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ABSTRACT 

 

Background/Purpose: Sarcopenia is a prognostic factor in patients with head and neck cancer 

(HNC). Sarcopenia can be determined using the skeletal muscle index (SMI) calculated from 

cervical neck SM segmentations. However, SM segmentation requires manual input, which is 

time-consuming and variable. Therefore, we developed a fully-automated approach to segment 

cervical vertebra SM.  

 

Materials/Methods: 390 HNC patients with corresponding contrast-enhanced computed 

tomography (CT) scans were utilized (300-training, 90-testing). Ground-truth single-slice SM 

segmentations at the C3 vertebra were manually generated. A multi-stage deep learning pipeline 

was developed, where a 3D ResUNet auto-segmented the C3 section (33 mm window), the 

middle slice of the section was auto-selected, and a 2D ResUNet auto-segmented the auto-

selected slice. Both the 3D and 2D approaches trained five sub-models (5-fold cross-validation) 

and combined sub-model predictions on the test set using majority vote ensembling. Model 

performance was primarily determined using the Dice similarity coefficient (DSC). Predicted SMI 

was calculated using the auto-segmentation cross-sectional area. Finally, using established SMI 

cutoffs, we performed a Kaplan-Meier analysis to determine associations with overall survival.  

 

Results: Mean test set DSC of the 3D and 2D models were 0.96 and 0.95, respectively. Predicted 

SMI had high correlation to the ground-truth SMI in males and females (r>0.96). Predicted SMI 

stratified patients for overall survival in males (log-rank p = 0.01) but not females (log-rank p = 

0.07), consistent with ground-truth SMI.  

 

Conclusion: We developed a high-performance, multi-stage, fully-automated approach to 

segment cervical vertebra SM. Our study is an essential step towards fully-automated sarcopenia-

related decision-making. 

 

Abbreviations: CT (computed tomography), DSC (Dice similarity coefficient), HNC (head and 

neck cancer), ROI (region of interest), SM (skeletal muscle), SMI (skeletal muscle index). 

 

Keywords: auto-segmentation, deep learning, skeletal muscle index, head and neck cancer, 

sarcopenia.  
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INTRODUCTION 

 

Sarcopenia – the excessive loss of skeletal muscle (SM) mass and function – is a common and 

debilitating phenomenon in cancer patients [1]. While sarcopenia has been extensively studied in 

various cancer types, it has only recently been investigated thoroughly in head and neck cancer 

(HNC) [2]. Weight loss is common in HNC due to nutritional deficiencies induced by tumor 

geometry affecting normal tissues [3] and/or side effects caused by therapeutic interventions [4]. 

Although the link between treatment-associated weight loss and survival in HNC is unclear [5], 

sarcopenia has been strongly associated with oncologic outcomes such as overall survival and 

late radiation-induced toxicities [2,6,7]. Therefore, sarcopenia prediction is of paramount 

importance in patients with HNC.  

 

Sarcopenia can be identified using different diagnostic criteria [8]. One quantitative method 

investigated in various studies is using a threshold based on the skeletal muscle index (SMI), the 

cross-sectional area of skeletal muscle measured on axial imaging normalized to the square of 

the patient’s height [9]. The SMI is most commonly calculated and referenced using computed 

tomography (CT) imaging of abdominal musculature [10–14]. However, abdominal imaging is not 

available for all HNC patients. Importantly, Olson et al. [15] and van Rijn-Dekker et al. [6] have 

recently suggested the C3 cervical vertebra musculature cross-sectional area may also be used 

to quantify sarcopenia accurately.  

 

Current approaches to generate C3 musculature segmentations needed for SMI calculation rely 

on either semi-automated or completely manual segmentation [6], which can be time-consuming, 

introduce unnecessary errors, and suffer from interobserver variability. A fully-automated 

approach would be an attractive alternative to the current manual/semi-automated standard. 

Deep learning, which has found success in medical image segmentation [16–19], may be an ideal 

choice for fully-automated segmentation of SM. Several recent studies have utilized deep learning 

methods for automated SM measurement based on abdominal CT scans with reasonable 

performance [20–25]. However, to date, no studies have attempted to automate the SMI 

calculation workflow based on head and neck imaging.  

