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Abstract 

A new SARS-CoV-2 variant of concern, Omicron (B.1.1.529), has been identified based on 
genomic sequencing and epidemiological data in South Africa. Presumptive Omicron cases in 
South Africa have grown extremely rapidly, despite high prior exposure and moderate 
vaccination coverage. The available evidence suggests that Omicron spread is at least in part 
due to evasion of this immune protection, though Omicron may also exhibit higher intrinsic 
transmissibility. Using detailed laboratory and epidemiological data from South Africa, we 
estimate the constraints on these two characteristics of the new variant and their relationship. 
Our estimates and associated uncertainties provide essential information to inform projection 
and scenario modeling analyses, which are crucial planning tools for governments around the 
world. 

Background 

As of 6th December 2021, over 265M SARS-CoV-2 infections have been reported worldwide, 
including 5.2M deaths. Approximately 87% of those cases and 76% of deaths have occurred 
since the first variants of concern were detected in December 2020 (1–3), despite increasing 
coverage with efficacious vaccines, in particular in high-income countries. In November 2021, 
South African researchers reported a new variant designated B.1.1.529 (4), subsequently 
declared variant of concern Omicron by the World Health Organization (WHO) on November 
26th (5). Genomic sequencing of Omicron indicates a large number of mutations in the receptor 
binding domain of the spike protein (6), and prior work has shown that such mutations lead to 
decreases in virus neutralization (7, 8). Ongoing neutralization experiments consistently find 
reductions in neutralization of Omicron, though the data available to date indicate a wide range 
for the magnitude of these reductions (9–12). Furthermore, ongoing surveillance monitoring for 
changes in reinfection risk in South Africa finds an early signal of immune evasion at the 
population level that coincides temporally with the emergence of the Omicron variant (13). 
Critically, a major sublineage of the Omicron variant, designated BA.1, which has come to 
dominate transmission in South Africa, is characterized by a deletion at sites 69-70 of the spike 
protein (4). The same change was previously found to cause S-gene target failure (SGTF) for 
the Alpha variant in the TaqPath™ COVID-19 (Thermo Fisher Scientific, Waltham, MA, USA) 
PCR test (14, 15), and researchers have confirmed that this deletion in Omicron also leads to 
SGTF (16). 

To perform public health model-based scenario analysis of Omicron impact, researchers need 
estimates of the transmission characteristics of the new variant, particularly the degrees of 
change in intrinsic transmissibility and immune evasion. Using epidemiological and SGTF time-
series data and prior model inferences, we report a Next-Generation-Matrix (NGM) based-
approach to estimate a constraint curve for these two properties that is compatible with 
observed Omicron case growth in South Africa. We incorporate estimates of protection against 
infection based on recent neutralization experiments to narrow the plausible range of immune 
evasion. 
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Methods in brief 

For four of South Africa’s nine provinces, using positive SARS-CoV-2 testing data with 
specimen receipt dates from October 1st through December 6th 2021, we performed the 
following analysis: 

1. Fit the proportion-SGTF time series to estimate the relative growth rate (∆r) of proportion 

Omicron sublineage BA.1 (hereafter, BA.1) versus other circulating lineages (hereafter, 
background; presumed to be primarily Delta, but with a slow-growing C.1.2 fraction (17)). 

2. Using profile confidence interval of the BA.1 proportion estimates, create samples of 
paired BA.1 and background infection series from the time series of detected infections (i.e., 
primary infections plus reinfections). 

3. Estimate paired daily time-varying reproduction number (Rt) series for BA.1 and 
background infections, assuming either a generation time of 6.4 days for both BA.1 and 
background, or a shorter generation time of 5.2 days for BA.1. Compute the daily ratios of Rt 
values. 

4. Take the geometric mean of each ratio ensemble for the period 14th - 20th November to 
create an estimated distribution of Rt ratios. 

