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Abstract 
 

Background. Psilocin, the neuroactive metabolite of psilocybin, is a serotonergic psychedelic that 

induces an acute altered state of consciousness, evokes lasting changes in mood and personality in 

healthy individuals, and has potential as an antidepressant treatment. Examining the acute effects of 

psilocin on resting-state dynamic functional connectivity implicates network-level connectivity motifs 

that may underlie acute and lasting behavioral and clinical effects.  

Aim. Evaluate the association between resting-state dynamic functional connectivity (dFC) 

characteristics and plasma psilocin level (PPL) and subjective drug intensity (SDI) before and right after 

intake of a psychedelic dose of psilocybin in healthy humans. 

Methods. Fifteen healthy individuals completed the study. Before and at multiple time points after 

psilocybin intake, we acquired 10-minute resting-state blood-oxygen-level-dependent functional 

magnetic resonance imaging scans. Leading Eigenvector Dynamics Analysis (LEiDA) and diametrical 

clustering were applied to estimate discrete, sequentially active brain states. We evaluated 

associations between the fractional occurrence of brain states during a scan session and PPL and SDI 

using linear mixed-effects models. We examined associations between brain state dwell time and PPL 

and SDI using frailty Cox proportional hazards survival analysis.  

Results. Fractional occurrences for two brain states characterized by lateral frontoparietal and medial 

fronto-parietal-cingulate coherence were statistically significantly negatively associated with PPL and 

SDI. Dwell time for these brain states was negatively associated with SDI and, to a lesser extent, PPL. 

Conversely, fractional occurrence and dwell time of a fully connected brain state was positively 

associated with PPL and SDI.  

Conclusion. Our findings suggest that the acute perceptual psychedelic effects induced by psilocybin 

may stem from drug-level associated decreases in the occurrence and duration of lateral and medial 

frontoparietal connectivity motifs in exchange for increases in a uniform connectivity structure. We 

apply and argue for a modified approach to modeling eigenvectors produced by LEiDA that more fully 

acknowledges their underlying structure. Together these findings contribute to a more comprehensive 

neurobiological framework underlying acute effects of serotonergic psychedelics.  

Clinical Trial Registration: NCT03289949 
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Introduction 

Psilocybin is a psychedelic compound that has gained significant interest over the last decade with 

promising evidence for therapeutic efficacy in treating several neurological and neuropsychiatric 

disorders, including depression1–3, anxiety4, substance abuse5,6, migraine7, and cluster headache8. 

Through stimulation of the serotonin 2A receptor (5-HT2AR), psilocin, the neuroactive metabolite of 

psilocybin, potently and acutely induces an altered state of consciousness9–12. Psilocybin also induces 

rapid and lasting positive effects on mood, well-being, and personality1,13–15. These intriguing effects 

precipitate the need to resolve associated and perhaps mediating neurobiological mechanisms. Such 

information can potentially inform future drug development programs and identify patient subgroups 

that may benefit from psychedelic therapy or predict potential adverse drug effects.  

Previous studies have characterized distributed functional brain connectivity and macroscale cerebral 

networks acutely affected by a single administration of a serotonin psychedelic compound such as 

psilocybin with resting-state functional magnetic resonance imaging (rs-fMRI)16,17. Studies suggest 

modulation of distributed connectivity patterns include alterations in thalamic connectivity18, whole-

brain connectivity19,20, decreased segregation and integration of canonical resting-state networks20,21, 

and macroscopic measures such as entropy22. However, most studies have focused on “static” 

functional connectivity, estimated as the correlation between pairs or across sets of areas over the 

duration of the scan session. This approach assumes signal stationarity for the entirety of the 5-10-

minute rs-fMRI scan session, which may neglect relevant and observable neural dynamics arising from, 

e.g., mind-wandering or ephemeral experiences.  

Dynamic functional connectivity (dFC) has emerged as a method for extracting informative, time-

varying brain connectivity patterns23. Unsupervised machine learning methods are employed to 

cluster instantaneous or small time-window connectivity metrics into discrete groups of distinct 

coactivation24–26. Such metrics are usually model-based and include lagged and zero-lag correlation 

coefficients and various estimates of interregional functional synchrony27,28. An appealing aspect of 

dFC strategies is that they attempt to model dynamics of connectivity processes that occur within a 

resting-state scan session, which is particularly relevant to the evaluation of psychedelics, which 

induce a dynamically evolving psychological experience.  

