stratification of risk. NLR, the simple ratio of neutrophil over lymphocyte counts could be 

informative and easy to implement, an observation supported by other studies16-18 

Though NLR sensitivity is low, the high specificity suggests that high NLR could be used 

as a triage test for persons at high risk of progressing and could prioritize those individuals 

for closer monitoring. Serostatus, defined here as IgG antibody response to nucleocapsid, 

is also a predictor of disease severity. None of the participants that were seropositive at 

baseline, whether because of previous infection or because of ongoing seroconversion19 

died or were admitted to the ICU. Seropositive participants had lower levels of viral RNA 

in nasopharyngeal samples and were less likely to present or maintain a risk 

transcriptome profile. One caveat of this analysis is that VOCs that have decreased 
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sensitivity to antibodies induced by vaccination (e.g., Delta and Omicron) were not 

circulating at the time of enrollment in the study. Therefore, additional analysis may be 

needed to confirm the protective effect of seropositivity in the current phase of the 

pandemic. 

 

Whole blood transcriptome analysis revealed a signature of disease severity that 

encompassed overexpression of genes involved in interferon response, inflammation and 

the complement system. We showed that a full transcriptome signature can be captured 

faithfully with a 10-gene panel. Use of a simple expression signature lowers the bar for 

an eventual implementation, as recently shown by work to make a three gene tuberculosis 

signature using point-of-care rapid testing20.  

 

An important effort of the present work was to define whether the set of predictive 

parameters of hospitalization and disease severity was also modified by treatment with 

sotrovimab; i.e., whether these parameters could serve as surrogate markers of 

sotrovimab response because they are modified by treatment and strongly associated to 

the study clinical endpoints of interest. Indeed, sotrovimab accelerated the normalization 

of NLR and the transcriptome profiles in a statistically significant manner. In particular, 

hospitalized participants in the placebo group retained the transcriptome profile 

associated with risk by Day 8 at a time when the majority of study participants normalized 

their peripheral blood gene expression profiles.  

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 27, 2021. ; https://doi.org/10.1101/2021.12.21.21268197doi: medRxiv preprint 

https://doi.org/10.1101/2021.12.21.21268197
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

   
 

12 

One topic of debate in the field is the value of measuring the levels of viral RNA in 

nasopharyngeal samples. In the present study, viral RNA levels measured by RT-PCR 

were of modest value as a baseline predictor. However, there was an association 

between viral RNA levels and the predictors of risk that we explored: NLR, serology and 

transcriptome profiles. Participants at risk of severe disease and hospitalization present 

higher levels of baseline nasopharyngeal viral RNA21. Weinreich et al.22 reported that 

mAb therapy had a significant effect on participants with a high viral load at baseline. 

Chen et al.23 reported a decreased viral load at day 11 did not appear to be a clinically 

meaningful end point, since the viral load was substantially reduced from baseline for the 

majority of patients, including those in the placebo group, a finding that is consistent with 

the natural course of the disease. Gottlieb et al.24 reported that treatment with mAb 

combination therapy, but not monotherapy, resulted in a reduction in SARS-CoV-2 log 

viral load at day 11 in participants with mild to moderate COVID-19. In the present work, 

resolution of disease was associated with decrease of viral load, in particular for 

participants receiving sotrovimab. However, taken together, these data indicate that viral 

load decline in upper airways is not a strong surrogate for clinical efficacy. 

 

The strengths of the current study reside on the well-characterized, geographically 

diverse prospective pivotal clinical trial participant cohort with whole blood/RNA collected 

at multiple time points to evaluate response to treatment and disease characteristics over 

time. This dataset enabled the implementation of machine learning methods for predicting 

disease severity from both clinical and transcriptomic markers. A limitation of the study is 

that it included a pre-defined ‘risk population” of adults based on demographic and 
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comorbid factors. A second limitation is the low number of study endpoints in the 

transcriptomic sub-study. However, if validated in additional studies, this approach could 

expand the definition of risk to include participants that might otherwise not be considered 

for treatment based on risk criteria currently in use25. In conclusion, this study identifies 

laboratory parameters associated with COVID-19 disease progression and 

hospitalization and shows that sotrovimab treatment effectively contributes to 

normalization of these parameters.  