5. Varying the level of immune evasion for BA.1, compute next generation matrix principal 
eigenvalue (NGM R) ratios. 

6. Identify the required transmissibility multiplier distribution to match the Rt ratios from step 
4 to the principal eigenvalue ratios in step 5. 

In a sensitivity analysis, we repeated these analyses using a cut-off date of 27th November, 
before testing increased as a result of the announcement of a new variant.  We performed all 
analyses and visualization using R 4.1.2, using the following packages: data.table (18), 
EpiNow2 (19), ggplot2 (20), patchwork (21), bbmle (22), and emdbook (23). 

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 21, 2021. ; https://doi.org/10.1101/2021.12.19.21268038doi: medRxiv preprint 

https://doi.org/10.1101/2021.12.19.21268038
http://creativecommons.org/licenses/by/4.0/


Pearson et al. Omicron in South Africa 

Page 4 of 24 

Relative Growth Estimation & Incidence Ensembles 

We used province-specific time-series counts (adjusted to correct for reporting delays as in (13)) 
of positive SARS-CoV-2 PCR tests performed by South Africa’s National Health Laboratory 
Service (NHLS) and Lancet Laboratories, a private sector laboratory. Both laboratories use the 
TaqPath™ COVID‑19 assay, which exhibits the SGTF associated with BA.1. Laboratory data 
included gene specific cycle threshold (Ct) values for positive PCR tests, and only samples with 
Ct values ≤30 on at least one gene target (ORF1ab or nucleocapsid) were included in the 
growth rate analysis. 

We used maximum likelihood to fit a separate model for each province, explaining the observed 
data with logistic growth and imperfect test performance. We fit a logistic growth rate, half-
replacement time, and SGTF sensitivity (the proportion of BA.1 infections with SGTF) and 
specificity (fraction of positive tests for which the assay properly binds the S-gene in background 
infections). We attempted to fit each province with a beta-binomial distribution to account for 
over-dispersion, as well as with a binomial distribution, and calculate the associated profile 
confidence intervals (23). We rejected fits that did not converge, fits where the confidence 
interval for ∆r did not converge, and (for the beta-binomial) fits where the shape parameter 
exceeded a set threshold of exp(3) ~ 20 (meaning that the overdispersion was not supported). 
When neither model was rejected, we used the beta-binomial model. We report results for 
provinces where at least one model converged (Gauteng (GP), KwaZulu-Natal (KZN), Northern 
Cape (NC), and Northwest (NW)). 

We then generated ensembles of BA.1 proportion time series from the fits using posterior 
predictive sampling (23). We use those time series to create 1,000 sample partitions of the 
observed incidence into BA.1 and background infections. 

Aggregate Rt Estimation 

Using the paired BA.1 and background infection time series samples, we estimated the Rt value 
for each series assuming a gamma distributed intrinsic generation interval with mean of 6.38 
days (s.d. of mean: 1.24; s.d. 5.39, s.d. of s.d. 1.35) (24).  As a sensitivity analysis, we also 
estimate the Rt ratio with a generation interval with a mean of 5.2 days for the BA.1 infection 
time series, which we implement by halving the value of the incubation period. We create a 
posterior sample of 1,000 Rt time series estimates for each province. Matching on sample pairs, 
we compute the series of Rt ratios for BA.1 to background. Finally, for each sample we compute 
a geometric mean ratio for the week of 14th to 20th November (inclusive). This period is after the 
initial noisy introduction of BA.1 but prior to the surge in testing associated with the public 
announcement of the variant’s discovery (see Supplement Fig S2). After taking the geometric 
mean, we recover a distribution of BA.1 to background time-averaged Rt ratios during a period 
of relatively stable growth. 
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Mobility & Contact Matrices 

We adapted a global set of national contact matrices (25) by adjusting simultaneously for 
symmetry of contacts and provincial age distributions to create province-specific matrices. As in 
other work (26), we computed the weighted geometric, centered 7-day average of Google 
Mobility indicators, consolidating the “other” contacts multiplier by weighting retail & recreation 
0.3, grocery & pharmacy 0.3, transit 0.3, and parks 0.1. We use the Oxford Stringency index 
(27) for schools weighting, using the C1 (Containment and closure policies: School closing) 
value * ⅓. 