 

The primary objective of this study was to develop a fully-automated approach to segment skeletal 

muscle at the C3 vertebral level for use in SMI calculations. These calculations could be directly 

used to determine sarcopenia status for predicting prognostic outcomes. To achieve this goal, we 

developed and implemented a two-stage deep learning system that utilizes 3D and 2D ResUNets 

to detect the C3 vertebra and segment the corresponding C3 musculature, respectively. We show 

that our approach can faithfully generate segmentations compared to the ground-truth of human-

generated segmentation. By fully automating the sarcopenia determination workflow, we can 

ensure rapid, reproducible, and accurate measurements for use in clinical decision-making.   

 

MATERIALS AND METHODS 

 

Patient data 

390 patients from the “HNSCC” publicly available dataset on The Cancer Imaging Archive (TCIA) 

[26–28] were selected for the analysis. The clinical and demographic characteristics of these 

patients are shown in Table 1.  
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Table 1: Clinical demographics of patients whose data were in this study.  

Characteristic Count 

Age (median, range) 57 (28-87) 

Sex  

Male 337 

Female 52 

Tumor subsite  

Base of tongue 201 

Glossopharyngeal sulcus 9 

Soft palate  6 

Tonsil 157 

Not otherwise specified 16 

HPV status  

Negative 36 

Positive 215 

Unknown 138 

T-category  

T1 77 

T2 166 

T3 91 

T4 55 

N-category  

N0 36 

N1 44 

N2 301 

N3 8 

AJCC stage (7th ed)  

I 3 

II 12 

III 57 

IV 317 

AJCC, American Joint Committee on Cancer. Note: One patient did not have clinical information 

from the Cancer Imaging Archive so was not included in this table. 

Imaging data 

For the 390 patients, DICOM-formatted contrast-enhanced CT scans were acquired from the 
TCIA databases [26–28]. SM was manually segmented for each CT image in one slice (2D image) 
at the level of the C3 vertebra. The manual segmentations were performed using sliceOmatic, 
version 5.0 (Tomovision) using previously published Hounsfield unit thresholds to define muscle 
and fat [12,29]. The single-slice 2D CT images selected for the SM manual segmentation and the 
corresponding SM segmentations were exported as DICOM files and .tag files, respectively.  
 

Image Processing 

The DICOM 3D volumetric and single-slice 2D CT images were converted to nifti format using the 
DICOM processing toolkit DICOMRTTool v. 0.3.21 [30]. The SM segmentation .tag files were 
converted to nifti format using an in-house Python script. The nifti files for the single-slice 2D CT 
images and SM segmentation were used to train the 2D segmentation model (described below). 
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The 2D CT slice location in the C3 vertebra was extracted from the DICOM file, which was then 
used to generate the ground-truth segmentation mask for the C3 section, defined as a volume 33 
mm in thickness centered at the location of the 2D CT slice. The tissue regions in the 3D CT 
images were distinguished from the background by thresholding the images using a value of 
greater than -500 Hounsfield units with any air gaps within the tissue region filled to generate a 
binary mask for the external boundaries. The generated external boundary masks and the 
locations of the 2D CT slices were used to create the ground-truth C3 section segmentations to 
train the 3D model (described below). As we have described elsewhere [31], all the images and 
masks were resampled to a fixed image resolution of 1 mm across all dimensions. The CT 
intensities were truncated in the range of [−250, 250] Hounsfield units to increase soft tissue 
contrast and then normalized to the range of [-1, 1] scale (Figure 1 A,B). We used the Medical 
Open Network for AI (MONAI) [32] software transformation functions to rescale and normalize 
images.  
 

 
Figure 1. An illustration of the workflow used for skeletal muscle (SM) auto-segmentation at the 
C3 vertebra. (A) Overlays of the ground-truth SM segmentation and the original CT images. (B) 
Overlays of the ground-truth SM segmentation and the processed CT images. (C) An illustration 
of the workflow used to auto-select a single CT slice at the C3 vertebra for SM auto-segmentation. 
The auto-selected slice is the middle slice of the auto-segmented C3 section (33 mm in height) 
using a 3D ResUNet applied to the 3D volumetric CT image. (D) Auto-segmentation of SM using 
a selected C3 vertebra CT image using a 2D ResUNet model.  
 