Acute psychedelic effects on dynamic functional brain connectivity have been previously examined in 

only two separate datasets29–31. Lord and colleagues applied Leading Eigenvector Dynamics Analysis 

(LEiDA)32 to rs-fMRI data acquired before and after a single intravenous dose of psilocybin in nine 

subjects. The authors reported that the probability of occurrence (“fractional occurrence”) of a 

discrete brain state comprising frontoparietal network elements was significantly lower after 
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psilocybin infusion31. Notably, plasma psilocin levels were not measured, which we have shown is 

tightly coupled to 5-HT2AR drug occupancy11 at the time of functional brain imaging. Moreover, there 

was only partial agreement between the discrete brain states identified and canonical resting-state 

networks, suggesting that acute psilocin effects may be informatively characterized by approaches 

that group sets of regions in a data-driven manner (e.g., clustering) as opposed to a priori defined 

network structures. It is critical to evaluate whether similar findings are observed in an independent 

sample and to evaluate this effect following oral psilocybin administration, as this is how it is 

administered clinically. During oral administration, the psychedelic effects are protracted over 

approximately six hours. Examining psilocybin effects on functional connectivity in alignment with an 

assessment of plasma psilocin levels and subjective effects throughout this period provides a novel 

perspective on its dynamic effects on the brain. 

Furthermore, we see an opportunity to improve LEiDA and associated statistical evaluations. Typically, 

LEiDA clusters leading eigenvectors of instantaneous phase coherence maps using Euclidean k-means. 

Prior to clustering, eigenvectors are flipped so that the majority of elements are negative. However, 

eigenvectors are, in practice, normalized to have unit length and have arbitrary sign. Thus, 

eigenvectors are distributed on the antipodally symmetric unit hypersphere, attributes not 

acknowledged by Euclidean k-means nor preserved by the aforementioned flip procedure (see Figure 

S1). This leads to sub-optimal clustering. Directional statistics is a branch of statistics that deals with 

data where the direction holds more information than the amplitude, typically represented as 

normalized vectors distributed on some geometric manifold33. Specifically, the Watson distribution34 

is optimal for modeling data distributed on the antipodally symmetric unit hypersphere. Diametrical 

clustering35,36 is the k-means equivalent of Watson mixture models and may offer more suitable 

clustering of eigenvectors in LEiDA. In addition to fractional occurrence, the average duration of brain 

state occurrences (“dwell time”) can complementarily inform the nature of connectivity dynamics. We 

suggest modeling dwell time using survival analysis, which more appropriately captures the 

conditional dependence of state probability on the previous length of active time37.  

Here we evaluated acute psilocybin effects on dFC with blood-oxygen-level-dependent (BOLD) rs-fMRI 

in 15 healthy participants, each of whom completed one 10-min rs-fMRI scan session before intake of 

a psychedelic dose of psilocybin and multiple 10-min rs-fMRI scan sessions after psilocybin intake 

(approximately 40, 80, 140 and 300-min post-administration). We applied LEiDA with diametrical 

clustering to account for the intrinsic spherical geometry and antipodal symmetry in the distribution 

of eigenvectors. To establish the association between dFC characteristics and the 

psychopharmacological effects of psilocybin, we determined the association between the fractional 

occurrence of discrete brain states, defined by clustering, and both plasma psilocin level (PPL) and 
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subjective drug intensity (SDI), which we have shown are coupled to 5-HT2AR occupancy and baseline 

5-HT2AR11,12,20. We determined associations between PPL and SDI and discrete brain state dwell time 

using Cox regression frailty models.  

 

Figure 1: Methodological pipeline for leading eigenvector dynamics analysis (LEiDA) and diametrical clustering. (A): The LEiDA 
pipeline consists of extraction of session and region-wise instantaneous BOLD phases via the Hilbert transform (B), followed 
by an eigenvalue decomposition of the associated phase coherence map for every time-point, 𝑡𝑡 (C). The eigenvectors are 
constrained to unit norm. Diametrical clustering is applied to the set of leading eigenvectors across all scan sessions and 
subjects to derive discrete brain states (D). Every volume is hard-assigned to the closest brain state, generating the network 
activation sequence (A, lower panel), after which session-specific brain state descriptors such as fractional occurrence or dwell 
time may be calculated.  