 

Online Methods 

Characteristics of clinical trial population. COMET-ICE2 included 1057 adults with a 

positive local polymerase-chain-reaction or antigen SARS-CoV-2 test result and onset of 

symptoms within the prior 5 days (Table 1). Recruitment was between August 2020 and 

March 2021. Screening occurred within 24 hours prior to drug administration. Participants 

were required to be at risk for COVID-19 progression based on previously identified 

clinical parameters: age ≥55 years or adults with at least one of the following comorbid 

conditions: diabetes requiring medication, obesity (body-mass index >30 kg/m2), chronic 

kidney disease (estimated glomerular filtration rate <60 mL/min/1.73 m2), congestive 

heart failure (New York Heart Association class II or higher), chronic obstructive 

pulmonary disease, or moderate to severe asthma. Participants with already severe 

COVID-19, defined by shortness of breath at rest, oxygen saturation less than 94%, or 

requiring supplemental oxygen, were excluded. Participants were randomized 1:1 to 

receive either a single 500-mg infusion of sotrovimab or equal volume saline placebo. A 

subset of participants (n=303) consented for peripheral whole blood transcriptome 
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analysis. Participants who opted-in to the transcriptome sub-study had similar 

demographic, clinical and laboratory characteristics to those in the overall study. They 

were evenly divided between placebo and sotrovimab arms (Table 1). In-person study 

visits occurred on days 1, 5, 8, 11, 15, 22 (W3), and 29 (W4) to assess adverse events 

and worsening of COVID-19. During study visits, blood samples and nasopharygeal 

swabs were collected for routine laboratory assessments and viral load, respectively. 

Samples for transcriptome analysis were collected twice: at the time of treatment (referred 

to as Day 1 herein) and a week later at the Day 8 visit. There was no analysis plan for 

this work in COMET-ICE; this was post-hoc analysis of the trial data.  

 

Clinical data analysis. The associations between laboratory values, and treatment 

response and hospitalization were measured using the area under a receiver operating 

characteristic curve (AUC). For single variable analyses, this metric was computed by 

directly ranking participants with no model fitting step, to avoid overfitting. Significance of 

AUC was assessed by the Mann-Whitney U test, relying on the equivalence between the 

Mann-Whitney U statistic and AUC. All reported AUCs were significant after a Bonferroni 

adjustment for multiple comparisons. The significance threshold was calculated as 0.05 

divided by the number of clinical variables tested. For binary variables such as baseline 

risk factors, significance was assessed by Fisher’s exact test. Assessing complementarity 

of features was complicated by varying missingness patterns, leading to sample size loss. 

This was minimized by looking at only pairs of variables, and by median imputation of 

missing values26. Neither approach significantly improved on the single most predictive 
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variable, indicating that single variable predictors are sufficient for accurate risk 

prediction. 

 

SARS-CoV-2 viral load and serology. Nasopharyngeal swabs were collected in 

universal transport media, and viral load was measured using the CDC 2019-nCoV Real-

Time RT-PCR method run at central lab (https://www.fda.gov/media/134922/download). 

Serum samples were analyzed for anti-SARS-CoV-2 antibody by the Abbott SARS-CoV-

2 IgG assay run on the Architect i2000SR immunoassay analyzer 

(https://www.fda.gov/media/137383/download). This assay qualitatively measures IgG 

anti-SARS-CoV-2 antibodies against the nucleocapsid protein. Due to the potential for 

cross-reaction of sotrovimab with anti-spike antibody assays, only analysis of anti-

nucleocapsid serostatus was conducted. 

 

RNA isolation and sequencing. Peripheral whole blood was collected into PAXgene 

Blood RNA tubes (PreAnalytiX), identified by a sample accession number, and stored 

according to manufacturer recommendations. Day 1 and Day 8 samples for the same 

patient were sent for processing in the same batch. RNA purification, library preparation 

and sequencing were performed by Q2 Solutions – EA Genomics (Morrisville, NC). Total 

RNA was isolated (>1.25 ug required) and was depleted of globin mRNA using the 

GLOBINclear kit (Invitrogen). RNA quantity and quality was assessed using an Agilent 

Bioanalyzer (RIN score > 7.0 required). The globin-depleted RNA was used to generate 

a sequencing library using the TruSeq stranded mRNA method (Illumina). Briefly, poly(T) 

oligonucleotides are used to select poly-adenylated RNAs from the total RNA after globin 
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mRNA reduction which are then fragmented and converted to cDNA using random 

primers in two steps to maintain strand specific information. Libraries were sequenced on 

Illumina NovaSeq 6000 (multiple sequencing runs, multiple instruments) to a target 

sequencing depth of 25 million paired-end reads per sample at a minimum read length of 

50 bp. Samples were automatically selected by Q2 Solutions for repeat library preparation 

and sequencing based on pre-defined quality control metrics for ribosomal RNA fraction 

(>10% rRNA aligned reads threshold for repeat). 