Segmentation model 

We used a multi-stage deep learning convolutional neural network approach for SM 
segmentation. Our approach was based on the UNet architecture with residual connections 
(ResUNet) included in the MONAI software package, as we have described in previous 
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publications [31,33]. In the first stage of our approach (Figure 1C), a 3D ResUNet model auto-
segmented the C3 vertebra section (33 mm), which was then followed by auto-selection of the 
middle slice of the section. In the second stage of our approach (Figure 1D), a 2D ResUNet model 
auto-segmented the SM on the auto-selected slice of the C3 section. Additional details of our 
architecture are described in Appendix A.  
 

Model implementation 

We randomly split the data into 300 patients for training and 90 patients for testing. For training, 
we used a 5-fold cross-validation approach where the 300 patients from the training data were 
divided into five non-overlapping sets. Each set (60 patients) was used for model validation while 
the 240 patients in the remaining sets were used for training, i.e., each set was used once for 
testing and four times for training, leading to five sub-models. The processed CT and 
corresponding masks for 3D ResUNet model and 2D ResUNet models (C3 section and SM, 
respectively) were randomly cropped to four random fixed-sized regions (patches) of size (96, 96, 
96) and (96, 96) per patch per patient, respectively. Additional details on the model 
implementation are described in Appendix A. We implemented additional data augmentation to 
both image and mask patches to minimize overfitting, including random horizontal flips of 50% 
and random affine transformations with an axial rotation range of 12 degrees and a scale range 
of 10%. We used the Adam optimizer for computing the parameter updates and the soft Dice loss 
function. The models were trained for 300 iterations with a learning rate of 2×10-4 for the first 250 
iterations and 1×10-4 for the remaining 50 iterations. The values for the Adam optimizer 
coefficients β1 and β2 were 0.9 and 0.999, respectively. Data augmentation and loss functions 
were provided by the MONAI framework [32]. The final segmentations on the test set for both 
models were obtained by a majority vote on a pixel-by-pixel basis for all predicted segmentation 
masks by the 5-fold cross-validation sub-models (model ensemble), as described in a previous 
study [31].  
 
Model validation 

For both the 3D ResUNet and 2D ResUNet models, we evaluated the performance on the 
corresponding cross-validation sets as well as the final ensemble segmentation on the test set 
using the Dice similarity coefficient (DSC) [34]. Specific to the 3D model, we also evaluated the 
accuracy of the C3 section segmentation by quantifying the absolute difference between the slice 
locations of the mid-section of the C3 section predicted by the 3D model and the 2D CT ground-
truth image (in mm). Specific to the 2D model, we compared the SM cross-sectional areas 
obtained using the SM ground-truth segmentation with 1. the 2D model predicted SM 
segmentations on the same ground-truth CT image (Pred_GT) and 2. the 2D model predicted SM 
segmentations on the slices auto-selected by the 3D model (Pred_C3). We evaluated the 
correlation between the SM cross-sectional areas using the Pearson correlation coefficient;  we 
also used a two-sided Wilcoxon signed-rank test to determine if these SM values were 
significantly different. Additionally, to derive the SMI, we normalized the SM cross-sectional areas 
(in cm2) with the patients’ heights (in m2). We then examined the correlation between the SMI 
values produced by the ground-truth and deep learning segmentations using the Pearson 
correlation coefficient; we also used a two-sided Wilcoxon signed-rank test to determine if these 
SMI values were significantly different. Based on previous work by van Rijn-Dekker et al. [6], we 
used Equation 1 to calculate the cross sectional area (CSA) at the L3 lumbar level based on the 
CSA at the C3 cervical level and subsequently Equation 2 to calculate the lumbar SMI:  
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(𝑬𝒒. 𝟏) 𝐶𝑆𝐴 𝑎𝑡 𝐿3 (𝑐𝑚2)

=  27.304 + 1.363 ∗ 𝐶𝑆𝐴 𝑎𝑡 𝐶3 (𝑐𝑚2) − 0.671 ∗ 𝑎𝑔𝑒 (𝑦𝑒𝑎𝑟𝑠) + 0.640 ∗ 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑘𝑔)

+ 26.422 ∗ 𝑠𝑒𝑥(𝑠𝑒𝑥 = 1 𝑓𝑜𝑟 𝑓𝑒𝑚𝑎𝑙𝑒, 2 𝑓𝑜𝑟 𝑚𝑎𝑙𝑒) 

(𝑬𝒒. 𝟐) 𝐿𝑢𝑚𝑏𝑎𝑟 𝑆𝑀𝐼 (
𝑐𝑚2

𝑚2
) =  

𝐶𝑆𝐴 𝑎𝑡 𝐿3 (𝑐𝑚2)