Non-Susceptible Fractions 

The immune-escapable (recovered and/or vaccinated) and currently infected fractions of the 
population were estimated using the South African National COVID-19 Epi Model (NCEM). 
NCEM is a mathematical transmission model developed by the South African COVID-19 
Modelling Consortium (SACMC) that has been adapted several times over the course of the 
COVID-19 pandemic (28). The current version (v6.0) is a multi-strain, age-structured, spatially-
explicit, generalized susceptible-exposed-infected-recovered (SEIR) compartmental model of 
COVID-19 that runs at the scale of South Africa’s provinces (29). The model, which accounts for 
South Africa’s SARS-CoV-2 vaccination rollout by age-group, province, and vaccine doses and 
product type, has been calibrated to provincial and age-specific data on seroprevalence, 
hospital admissions, SARS-CoV-2 variant distribution, and hospital-based and excess mortality. 
The current version of the model incorporates the dynamics of the ancestral, Beta, and Delta 
variants, each of which drove a major prior wave of SARS-CoV-2 transmission in South Africa. 

We use the model to provide a time series, by age and province, of the proportion of the 
population protected from infection by vaccines, by prior infection, and by current infection. The 
model assumes that vaccine-derived protection from infection wanes on average six months 
post-vaccination, while protection against severe disease is retained over the modelled time 
frame (30–32).  

Next Generation Matrix Method 

The Next-Generation-Matrix (NGM) method (33) can be used to compute the basic reproduction 
number (R0) for a compartmental model of a pathogen, and given the fraction of the population 
in infectable classes, an effective reproduction number can also be computed. We assume an 
age-stratified population, with susceptible, exposed, infectious, recovered, and vaccinated 
compartments, with additional distinctions within the infectious compartment into asymptomatic, 
pre-symptomatic, and symptomatic compartments. We assume age-specific susceptibility and 
symptomatic fractions (34).  

For the estimation period, we also used estimates from the NCEM to set the susceptible 
proportion. We then increased the susceptible proportion uniformly across all ages by a 
specified multiplicative factor to represent different scenarios of immune evasion. 
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Estimating the Plausible Range for Immune Escape 

Using an analysis that synthesizes recent neutralization results with prior experiments to 
correlate vaccine efficacy against infection (35, 36), we can infer the relative reduction in 
protection due to BA.1 versus Delta, which we presume is the primary circulating variant in the 
background transmission.  

Results 

We found that BA.1 has a growth advantage over the background mixture of SARS-CoV-2 
lineages circulating in October and November 2021. This advantage appears in the time series 
of the proportion SGTF for all provinces in South Africa. However, the maximum likelihood 
estimation procedure does not converge for every province, likely reflecting the heterogenous 
geographic distribution of laboratories with capacity to perform the TaqPath assay. In the four 
provinces for which the model fits did converge (Fig 1, Table 1), the transformation of the 
infection time series demonstrated bi-exponential trends, which indicates continuing decline of 
background lineages and rapid growth of BA.1 (Fig 2). The estimated relative multipliers for 
those trends (Fig 3) indicate a larger growth advantage for BA.1 than observed with any prior 
variant emergence event. When combined with estimates of historical accumulation of immune 
protection due to vaccination and/or infection, the large multipliers suggest that BA.1 has an 
intrinsic transmission advantage (Fig 4). This conclusion is robust for most of our sensitivity 
analyses, however if the generation interval is shorter than for previously circulating variants or 
the true susceptible proportion is lower than we have estimated, reduced intrinsic 
transmissibility is plausible (Fig 5).  