  

RNA-seq analysis. 701 sequenced libraries from 638 whole blood samples were 

delivered from Q2 solutions by processing batch and sequencing run. Reads were 

cropped to a common read length of 50 bp and low-quality bases and adapters were 

further trimmed using Trimmomatic (v. 0.39)27. Trimmed reads less than 31bp were 

discarded. Trimmed sequenced reads per library were then aligned to a custom reference 

genome using STAR (v 2.7.3a)28 and to a custom reference transcriptome using Salmon 

(v. 1.0.0)29. The custom reference genome and transcriptome annotation was based on 

combining the human reference genome and annotation from Gencode (GRCh38, 

release 30) with the SARS-CoV-2 reference genome and annotation from Ensembl 

(ASM985889v3 version). Libraries were assessed for total reads (minimum, maximum, 

and median of 23.4, 94.4, and 33.2 million read pairs), average read length (49 bp), and 

adapter content, post-trimming with FASTQC (v. 0.11.8). Alignment metrics, such as total 

aligned reads, aligned reads by feature type, gene body coverage and 3’ bias, were 

assessed using Picard CollectRnaSeqMetrics (v 2.20.2—0). We profiled duplication rate 

versus reads per kbp and verified that low read counts were not associated with high 
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duplication at the library level using DupRadar (v 1.12.1). Known junction saturation rate 

as a function of sequencing depth was also profiled for all libraries using RSeQC (v 3.0.1). 

Transcript-level counts from Salmon were converted to gene-level counts and gene-level 

transcripts-per-million (TPM) using the R package tximport (v. 1.20.0). As genes with 

consistently low supporting read counts across libraries are unlikely to be called 

differentially expressed, a filtering step to remove genes with few to no supporting read 

counts across libraries was performed30. Conservatively, only genes with a minimum of 

10 read counts in at least 4% (n=24) of the libraries were considered for further analysis 

(n = 23,540 genes). When multiple libraries (due to repeated library preparation and 

sequencing) were available for the same sample accession number (whole blood 

sample), a representative library with the higher median TPM value was selected as 

libraries with outlier values for alignment quality metrics were associated with (low) outlier 

median TPM values. Only libraries representing matched Day 1 and Day 8 whole blood 

samples for a patient were included for downstream analysis. No other library exclusion 

criteria were applied. 

 

Data analysis transcriptome. Using the R package DESeq2 (v 1.32.0)31, variance-

stabilizing transformation was applied to gene-level counts.30 For exploration of 

transcriptome signatures, UMAP was run on the variance-stabilizing transformed RNA-

seq count data. Prior to UMAP projection, data were pre-conditioned and de-noised using 

principal component a analysis (PCA). The first 20 PCs were selected based on the point 

at which explained variance tended towards zero (Suppl. Fig. S4). For this baseline 
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analysis, UMAP (from the umap-learn python package; https://umap-

learn.readthedocs.io/en/latest/) was run with default parameters.  

 

To test the robustness of the embedding, this analysis was repeated for the full 

transcriptome (without PCA) for pathogen-associated transfer genes identified by di Iulio 

et al.32, and for immune-related pathway gene sets (Hallmark Gene Sets annotation).14 In 

each case, a variety of nearest neighbor values were tried, and the embedding was run 

multiple times to ensure repeatability. In all cases, the embeddings were similar. For 

example, the observed gradient between Day 1 and Day 8 samples, as well as the relative 

placement of the hospitalized was always consistent. 

 

High risk due to laboratory parameters vs low risk categorizations were derived as follows. 