ℎ𝑒𝑖𝑔ℎ𝑡2(𝑚2)
 

 
Based on previous work by Prado et al. [29], SMI thresholds of 52.4 cm2/m2 (males) and 38.5 

cm2/m2 (females) were applied to lumbar SMI derived from SM ground-truth and deep learning 

segmentations to stratify patients by sarcopenia status (‘normal’ and ‘depleted’ muscle). These 

stratifications were then used for Kaplan-Meier analysis to determine associations between 

sarcopenia status and overall survival probabilities. To determine the sarcopenia status for the 

whole data set (i.e., 390 patients), we implemented Kaplan-Meier analysis on the 5-fold cross-

validation data and the test data. We aggregated the SMI estimated for each cross-validation 

fold (i.e., 60 patients per fold) using the corresponding trained 3D and 2D models in addition to 

the SMI for the test data using the average predictions of the five cross-validation models.  

 

RESULTS 

 

3D ResUNet model performance: C3 section auto-segmentation 

 

The performance of the 3D ResUNet model for segmenting the C3 section of the neck is 

summarized in Figure 2A. When assessing the performance of each individual sub-model from 

our 5-fold cross-validation, the DSCs calculated between the predicted region segmentations and 

the ground-truth region segmentations were high and consistent between all training folds, with a 

mean (± standard deviation) DSC of 0.95 ± 0.01. When combining the cross-validation fold 

predictions using our ensemble approach, the performance on the test set increased to 0.96 ± 

0.06. The middle slices of the predicted 3D regional segmentations for the test set were mostly 

within 4 mm of the ground-truth segmentation slice locations, with the greatest number of patients 

being within 1 mm (Figure 2B); the maximum outlier was at a distance of 10 mm. Examples of 

test set predictions for cases with low, medium, and high performance compared to the mean 

DSC are shown in Figure 2 C-E. As can be visually confirmed, the low-performance case still 

generated a segmentation such that the middle slice was contained in the C3 region.  
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Figure 2. 3D ResUNet model performance for segmentation of C3 vertebra section. (A) Boxplots 
of the Dice similarity coefficient (DSC) distributions for the 5-fold cross-validation data sets (Set 1 
to Set 5 – 60 patients each) and the test data (90 patients). (B) Histogram of the absolute 
difference (in mm) of the C3 slice location at the middle slice of the auto-segmented C3 section 
and the location of the ground-truth manually segmented CT slice. Illustrative examples 
overlaying the C3 ground-truth segmentations (red) (33 mm centered at the ground-truth manually 
segmented CT slice) and predicted segmentations (yellow) on the CT images with different DSC 
values (low – 0.75 [C], medium – 0.88 [D], and high – 0.98 [E] performance compared to the mean 
DSC value of 0.95). The middle slice at the center of mass of the segmented C3 region was auto-
selected for further skeletal muscle auto-segmentation by the 2D ResUNet model. 
 

2D ResUNet model performance: SM auto-segmentation 

 

The performance of our 2D ResUNet model for segmenting the C3 vertebra SM is summarized 

in Figure 3A. The DSCs calculated between the model-predicted segmentations and the ground-

truth segmentations were high and consistent between all training folds, with a mean DSC of 0.95 

± 0.002. When combining the cross-validation fold predictions using our ensemble approach, the 

mean DSC performance on the test set remained consistent at 0.95 ± 0.02. The cross-sectional 

areas derived from the 2D model predictions using both the ground-truth slice locations and auto-

selected slice locations from the 3D ResUNet model were highly correlated to the cross-sectional 

areas derived from the ground-truth segmentations (Figure 3B). The predicted areas using the 

ground-truth slice locations had a Pearson r=0.98 (p < 0.0001) and nonsignificant Wilcoxon test 

(p=0.43). Similarly, the predicted areas using the auto-selected slice locations had a Pearson 
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r=0.98 (p < 0.0001) and nonsignificant Wilcoxon test (p=0.22). Examples of test set predictions 

for cases with low, medium, and high performance compared to the mean DSC for predictions 

using ground-truth slice location are shown in Figure 3 C-E. As can be visually confirmed, the 

low-performance case successfully generated a segmentation for musculature that was not 

included in the ground-truth segmentation. Moreover, the predictions using the auto-selected slice 

location from the 3D ResUNet model yielded virtually indistinguishable results for the low-

performance and medium-performance cases (Figure 3 F,G) and identical results for the high-

performance case (Figure 3E). Finally, when investigating the percentage difference in cross-

sectional areas between the model-generated and ground-truth segmentations, there was no 

significant difference when using the ground-truth slice location or the auto-selected slice location 

(p=0.37) (Figure 3H). 