 

Results 

Seventy-two 10-minute rs-fMRI scan sessions (300 whole-brain volumes, TR = 2s) acquired before and 

at multiple time points after oral psilocybin administration across 15 healthy participants were 

included in analyses, comprising 21,600 individual rs-fMRI brain volumes. Following preprocessing and 

denoising (see Methods), region-specific instantaneous phase estimates from the Hilbert transform 

were generated for the 90 cortical and subcortical regions of the Automated Anatomical Labeling 

(AAL) atlas38. An eigenvalue decomposition was computed of the phase coherence map at each time 
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point and scan session, generating 21,600 leading eigenvectors across all participants that were 

clustered into k discrete brain states defined by centroids determined with diametrical clustering (see 

Figure 1). Without a clear representation of what k should be, we explored a range of 𝑘𝑘 ∈ {2, … ,20} 

centroids, aligned with previous studies32,39,40. Generally, specific centroid locations were stable across 

contiguous values of k; 90-dimensional projections of all centroids for all values of k can be found in 

Supplementary Video S2. See Figure 2 for a visualization of estimated brain states for k = 7.  

 

Figure 2: Brain states estimated using LEiDA and diametrical clustering with k=7 with spatial connectivity representation (A) 
and coherence maps defined as the outer product of the cluster centroid (B). Only edges above the 75th percentile of absolute 
edge strengths are shown. In (A), all positive edges are shown in red and negative edges in blue, while nodes are colored 
according to the sign of their element in the respective cluster centroid.  

For all values of 𝑘𝑘 ≥ 4, we observed a “global” brain state characterized by all centroid elements 

having the same sign (e.g., see state 1 in Figure 2). All other brain states were characterized by 

coherence loadings in both directions. For example, for k = 7, brain state 2 showed strong coherence 

between areas related to visual processing (red nodes) and regions related to the salience network 

(blue nodes). Brain state 4 showed coherence between regions related to the frontoparietal, or central 

executive, network, including the dorsolateral prefrontal cortex and posterior parietal cortex. Anti-

coherent elements were observed in cingulate and parietal regions.  

 

Psilocybin effects on brain state fractional occurrence and dwell time  

To link PPL and SDI (each sampled immediately after every rs-fMRI scan session) with the prevalence 

of brain states, we used a linear mixed-effects model (separate models for PPL and SDI) to determine 

the respective associations with fractional occurrence (FO) of individual brain. We applied 

permutation testing and Max-T correction to control family-wise error rates (FWER) (see Methods); p-

values are summarized in Figure 3a for PPL and 3c for SDI. Across multiple values of 𝑘𝑘 ≥ 4, we 

observed one brain state (“frontoparietal state 1”, green triangle symbols in Figure 3, see also Figure 

4) for which the fractional occurrence was statistically significantly negatively associated with both 
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PPL (k = 7: slope = -0.0066, 95% CIunadj = [-0.0094;-0.0038]; pFWER-maxT < 0.001; units: FO per μg/ml PPL; 

Figure 4; Table S3) and SDI (k = 7: slope = -0.014, 95% CIunadj = [-0.017;-0.010]; pFWER-maxT < 0.001; units: 

FO per SDI rating; Figure 4; Table S3). Specifically, the association between brain state FO and PPL was 

significant for the interval 𝑘𝑘 ∈ {4, … ,9}, whereas for SDI, this association was significant for all 𝑘𝑘 ≥ 4. 

Put another way, the average total time the brain occupies this frontoparietal state during the course 

of a 10-min rs-fMRI scan was negatively related to PPL and SDI. For 𝑘𝑘 ≥ 8, we observed a second brain 

state (“frontoparietal state 2”, red star symbols in Figure 3, see also Figure S4) for which the FO was 

also statistically significantly negatively associated with both PPL (k = 11: slope = -0.0039, 95% CIunadj = 

[-0.0058;-0.0021]; pFWER-maxT = 0.001; units: FO per μg/ml PPL; Figure S4; Table S3) and SDI (k = 11: slope 

= -0.0076, 95% CIunadj = [-0.0101;-0.0050]; pFWER-maxT < 0.001; units: FO per SDI rating; Figure S4; Table 

S3). For 𝑘𝑘 ≥ 4, we observed a third brain state (“fully connected state”, blue diamond symbols in 

Figure 3, see also Figure S5) for which the FO was statistically significantly positively associated with 

SDI (k = 7: slope = 0.0076, 95% CIunadj = [0.0024;0.0127]; pFWER-maxT = 0.035; units: FO per SDI rating; 

Figure S5; Table S3). We did not observe any statistically significant association between the fully 

connected state and PPL. 