Two-dimensional kernel density estimation with a bandwidth of 1 was applied to Day 1 

and Day 8 UMAP values separately. High risk participants were defined as those within 

an area where the Day 1 density exceeded the Day 8 density by 0.005. This cutoff was 

derived by choosing a round positive number near the beginning of the tail of the 

distribution (Suppl. Fig. S5). As a validation of this approach, we also performed a line 

search on this cutoff to optimize the separation between Day 1 and Day 8, as measured 

by Fisher’s exact p-value. This yielded an optimal cutoff of 0.006. To be conservative, we 

did not use this optimized value since the selection of cutoffs for the line search could be 

influenced by information beyond Day 1 vs Day 8 status. 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 27, 2021. ; https://doi.org/10.1101/2021.12.21.21268197doi: medRxiv preprint 

https://doi.org/10.1101/2021.12.21.21268197
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

   
 

19 

Differentially expressed genes associated with the putative high-risk cluster were scored 

using a model accounting for gender and visit day (DESeq2, v. 1.32.0)31. Differentially 

expressed genes were characterized via gene set enrichment analysis (fgsea, v 1.18.0)33 

using the Hallmark Gene Sets annotation (msigdbr, v. 7.4.1)14. For selection of a gene 

signature, we conducted diversity-based selection according to top ANOVA F-scores 

within 10 empirically identified gene clusters. Gene clusters were derived by performing 

UMAP dimensionality reduction on the transpose of the transcriptome matrix (with genes 

as rows instead of patients). This created a similarity map of genes based on their co-

expression patterns across patients. We then defined 10 gene clusters from this map 

using K-means clustering (Suppl. Fig. S2). From each cluster, we selected the gene most 

associated with risk according to its ANOVA F-score. Diversity-based selection using 

gene clustering significantly improved on greedy selection based on F-score alone 

(Suppl. Fig. S6a) and yielded comparable performance to transfer-learned32 and 

hallmark gene sets (Suppl. Fig. S6b). To assess performance of this set of 10 genes 

representing co-expression clusters, we repeated this entire process within a five-fold 

cross-validation loop, including gene clustering. In this procedure the dataset is 

partitioned into five folds. For each of the five folds, we trained a model on the other four 

chunks to predict its values in an unbiased manner. To avoid overfitting due to patient-

specific attributes, samples from the same patient on different days were always kept in 

the same fold. 
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Table 1. Baseline Demographic and Disease Characteristics. Numbers in 

parentheses represent the percent of all study participants in that category when denoted 

with “%”; otherwise, they represent the standard deviation. The numbers outside the 

parentheses are counts when represented with “%” in the parentheses. Otherwise, they 

are the mean value of that variable.  

 
  Full cohort  Transcriptome cohort  

 
  All Sotrovimab Placebo p-

value 
All Sotrovimab Placebo p-value 

Demographics 
N 1057 528 529 1 303 151 152 0.952 

Age 
53.1 (18.0-

97.0) 
52.6 (19.0-

97.0) 
53.6 (18.0-

89.0) 0.148 
54.3 (19.0-

97.0) 
53.8 (19.0-

97.0) 
54.8 (20.0-

89.0) 0.287 

Age>=65 237 (22%) 113 (21%) 124 (23%) 0.491 76 (25%) 38 (25%) 38 (25%) 1 

Age>=70 142 (13%) 71 (13%) 71 (13%) 1 51 (17%) 27 (18%) 24 (16%) 0.77 
Female 
gender 572 (54%) 299 (57%) 273 (52%) 0.221 170 (56%) 85 (56%) 85 (56%) 1 

BMI 32.3 (6.6) 32.3 (6.7) 32.2 (6.6) 0.44 31.9 (6.6) 31.7 (6.6) 32.0 (6.6) 0.357 
Risk_Age

>=55 512 (48%) 254 (48%) 258 (49%) 0.879 144 (47%) 70 (46%) 74 (48%) 0.775 
Diabetes 
mellitus 249 (24%) 130 (25%) 119 (22%) 0.5 69 (23%) 37 (25%) 32 (21%) 0.609 
Obesity 
(BMI > 

30) 670 (63%) 330 (62%) 340 (64%) 0.674 183 (60%) 88 (58%) 95 (62%) 0.596 
Chronic 
kidney 
disease 26 (2%) 12 (2%) 14 (3%) 0.844 9 (3%) 4 (3%) 5 (3%) 1 