While laboratory experiments find a consistent fold-decrease in antibody neutralization of 
Omicron virus and pseudovirus, the reference starting neutralization varies extensively based 
on the kind of immune protection, i.e. from which vaccine product(s) and dosing regimen, time 
from latest vaccination, and whether the individual acquired additional immune protection from a 
prior infection (9, 10, 12, 36). In our modelling framework, we assume that the population mixes 
homogeneously, and the appropriate aggregation of these immune states is not clear. As such, 
we consider variations on the assumed level of protection by considering alternative amounts of 
background immune evasion and fractions with some protection and framing the level of 
immune evasion by BA.1 relative to this background (Fig 5). For our main analysis, this 
approach suggests a 3- to 8-fold reduction in neutralization titres for Omicron relative to Delta, 
corresponding to immune evasion of 26 - 48% (15 - 33% for low Delta evasion scenario, 35 - 
59% for high Delta evasion). 
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Fig 1: Estimation of the growth advantage of BA.1 based on S-gene target failure (SGTF) 
proportion through time. Circles represent the observed proportion of SGTF by sample receipt 
date and province (the area of each circle is inversely related to number of samples, so that 
larger areas correspond to more uncertainty). Light red lines show simulated time series of BA.1 
prevalence using 50 parameter sets from posterior predictive sampling, in each province for 
which we have an acceptable model fit. We also show the maximum-likelihood estimates for 
growth rate and timing (solid red line), as well as the overall fitted SGTF (blue line), which 
incorporates sensitivity and specificity estimates. The estimates shown here are generated 
using model fits that assume a beta-binomial error distribution and account for sensitivity and 
specificity of the SGTF as a marker of BA.1. GP: Gauteng; KZN: KwaZulu-Natal; NC: Northern 
Cape; NW: North West. 

Table 1. Δr values by model and province. Δr is the growth advantage of Omicron sublineage 
BA.1 relative to background variants. 50/50 Timing is an estimate of the date on which half of all 
samples were BA.1. 

Province Δr (95% CI) 50/50 Timing 

Gauteng (GP) 0.32 (0.27, 0.39) Nov 8 (7, 10) 

KwaZulu-Natal (KZN) 0.5 (0.37, 0.73) Nov 19 (17, 20) 

North West (NW) 0.72 (0.30, 1.7) Nov 16 (13, 18) 

Northern Cape (NC) 0.31 (0.21, 0.44) Nov 23 (20, 25) 

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 21, 2021. ; https://doi.org/10.1101/2021.12.19.21268038doi: medRxiv preprint 

https://doi.org/10.1101/2021.12.19.21268038
http://creativecommons.org/licenses/by/4.0/


Pearson et al. Omicron in South Africa 

Page 8 of 24 

 

Fig 2: Incidence of detected infection split into BA.1 and background in Gauteng province. 
Applying the estimated BA.1 versus background fractions shown in Fig 1, we sample potential 
infection trajectories, which are then fed into the Rt estimation stage. The black curve shows 
detected infections by sample receipt date, with red and blue curves illustrating sampled BA.1 
and background infection trajectories, respectively.  
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Fig 3: Ratio of time-varying reproduction numbers in Gauteng province. Estimated ratio of BA.1 
Rt to background variant Rt, during the emergence period of BA.1 in Gauteng province, South 
Africa. We aggregate the time after super-spreading events in early November and before the 
announcement of Omicron sublineage BA.1, taking the geometric mean for the period 14th - 20th 
November 2021. Box plots show the median, interquartile and 95% ranges of the time-averaged 
Rt ratio, for the main parameter set (red) and for a sensitivity analysis that considers the 
possibility of a shorter incubation period (and therefore generation interval) for BA.1 (cyan). 