Next, we applied a Cox-proportional hazards frailty model to evaluate the effect of PPL and SDI on 

dwell time for each individual brain state. Bonferroni-Holm corrected p-values are summarized for PPL 

and SDI in Figure 3b and 3d, respectively. Frontoparietal state 1 dwell time was negatively associated 

with PPL across several values of k (k = 7; Hazard ratio (HR) = 1.017, 95% CIunadj = [1.006;1.028]; pFWER-

BH = 0.018; Figure 4; Table S3) and SDI (k = 7; HR = 1.037, 95% CIunadj = [1.018;1.055]; pFWER-BH < 0.001; 

Figure 4; Table S3). Specifically, the association between brain state dwell time and PPL was 

statistically significant for 𝑘𝑘 ∈ {4, … ,7}, whereas for SDI, this association was statistically significant 

for 𝑘𝑘 ∈ {4, … ,17,20}. In other words, the higher the PPL and SDI, the larger the hazard ratio, i.e., and 

the less average continuous time was spent in frontoparietal state 1. For 𝑘𝑘 ≥ 8, frontoparietal state 2 

also showed a negative association with both PPL (k = 11; HR = 1.027, 95% CIunadj = [1.013;1.040]; pFWER-

BH = 0.001; Figure S4; Table S3) and SDI (k = 11; HR = 1.057, 95% CIunadj = [1.036;1.079]; pFWER-BH < 0.001; 

Figure S4; Table S3). Overall, frontoparietal state 2 was significantly inversely associated to PPL for 

𝑘𝑘 = {9,11,12,15} and to SDI for 𝑘𝑘 ∈ {8, … ,18}. For 𝑘𝑘 ≥ 4 we observed that dwell time of the fully 

connected state was positively associated with both PPL (k = 7; HR = 0.983, 95% CIunadj = [0.972;0.996]; 

pFWER-BH = 0.045; Figure S5; Table S3) for 𝑘𝑘 = {4,6,7,8,12} and SDI (k = 7; HR = 0.970, 95% CIunadj = 

[0.952;0.987]; pFWER-BH = 0.005; Figure S5; Table S3) for 𝑘𝑘 ∈ {4, … ,10,12, … ,14,16}. 

All centroids across all values of k showing a statistically significant association between either PPL or 

SDI and either FO or dwell time are listed in Table S3. 
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Figure 3: Summary statistics linking brain state fractional occurrence and dwell time with plasma psilocin level (PPL) and 

subjective drug intensity (SDI). (A): Linear mixed-effects models of the association between PPL and brain state fractional 

occurrence. (B): Cox proportional hazards frailty models of the association between PPL and brain state dwell time. (C): Linear 

mixed-effects models of the association between SDI and brain state fractional occurrence. (D): Cox proportional hazards 

frailty models of the association between SDI and brain state dwell time. Horizontal red line denotes family-wise error rate 

(FWER) threshold for statistical significance. Fractional occurrence p-values were corrected using 100,000 permutations and 

max-T correction applied within-k (see Methods). Where an observed statistic exceeded all permuted values, the p-value was 

set to 10−5 (i.e., − 𝑙𝑙𝑙𝑙𝑙𝑙10(𝑝𝑝) = 5). Dwell time p-values were corrected using Bonferroni-Holm applied within-k. For every k, 

points were identified as one of the three brain states by matching all the corresponding centroids to the templates (k=7 for 

frontoparietal state 1 and the fully connected state, k=11 for frontoparietal state 2).  
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Figure 4: Frontoparietal state 1 and statistical associations for k=7. (A): 90-dimensional centroid, where region pairs with the 
same sign are said to be coherent. Many frontal regions, superior and inferior parietal regions, and inferior temporal lobe 
showed coherence with each other (red). Likewise, areas around the parieto-occipital sulcus, cingulum, and medial orbital 
frontal cortex were coherent (blue). (B): Functional coherence map and connectivity representation of the brain state. Edges 
are shown if their strength exceeds the 75th percentile of absolute edge strengths. In the connectivity visualizations, negative 
edges are blue and positive edges are red, while nodes are colored according to the sign of their centroid element in (A). (C): 
Associations between the expression of frontoparietal state 1 and plasma psilocin level and subjective drug intensity using 
linear mixed-effects models for fractional occurrence (left, each point is a scan session) and frailty Cox proportional hazards 
models for dwell time (right). For dwell time, the marginal survival curves for pre-specified covariate levels are shown. Colors 
in plots of fractional occurrence (C, left) denote individual participants. 