Congesti
ve heart 
failure 17 (2%) 8 (2%) 9 (2%) 1 6 (2%) 2 (1%) 4 (3%) 0.686 

COPD 54 (5%) 26 (5%) 28 (5%) 0.891 16 (5%) 5 (3%) 11 (7%) 0.204 
Moderate 
to severe 
asthma 244 (23%) 126 (24%) 118 (22%) 0.634 79 (26%) 46 (30%) 33 (22%) 0.147 

Baseline 
Log10 VL 6.6 (1.7) 6.6 (1.6) 6.7 (1.7) 0.428 7.0 (1.7) 6.9 (1.7) 7.1 (1.7) 0.412 

Race/ethnicity Latino 649 (62%) 326 (62%) 323 (61%) 0.925 153 (50%) 76 (50%) 76 (50%) 1 

White 272 (26%) 132 (25%) 140 (27%) 0.649 105 (35%) 54 (36%) 51 (33%) 0.83 
Black or 
African 

American 82 (8%) 40 (8%) 42 (8%) 0.91 27 (9%) 10 (7%) 17 (11%) 0.237 

Asian 45 (4%) 24 (5%) 21 (4%) 0.764 18 (6%) 11 (7%) 7 (5%) 0.474 
Mixed 
race 4 (<1%) 4 (<1%) 0 0.125 0 0 0 1 

Native 
American 3 (<1%) 1 (<1%) 2 (<1%) 1 1 (<1%) 0 1 (<1%) 1 

N. risk factors 0 169 (16%) 80 (15%) 89 (17%) 0.521 51 (17%) 24 (16%) 27 (18%) 0.77 

1 263 (25%) 134 (25%) 129 (24%) 0.792 80 (26%) 37 (25%) 43 (28%) 0.549 

2 190 (18%) 98 (19%) 92 (17%) 0.704 43 (14%) 24 (16%) 19 (12%) 0.527 

>=3 435 (41%) 216 (41%) 219 (41%) 0.914 130 (43%) 66 (44%) 64 (42%) 0.921 
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Table 2. Top laboratory predictors of hospitalization at baseline. Area under the 

curve (AUC) and sample sizes for top clinical predictors of hospitalization or death based 

on baseline, Day 1 values. For a complete list of 63 parameters, see Suppl. File 1. 

 
 Sample size AUC 

Lymphocytes (%) 904 0.81 
Neutrophil: Lymphocyte Ratio 904 0.81 

Neutrophils (%) 906 0.81 
Ferritin 1018 0.74 

 Eosinophils (%) 904 0.74 
spO2 Blood 1047 0.73 

Serum Glucose 1015 0.73 
IL-6 973 0.71 

Platelets 898 0.68 
Serum Sodium 1006 0.67 

Viral Load 970 0.65 
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Table 3. Comparison of representative baseline values between seropositive and 
seronegative patients. Numbers in parentheses represent the percent of all participants 

in that category when denoted with “%”; otherwise, they represent the standard deviation. 

The numbers outside the parentheses are counts when represented with “%” in the 

parentheses. Otherwise, they are the mean value of that variable. P-value significance 

thresholds are based on a Bonferroni correction (p=0.05 / 23 comparisons). P-values are 

calculated using either the Mann Whitney U or Fisher’s exact test depending on whether 

the variable is continuous or binary, respectively. 

 
  Seropositive 

(n=202) 
Seronegative 
(n=740) 