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 21, 2021. ; https://doi.org/10.1101/2021.12.19.21268038doi: medRxiv preprint 

https://doi.org/10.1101/2021.12.19.21268038
http://creativecommons.org/licenses/by/4.0/


Pearson et al. Omicron in South Africa 

Page 10 of 24 

 

Fig 4: Estimated transmissibility & immune evasion relationship for reference scenario based on 
estimates for Gauteng province, South Africa. The red and cyan shaded regions indicate the 
region of plausibility for relative transmissibility and immune evasion values for BA.1, assuming 
no change in the generation interval or a shorter generation interval, respectively. The yellow 
band represents estimated plausible immune escape values based on preliminary neutralization 
data (36) and previously estimated relationships between neutralization fold-reduction and 
vaccine efficacy against infection (37). The grey band represents values of immune protection 
that are considered implausible because they would imply greater levels of immune evasion for 
background variants than for BA.1. The horizontal dashed line indicates equal transmissibility 
for BA.1 and background variants. 
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Fig 5: Sensitivity of the plausible estimated transmissibility & immune evasion relationship. 
These panels compute the same calculation as shown in Fig 4, but with varying assumptions 
regarding the underlying fully susceptible proportion (columns) and the background level of 
protection provided by prior infection (rows). The main analysis, as shown in Fig 4, is replicated 
in the center panel. 

Discussion 

The Omicron variant, and specifically sublineage BA.1, is outcompeting the background mixture 
of SARS-CoV-2 variants in the South African setting and is doing so in the presence of high 
population-level immunity. Early indications from around the globe suggest a similar growth 
advantage in other settings. Our findings imply that BA.1’s competitive advantage most likely 
results from a combination of higher intrinsic transmissibility and an ability to evade immunity 
from prior infection and/or vaccination. Although the precise values for transmissibility and 
immune evasion are not identifiable in this analysis, the plausible ranges may be narrowed 
further when our results are combined with data from additional neutralization studies and/or 
population-level observational studies of the protective efficacy provided by vaccination or prior 
infection. 

For most settings, the most useful comparison would be the relative transmissibility of BA.1 to 
Delta, which remains the predominant variant circulating in most countries. The background 
mixture of variants in South Africa appears to be predominantly Delta during the time we are 
comparing growth rates (38). 

Our results imply that Omicron is likely more transmissible than Delta, even at extreme levels of 
immune evasion, though some of the alternative assumptions we considered can be compatible 
with lower transmissibility in a fully susceptible (“immunologically naive”) population. Estimates 
for the relative transmissibility of a new SARS-CoV-2 variant can vary substantially among 
regions within countries (39), and accordingly, the measured relative transmissibility of Omicron 
may differ in other settings. 

Our NGM approach assumes that individuals with breakthrough infections are subsequently as 
infectious in terms of their onward transmission as infections in immunologically naive 
individuals; this approximation ultimately tends to underestimate the BA.1 transmission 
advantage over other circulating variants. We expect that prior immunity will reduce the severity 
of breakthrough infections, and prior immunity has previously been correlated with lower 
propensity for onward transmission. If individuals with prior immunity are less transmissible, the 
selective advantage of immune evasion may be reduced, suggesting that population models 
accounting for this effect would tend to find higher transmissibility multipliers for equivalent 
immune evasion levels to match the empirical trends. We also assume similar infectious periods 
for BA.1 compared to other variants. If in fact BA.1 has a faster generation time, e.g. due to a 
shorter infectious period, then the estimated transmissibility multiplier would be still higher, 
offsetting the slightly lower Rt ratio calculated when assuming shorter generation times in our 
sensitivity analysis. 
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Given the epidemic trends in South Africa, the rapid introduction of BA.1 to other regions, and 
broad remaining uncertainty, public health analysis and planning should pivot to consider the 
impact of the Omicron variant in other locales. Our results imply that Omicron infections are 
likely to become widespread in all contexts, and while severity estimates of Omicron are still 
developing (40), the foundational work to prepare national and regional response scenarios for 
hospitalization and deaths can begin immediately. Given the complex constellation of sequence 
changes in BA.1, broad genomic surveillance should continue, particularly to calibrate the use of 
indicators like SGTF. The scale of these genomic changes also suggests the potential for 
changes in clinical presentation of COVID-19, which should be evaluated to inform projection 
analyses. Wherever household studies or other epidemiological fieldwork and surveillance are 
available to pivot, extend, or restart, best efforts should be made to measure transmissibility, 
immune escape, and generation times more directly. 
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Supplementary Information 