 

 
Figure 3. 2D ResUNet model performance for segmentation of C3 skeletal muscle (SM). (A) 
Boxplots of the Dice similarity coefficient (DSC) distributions for the 5-fold cross-validation 
datasets (Set 1 to Set 5 – 60 patients each) and the test data (90 patients). (B) A scatter plot of 
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the SM cross-sectional area using the ground-truth manual segmentation (x-axis) and the SM 
cross-sectional areas (y-axis) using predicted segmentations of the 2D ResUNet applied to the 
ground-truth CT image slice (Pred_GT) and the auto-selected CT image slice using the C3 section 
auto-segmentation (Pred_C3). Illustrative examples overlaying the skeletal muscle (SM) ground-
truth segmentations (red) and predicted segmentations (yellow) on the same ground-truth CT 
images (C, D, E) and auto-selected CT images (F, G) with different DSC values (low – 0.88, 
medium - 0.95, and high – 0.98 compared to the mean estimated DSC value of 0.95). The auto-
selected CT image for the high-performance example was identical to the ground-truth image and 
therefore provided the same segmentation as shown in panel C. (H) Histogram of percentage 
difference of SM cross-sectional areas between ground-truth segmentations compared to the 
predicted SM cross-sectional areas (ΔA%) corresponding to the model using ground-truth slice 
location (red) or auto-selected slice location (blue).  
 

SMI measurement comparisons  

 

We compared SMI values for test set patients calculated using ground-truth SM segmentations 

with predicted SMI values calculated using SM segmentations generated from our 2D ResUNet 

models using the ground-truth slice location (Figure 4A) or auto-selected slice location (Figure 

4B). Both model SM segmentations led to predicted SMI values that were highly correlated to the 

ground-truth SMI values. The predicted SMI values using the ground-truth slice location for males 

and females both had a Pearson r=0.98 (p < 0.0001) and nonsignificant Wilcoxon signed-rank 

tests (p=0.17 and p=0.43, respectively) compared to ground-truth SMI values. Similarly, the 

predicted SMI values using the auto-selected slice location for males and females had Pearson r 

values of 0.97 and 0.96, respectively (both p < 0.0001) and nonsignificant Wilcoxon signed-rank 

tests (p=0.19 and p=0.98, respectively) compared to the ground-truth SMI values.  

 

Figure 4.  Scatter plots of the skeletal muscle index (SMI) values determined for test set patients 
(stratified by gender) using the ground-truth manual segmentation (x-axis) and those determined 
using predicted segmentations of the 2D ResUNet (y-axis) using (A) the ground-truth CT image 
slice (Pred_GT) and (B) the auto-selected CT image slice using the C3 section auto-segmentation 
(Pred_C3). 
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Survival analysis  

 

The results of the overall survival analysis based on sarcopenia thresholds are shown in Figure 

5. Independent of the method of SMI calculation (GT, Pred_GT, or Pred_C3), there were 

significant differences in overall survival of males between those with normal and depleted muscle 

tissue (Figure 5 A-C), while females exhibited no significant difference (Figure 5 D-F). Hazard 

ratios (95% confidence intervals) in males for GT, Pred_GT, and Pred_C3 were 1.82 (1.1-3.0), 

1.95 (1.18-3.22), and 1.97 (1.19-3.25), respectively. Hazard ratios (95% confidence intervals) in 

females for GT, Pred_GT, and Pred_C3 were 2.76 (0.59-13.02), 3.4 (0.73-15.83), and 3.72 (0.8-

17.31), respectively.  

 

Figure 5. Kaplan-Meier plots showing overall survival probabilities (test and validation set 
combined, 390 patients) as a function of time in days for estimated skeletal muscle (SM) index 
(normal vs depleted) in male (A-C) and female (D-F) patients using the ground-truth SM 
segmentation (GT) (A, D), auto-segmented SM using the ground-truth slice location (Pred_GT) 
(B, E), and auto-segmented SM using the auto-selected slice location (Pred_C3) (C, F).  