p-value 

Demographics Age 54.1 (23.0-89.0) 52.9 (18.0-97.0) 0.18 (N.S.) 
 Female gender 118 (58%) 401 (54%) 0.30 (N.S.) 
Risk factors Age>=65 51 (25%) 163 (22%) 0.34 (N.S.) 
 COPD 10 (5%) 41 (6%) 0.86 (N.S.) 
 Chronic kidney disease 6 (3%) 19 (3%) 0.80 (N.S.) 
 Congestive heart failure 3 (1%) 13 (2%) 1.00 (N.S.) 
 Diabetes mellitus 54 (27%) 173 (23%) 0.35 (N.S.) 
 Moderate to severe asthma 58 (29%) 163 (22%) 0.06 (N.S.) 
 Obesity (bmi > 30) 116 (57%) 479 (65%) 0.07 (N.S.) 
Race/ethnicity Asian 5 (2%) 37 (5%) 0.18 (N.S.) 
 Black or African American 18 (9%) 57 (8%) 0.56 (N.S.) 
 Latino 156 (77%) 412 (56%) 2x10^-8 
 Mixed race 0 3 (<1%) 1.00 (N.S.) 
 Native American 1 (<1%) 1 (<1%) 0.38 (N.S.) 
 White 22 (11%) 229 (31%) 2x10^-9 
Laboratory Log10 viral load 4.2 (1.4) 6.4 (2.0) 3x10^-36 
 Hemoglobin 133.0 (16.2) 140.1 (15.1) 1x10^-7 
 Lymphocytes 2.0 (0.7) 1.6 (0.7) 5x10^-13 
 Neutrophils 4.9 (4.9) 3.7 (1.8) 1x10^-12 
 NLR 3.0 (4.4) 2.8 (2.2) 0.34 (N.S.) 
 Platelets 274.7 (75.3) 230.7 (67.9) 1x10^-12 
 APTT 24.9 (2.8) 26.1 (3.0) 6x10^-7 
 SpO2_blood 97.7 (1.3) 97.5 (1.4) 0.05 (N.S.) 
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Figure 1. Response to sotrovimab in high-risk group defined by neutrophil lymphocyte
ratio (NLR). The time trend of NLR for sotrovimab versus placebo treated patients (hue) in the
full cohort and low risk and high-risk groups as defined by NLR > 6. Error bars indicate the 95%
confidence interval on the mean.

p=0.02
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Figure 2. High-risk cluster defined by blood transcriptome profile. UMAP projection of
transcriptomic profiles across Day 1 and Day 8 samples with hospitalized patients outlined in red
(placebo) or blue (sotrovimab) circles. (A) A 2D kernel density, presented as a contour plot,
highlight distribution of transcriptomics profiles in UMAP by visit day. (B) A threshold on the density
difference between Day 1 and Day 8 distributions defines a high-risk cluster (red fill) which
encompasses Day 1 and 8 transcriptomics profiles for 6 of 8 hospitalized patients. (C) Day 1 and
Day 8 distributions of baseline seropositive patients (n=69). (D) Distribution of Day 1 and Day 8
transcriptomics profiles for patients in putative risk cluster at Day 1 split by treatment.
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Figure 3. Viral RNA response to sotrovimab in high-risk transcriptome cluster. The high-risk
transcriptome cluster associates with higher viral RNA concentration in respiratory secretions at both
Day 1 and Day 8. The red dotted line highlights viral load differences at baseline between the
groups. Error bars indicate the 95% confidence interval on the mean. At baseline, the high risk group
had a viral load 1.1 log units higher than the cohort as a whole. At Day 5, the high risk cluster had a log
viral load of 6.1 units in the placebo group, compared to 5.4 units in the sotrovimab group.

P=0.03
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Figure 4. Transcriptome characteristics of high-risk group. (A) Summary of differential
expression analysis results comparing high risk group to recovery group, accounting for visit day
and subject gender, shown per gene with labels for top 10 among down-regulated (blue) and up-
regulated (red) genes by statistical significance, respectively (q < 0.05, absolute LFC > log2(1.5)).
For display, abs(LFC) <= 8. (B) Gene set enrichment analysis results using Hallmark Gene Sets
(top 10 gene sets with q < 0 for NES > 0; q < 0.05 for NES < 0). LFC: log fold change. NES:
Normalized enrichment score. q: FDR-adjusted p-value.
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Figure 5. Surrogates to predict both risk of COVID-19 disease and response to sotrovimab using
a 10 gene panel. (A) In cross-validation, the 10-gene panel accurately predicts risk groups assigned by
the full transcriptome, at both day 1 and day 8. (B) Changes in expression for each of the genes in the
10-gene panel from day 1 to day 8. (C) Performance of each of the genes in the same 10-gene panel to
track the response (change in expression from day 1 to day 8) to sotrovimab versus placebo.
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Supplemental Table S1. Comparison of representative baseline values between 
high risk and low risk patients according to transcriptome data. Numbers in 

parentheses represent the percent of all patients in that category when denoted with “%”; 

otherwise, they represent the standard deviation. The numbers outside the parentheses 

are counts when represented with “%” in the parentheses. Otherwise, they are the mean 

value of that variable. P-value significance thresholds are based on a Bonferroni 

correction. 

