Abstract
Background With the introduction of DNA-damaging therapies into standard of care cancer treatment, there is a growing need for predictive diagnostics assessing homologous recombination deficiency (HRD) status across tumor types. Following the strong clinical evidence for the utility of DNA-sequencing-based HRD testing in ovarian cancer, and growing evidence in breast cancer, we present analytical validation of the Tempus|HRD-DNA test. We further developed, validated, and explored the Tempus|HRD-RNA model, which uses gene expression data from 16,470 RNA-seq samples to predict HRD status from formalin-fixed paraffin-embedded (FFPE) tumor samples across numerous cancer types.
Methods Genomic and transcriptomic profiling was performed using next-generation sequencing from Tempus|xT, Tempus|xO, Tempus|xE, Tempus|RS, and Tempus|RS.v2 assays on 48,843 samples. Samples were labeled based on their BRCA1, BRCA2 and selected Homologous Recombination Repair (HRR) pathway gene (CDK12, PALB2, RAD51B, RAD51C, RAD51D) mutational status to train and validate HRD-DNA, a genome-wide loss-of-heterozygosity biomarker, and HRD-RNA, a logistic regression model trained on gene expression, using several performance metrics and statistical tests.
Results In a sample of 2,058 breast and 1,216 ovarian tumors, BRCA status was predicted by HRD-DNA with F1-scores of 0.98 and 0.96, respectively. Across an independent set of 1,363 samples across solid tumor types, the HRD-RNA model was predictive of BRCA status in prostate, pancreatic, and non-small cell lung cancer, with F1-scores of 0.88, 0.69, and 0.62, respectively.
Conclusions We predict HRD-positive patients across many cancer types and believe both HRD models may generalize to other mechanisms of HRD outside of BRCA loss. HRD-RNA complements DNA-based HRD detection methods, especially for indications with low prevalence of BRCA alterations.
Competing Interest Statement
All authors are employees of Tempus Labs.
Funding Statement
All authors are employees of Tempus Labs, who provided funding for this work.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
All analyses were performed using de-identified data; IRB exemption Pro00042950 was obtained from Advarra on April 15, 2020.
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Footnotes
Conflict of Interest Statement: All authors are employees of Tempus Labs.
Data Availability
Raw data for this study were generated at Tempus Labs. Derived data supporting the findings of this study are available within the paper and its Supplementary Figures or available from the authors upon request.