 

DISCUSSION 

 

In this study, we have utilized a multi-stage deep learning approach to segment the C3 region of 

the head and neck, auto-select a single representative slice, and auto-segment the corresponding 

SM. Our approach determined slice location and segmented SM with high accuracy when 

compared to ground-truth segmentations. By fully automating this workflow, we have enabled 

more rapid testing and application of sarcopenia-related clinical decision-making. To our 

knowledge, this is the first study to fully automate sarcopenia prediction based on non-abdominal 

imaging.  

 

We utilized both 2D and 3D ResUNet models in our approach. By decomposing the C3 detection 

and SM segmentation problem into two separate tasks, we ensure that accurate representations 
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of patient anatomy are identified by the models (C3 region) and subsequently maximize 

performance for SM segmentation. While previous SM auto-segmentation studies often required 

specific slices as model inputs [20,25] or utilized separate pre-processing software [22,24], multi-

stage deep learning methods have recently been adapted in this domain as well [21,23]. Both the 

2D and 3D ResUNet models that make up our segmentation pipeline had high performance, with 

mean DSC values in the test set above 0.95. Importantly, the performance of our C3 SM 

segmentation model is comparable to that of previous L3 SM deep learning segmentation models, 

which also demonstrate test set DSCs of ~0.95 [20–25]. Moreover, for cases with relatively low 

performance, we visually confirmed that results were reasonable, i.e., the auto-selected slice was 

still contained within the C3 region for the 3D model, and the correct musculature was segmented 

on the 2D model. Importantly, we also showed minimal differences in the 2D SM segmentation 

model regardless of how the slice location was determined, indicating the model is robust to the 

specific C3 slice location. Consistent with quantitative measures of segmentation performance, 

using our deep learning segmentations to calculate SMI demonstrated a high correlation with 

ground-truth SMI independent of gender stratification.  

 

Several previous studies have demonstrated that SMI values can be used to stratify patients into 

subgroups that are strongly associated with prognostic outcomes [2,6,7]. Using lumbar SMI 

conversion equations previously derived by van Rijn-Dekker et al. [6] and validated SMI 

thresholds [12], we demonstrated that calculations based on our deep learning segmentations 

predict similar overall survival outcomes as calculations based on ground-truth segmentations. 

Moreover, p-values for all methods were significant for males but not females. These results are 

consistent with recent literature by Olson et al. [15] which emphasized that sarcopenia was 

associated with poor survival outcomes in males but not in females. Our results suggest that our 

automated methods are dependable for use in prognostic outcome prediction.   

 

While our study presents encouraging results towards full automation of sarcopenia-related 

clinical decision-making for HNC patients, there were some limitations. First, we only tested our 

method on pre-therapy images. Importantly, some studies have suggested prognostic evidence 

is higher for post-therapy sarcopenia than pre-therapy sarcopenia in HNC [7]. Therefore, further 

confirmatory work is needed to ensure our methods can be used accurately and reproducibly for 

post-therapy imaging. Moreover, we have limited our analysis to CT images as CT is the most 

common imaging modality for HNC radiotherapy treatment planning. However, the use of 

additional modalities for SM segmentation, i.e., magnetic resonance imaging, as has been utilized 

in other studies [35–37], may warrant additional auto-segmentation investigations. Finally, while 

we believe current model performance is satisfactory for clinical applications as demonstrated by 

comparisons with ground-truth segmentations and SMI measures, different architectural choices 

or ensemble approaches could be further explored to improve performance.  

 

CONCLUSIONS 

 

In summary, using open-source toolkits and public data, we applied 3D and 2D deep learning 

approaches to head and neck CT images to develop an end-to-end automated workflow for SM 

segmentation at the C3 vertebral level. When evaluated on independent test data, our fully-

automated approach yielded mean DSCs of up to 0.96 for segmenting the C3 vertebra region and 

0.95 for segmenting the corresponding SM. Cross-sectional areas and calculated SMI values 

derived from our approach were highly correlated to ground-truth (r>0.95), indicating their 
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potential clinical acceptability. Moreover, our methods can be reliably combined with validated 

SMI thresholds for use in prognostic stratification. Our study is an essential first step towards fully-

automated workflows for sarcopenia-related clinical-decision making. Future studies should 

consider incorporating additional imaging timepoints and modalities for automated sarcopenia 

prediction. 
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