 
 

  
High risk cluster 
(n=116) 

Low risk cluster 
(n=188) 

p-value 

Demographics Age 60.4 (30.0-95.0) 50.5 (19.0-97.0) 9x10^-8 
 Female gender 60 (52%) 110 (59%) 0.28 (N.S.) 
Risk factors Age>=65 44 (38%) 32 (17%) 7x10^-5 
 COPD 6 (5%) 10 (5%) 1.00 (N.S.) 
 Chronic kidney disease 3 (3%) 6 (3%) 1.00 (N.S.) 
 Congestive heart failure 2 (2%) 4 (2%) 1.00 (N.S.) 
 Diabetes mellitus 32 (28%) 37 (20%) 0.12 (N.S.) 
 Moderate to severe asthma 26 (22%) 53 (28%) 0.28 (N.S.) 
 Obesity (bmi > 30) 54 (47%) 129 (69%) 2x10^-4 
Race/ethnicity Asian 8 (7%) 10 (5%) 0.62 (N.S.) 
 Black or African American 4 (3%) 23 (12%) 0.01 (N.S.) 
 Latino 46 (40%) 107 (57%) 0.005 (N.S.) 
 Native American 1 (<1%) 0 (0%) 0.38 (N.S.) 
 White 57 (49%) 48 (26%) 4x10^-5 
Clinical Log10 viral load 7.5 (1.5) 5.5 (2.2) 5x10^-13 
 Hemoglobin 140.9 (14.3) 135.9 (16.6) 0.008 (N.S.) 
 Lymphocytes 1.3 (0.553) 1.9 (0.712) 6x10^-14 
 Neutrophils 3.5 (1.6) 3.9 (1.7) 0.04 (N.S.) 
 NLR 3.4 (2.3) 2.3 (1.5) 7x10^-6 
 Platelets 214.5 (61.6) 254.4 (71.1) 7x10^-6 
 APTT 26.3 (2.9) 25.6 (3.0) 0.009 (N.S.) 
 spO2_blood 97.1 (1.7) 97.6 (1.2) 0.004 (N.S.) 
Endpoint Hospitalization or death 6 (5%) 2 (1%) 0.05 (N.S.) 
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Supplemental Table S2. Sensitivity and specificity for different approaches for defining a high-risk group. Hosp, 

hospitalization in the full trial. Hosp_placebo, hospitalization in placebo arm. NLR, neutrophil lymphocyte ratio. Tx, 

transcriptome. Sens, sensitivity. Spec, specificity. Eqn, equation. Ppv, positive predictive value. Npv, negative predictive 

value. P, p value.  
 NLR>6 NLR>6, tx cohort Seronegative TxHighRisk TxHighRisk_10gene 
  HospOrDe

ath 
HospOrDe
ath_place

bo 

HospOrDe
ath 

HospOrDe
ath_place

bo 

HospOrDe
ath 

HospOrDe
ath_place

bo 

HospOrDe
ath 

HospOrDe
ath_place

bo 

HospOrDe
ath 

HospOrDe
ath_place

bo 
sensitivity 44.8% 

[27.9%-
62.7%] 

45.8% 
[27.3%-
65.3%] 

33.3% 
[7.7%-
71.4%] 

25.0% 
[2.8%-
71.6%] 

83.3% 
[68.8%-
92.7%] 

86.7% 
[71.3%-
95.3%] 

75.0% 
[40.8%-
94.4%] 

100.0% 
[67.0%-
100.0%] 

75.0% 
[40.8%-
94.4%] 

83.3% 
[44.2%-
98.1%] 

sens_eqn 13/29 11/24 2/6 1/4 30/36 26/30 6/8 6/6 6/8 5/6 
specificity 94.7% 

[93.0%-
96.0%] 

94.8% 
[92.4%-
96.6%] 

93.1% 
[89.5%-
95.7%] 

93.8% 
[88.7%-
97.0%] 

21.6% 
[19.0%-
24.4%] 

20.9% 
[17.3%-
24.9%] 

75.6% 
[70.5%-
80.2%] 

78.1% 
[70.9%-
84.2%] 

76.9% 
[71.9%-
81.5%] 