Nota Bene in re Implied R0s for BA.1 & Delta 

The 100% immune evasion end of main text Fig 4 should be interpreted as estimating the R0 
under “control” (i.e., after the response is underway), or Rc, for Omicron sublineage BA.1, and 
by implication of the transmissibility multiplication factor, for the background lineage composition 
also under control conditions (more specifically, for the mixture of non-Omicron circulating at the 
time, which is reasonably approximated as Delta in the South African setting). 

For the reference scenario, that implies Delta R0 is roughly 2.3: the median estimated peak Rt 
since identification of BA.1, 3.4, divided by the median transmissibility multiplier at total immune 
evasion, 1.5. This may seem remarkably different from the estimates of Delta R0 in the 5-7 
range (41), suggesting that high immune-escape scenarios can be ruled out. However, that 
interpretation relies on an inaccurate understanding of the previously reported Delta R0. That 
value essentially is derived as: the wild type R0 was 2-3 (42, 43), Alpha is ~1.7 times as 
transmissible as wild type (39), Delta ~1.5 times again as transmissible as Alpha (44), and 
therefore Delta R0 is 2-3*1.3*1.7 = 4.4-6.3. 
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However, that is the Delta R0 referenced to the pre-epidemic period: that context, and the 
associated R0, no longer applies with the wide variety of changes, particularly in terms of 
behaviours and associated effective contact rates, that have occurred throughout the pandemic 
and have not returned to pre-pandemic levels. If we estimate R0 for Delta by computing the Rt 
early in the Delta wave in South Africa, determine the necessarily multiplier for transmissibility 
using the NGM R with estimated proportion susceptible at that time, and then create a 
counterfactual that removes all immunity and apply that multiplier, we find that the Delta Rc at 
the outset of the Delta wave in South Africa is roughly 2.4 (for the generation interval of 
approximately 6.3 days assumed in the main analysis). 

Parameters for Next Generation Matrix Calculation 

We assume that the relative infectiousness of symptomatic infections is twice that of infections 
that remain asymptomatic for their entire duration. We use the age-specific relative susceptibility 
and symptomatic fraction from early COVID-19 pandemic estimates (34). We also assume the 
infectious periods described in that work, which have a mean of 5 days (other distributional 
features being irrelevant in the next generation method). 
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Fig S1. Time-varying reproduction number (Rt) for all infections versus only primary infections. 
Using primary infections only versus including reinfections has a very minor effect on estimating 
Rt, although changing the cut-off date for the analysis results in noticeably different curves. This 
effect is minor, however, in the period used for Rt ratio estimation (grey box). 

Calculation of vaccine coverage 

We obtained weekly numbers of partially and fully vaccinated individuals by age, province, and 
vaccine product (JnJ or Pfizer) from publicly available data (45) and considered vaccine efficacy 
against observed infection by the Delta variant (46, 47) to obtain numbers of effectively 
vaccinated people in South Africa. To obtain numbers in 5-year age-groups, instead of 10-year 
age-groups reported by EVDS, we allocated vaccinated individuals from 10-year age-groups to 
5-year age-groups according to the corresponding population proportions as estimated by the 
Thembisa model (48). We then calculated vaccination coverage by province and 5-year age-
group by dividing the number of effectively vaccinated individuals by the estimated population 
size. Daily numbers were calculated by linear interpolation. We considered a two-week lag 
between the day of vaccination and effective protection. 
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Calculation of fraction of cases/deaths in the variant era (since December 2021) 

We pulled data from “Our World in Data” up to 5th December 2021. We then summed up all 
cases after first notification of Alpha in the UK (28th September 2021) and all deaths from 28 
days later and divide by totals, providing a very rough calculation of the proportion of 
cases/deaths attributable to variants of concern. For comparison, we also calculated the 
proportion of  all cases (or deaths) in each country from the date (or 28 days later for deaths) 
that the first incidence of a variant of concern was identified in that country.  