79.5% 
[72.4%-
85.4%] 

spec_eqn 832/879 402/424 243/261 122/130 196/906 92/440 223/295 114/146 227/295 116/146 
ppv 21.7% 

[12.7%-
33.3%] 

33.3% 
[19.2%-
50.3%] 

10.0% 
[2.1%-
28.4%] 

11.1% 
[1.2%-
41.4%] 

4.1% 
[2.8%-
5.7%] 

7.0% 
[4.7%-
9.9%] 

7.7% 
[3.3%-
15.2%] 

15.8% 
[6.9%-
29.7%] 

8.1% 
[3.5%-
15.9%] 

14.3% 
[5.7%-
28.5%] 

ppv_eqn 13/60 11/33 2/20 1/9 30/740 26/374 6/78 6/38 6/74 5/35 
npv 98.1% 

[97.0%-
98.9%] 

96.9% 
[94.9%-
98.2%] 

98.4% 
[96.2%-
99.5%] 

97.6% 
[93.7%-
99.3%] 

97.0% 
[94.0%-
98.8%] 

95.8% 
[90.4%-
98.6%] 

99.1% 
[97.2%-
99.8%] 

100.0% 
[97.8%-
100.0%] 

99.1% 
[97.2%-
99.8%] 

99.1% 
[96.1%-
99.9%] 

npv_eqn 832/848 402/415 243/247 122/125 196/202 92/96 223/225 114/114 227/229 116/117 
p 3.7e-09 8.0e-08 6.7e-02 2.5e-01 6.8e-01 4.8e-01 4.4e-03 1.8e-04 3.3e-03 2.6e-03 
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Suppl. Fig. S1. Threshold selection for neutrophil lymphocyte ratio. (A) Fisher's exact p-
value for association to hospitalization as a function of cutoff value and day. (B) a visualization 
of the distribution of Day 1 neutrophil lymphocyte ratio for hospitalized versus non-hospitalized 
patients
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Suppl. Fig. S2. Grouping of genes based on their co-expression patterns across individuals.
UMAP dimensionality reduction of genes based on transcriptomic patterns across patients. K-means
clustering of genes into 10 groups.
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Suppl. Fig S3. Surrogates of risk and recovery using a 10-gene panel. The 10-gene panel-
derived risk groups separate patients by viral load at both day 1 and day 8. (A) The cross-
validated, panel-derived risk assignments were associated to significantly higher viral load at both
day 1 and day 8 (p<1e-5). (B) Day cluster status classified as high risk 6/8 samples
from hospitalized patients (p=3e-3). (C) At day 8, 12% of patients (18 / 152) in the placebo group
remained in the panel-derived risk group, compared to 3% in the sotrovimab group (4 / 151),
corresponding to a risk reduction of 78% (p=3e-3).

Study arm Placebo Sotrovimab

High risk at day 8 18 4

Low risk at day 8 134 147

Hospitalized? No Yes

High risk at day 1 68 6

Low risk at day 1 227 2

p=6e-13 p=4e-9A

B C
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Suppl. Fig. S4. Selection of 20 PCs. (A) The explained variance of each principal component (B) the 
cumulative explained variance, summing from the first to Nth component, where N is denoted on the 
x-axis.
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Suppl. Fig. S5. Definition of a high-risk cluster using transcriptome data (A) kernel density
estimators fit on Day 1 and Day 8 UMAP distributions. (B) The distribution of density differences
between Day 1 and Day 8 for each patient. The red line denotes the chosen cutoff for defining a high-
risk group. (C) A visualization of which patients are defined as high risk according to this cutoff.
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Suppl. Fig. S6. Predicting the high-risk cluster using a varying number of genes. (A) The
blue line (AUROC) denotes selecting the top genes based on F-score. The orange line shows
performance when the top F-scores are taken uniformly from each cluster. (B) Comparative
performance of sources and number of genes of a predictive gene panel. AUROC as a function
of the number of genes for predicting high risk group at day 8. Blue points and whiskers show the
mean and confidence interval of the mean, respectively, for random gene sets. The grey
envelope shows the 90% confidence interval for random gene performance across 100
replicates. Green points show the performance of the transfer signature gene sets published by
di Iulio et al. Orange points demonstrate the performance of gene sets from GSEA pathways.
Finally, the red point denotes the performance of the selected 10 gene panel.
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