 Total  Global Total after 
Alpha (B.1.1.7) 
in UK 

% Total after 
first variant 
per country 

% 

Cases 265,264,696 231,862,674 87.4% 146,142,609 55.1% 

Deaths 5,238,932 4,030,271 76.9% 2,664,156 50.9% 

Sensitivity to cut-off date for analysis 

To evaluate the sensitivity of our results to the choice of the timeframe used for analysis, we 
repeated all analyses in the main text using an alternative cut-off specimen receipt date of 27th 
November 2021, representing the time period before testing levels were affected by the public 
announcement of detection of the B.1.1.529 lineage (Fig S2). 
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Fig S2. Test volumes by province and specimen receipt date. The solid black curve shows the 
daily number of tests conducted over time. The light grey area shows the time window used for 
Rt estimation. Dashed vertical lines represent the two cut-off dates used for other analyses: 
2021-11-27 (sensitivity analysis) and 2021-12-06 (main analysis). Following the public 
announcement that a new variant had been identified in South Africa, testing volumes increased 
substantially, particularly in Gauteng, which was the epicentre of spread of the Omicron variant 
at that time. 

Table S1: Fitting parameters for earlier truncation date 

Province Δr (95% CI) 50/50 Timing 

Gauteng (GP) 0.22 (0.20, 0.24) Nov. 8 (6, 9) 

KwaZulu-Natal (KZN) 0.47 (0.33, 0.64) Nov 19 (17, 20) 
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Fig S3:  Estimation of the growth advantage of BA.1, using earlier truncation date, for Gauteng 
and KwaZulu-Natal provinces. The maximum likelihood estimates of BA.1 relative growth rate. 
Note that the earlier cut off dates limit the provinces for which estimates converge and also tend 
to lower growth rate estimates. This occurs because earlier fits with less data have much more 
limited information about the sensitivity of SGTF. 
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Fig S4: Estimated transmissibility & immune evasion relationship for reference scenario based 
on estimates for Gauteng, using a cut-off data of 27th November 2021. The red and cyan 
regions indicate the region of plausibility for relative transmissibility and immune evasion values 
for BA.1, assuming no change in the generation interval or a shorter generation interval, 
respectively. The yellow band represents estimated plausible immune escape values, as 
described in Figure 4 of the main text. The grey band represents values of immune protection 
that are considered implausible because they would imply greater levels of immune evasion for 
background variants than for BA.1. The horizontal dashed line indicates equal transmissibility 
for BA.1 and background variants. 

 

Fig S5: Sensitivity of the plausible transmissibility & immune evasion relationship, using a cut-off 
data of 27th November 2021. These panels compute the same calculation as in Fig S4, but with 
varying assumptions regarding the underlying fully susceptible proportion (columns) and the 
background level of protection provided by prior infection (rows). 
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Fig S6: Maximum likelihood fitting comparisons of the different models, by cut-off date. The 
panels show the different model estimates for different provinces (columns), using different cut 
off dates for SGTF data (rows). Dashed red and blue lines represent the beta binomial, which 
accounts for sensitivity and specificity; this is the preferred model for which results are 
presented in the main text. The solid red lines represent the “straight” beta binomial model 
(without accounting for sensitivity and specificity), and the dotted lines represent the binomial 
model with sensitivity and specificity. Only models for which both the estimate and the 
confidence intervals converge are shown. GP: Gauteng; KZN: KwaZulu-Natal; NC: Northern 
Cape; NW: North West. 
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