 

Stability of highlighted states  
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To identify the three brain states across k, we defined template centroids (k = 7 for frontoparietal 

state 1 and the fully connected state, k = 11 for frontoparietal state 2, see Figures S6-8). For every k, 

the brain state most closely matching (in squared Pearson correlation, see Methods) each of these 

three templates were marked. In Figure S9, between-k correlation coefficients indicate that the three 

states had very similar centroids across the range of k. The between-k similarity can also be confirmed 

visually in Figures S6-S8. Frontoparietal state 2 appeared initially at k = 8 and qualitatively became 

more associated with PPL and SDI than frontoparietal state 1 (see Figure 3). Likewise, estimated 

fractional occurrence slopes for the association between frontoparietal state 1 and PPL and SDI 

approximately halved at the transition from k = 7 to k = 8 (Table S3), suggesting that frontoparietal 

state 2 was incorporated within frontoparietal state 1 for k < 8.  

 

Diametrical clustering stability and comparison to k-means 

Like most clustering algorithms, diametrical clustering is initialized randomly. To quantify the variation 

in brain state centroid location between initializations, we ran diametrical clustering 1000 times with 

five replications each for all 𝑘𝑘 ∈ {2, … ,20} and extracted the two frontoparietal states and the fully 

connected state by identifying, for each k, the state most closely matching the relevant template 

states. If the Pearson correlation coefficient between the identified states and the template was 

negative, the sign of the identified state was inverted. Figure S10 shows the histogram of Fisher’s r-

to-z scores of the Pearson correlation coefficients across all initialization pairs, including a fitted 

Gaussian curve. Generally, we see high clustering stability regardless of initialization. The average 

correlation coefficient between initializations is numerically higher for the fully connected state, 

followed by frontoparietal states 1 and 2. As expected, stability decreases with increasing 𝑘𝑘.  

We compared brain state-specific differences in centroid locations between those obtained using the 

diametrical clustering method presented here and Euclidean k-means used in previous LEiDA-studies. 

Notably, at k = 7, the “fully connected state” is not identified when using the Euclidean k-means 

approach for clustering (Figure S11). Although there are clear similarities across the brain states paired 

between the two clustering methods, the magnitudes of these similarities are variable. To understand 

this variability more comprehensively, we ran both diametrical clustering and LEiDA Euclidean k-

means without replications using 1000 initializations and computed the correlation coefficient for all 

1000x1000 combinations between the two methods for each of the extracted centroids for 

frontoparietal state 1, frontoparietal state 2, and the fully connected state. The mean, 𝜇𝜇𝜌𝜌 , and 

standard deviation, 𝜎𝜎𝜌𝜌, of these correlation coefficients are described in Table S12. Although often 
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highly correlated, these results show variability in the correlation between these two clustering 

methods, suggesting they do not always produce convergent results. 

 

Discussion 

Here we evaluated acute psilocybin effects on dynamic functional brain connectivity in healthy 

individuals. Most prominently, the higher the subjective experience intensity and plasma psilocin 

levels, the lower the fractional occurrence of two discrete frontoparietal-like brain states. Similarly, 

the average dwell time of these brain states was inversely related to plasma psilocin level. We 

observed an increase in the fractional occurrence and dwell time of a “fully-connected” brain state 

where all elements have the same sign, although the statistical associations for this state were weaker. 

Together, these findings map measures of drug availability and perceptual intensity of a clinically 

relevant psilocybin-induced psychedelic experience onto distributed whole-brain functional 

connectivity dynamics. We propose an alternative method for clustering LEiDA-dFC estimates that we 

believe more faithfully respects the spherical manifold and sign ambiguity of orthonormal 

eigenvectors35,36. Taken together, these findings implicate dynamic neural processes underlying the 

acute psychedelic effects of psilocybin, an important contribution to understanding the effects of this 

rapidly emerging clinical therapeutic.  

The highlighted frontoparietal states 1 and 2 were both characterized by phase coherence between 

areas commonly assigned to a network described as, e.g., the “frontoparietal” network, “central 

executive”, “executive control”, or “dorsal attention” network41. Similarly, these brain states 

expressed phase coherence between regions in the cingulum and some regions around the parieto-

occipital fissure (see Figures 4 and S4). The regions with strong “negative” loadings were remarkably 

similar between the two states. The two states mostly differed in the centroid loadings for elements 

in the temporal lobe and the Rolandic operculum. A previous study applying LEiDA to model dynamic 

functional connectivity following psilocybin administration reported a similar brain state for models 

in the range 𝑘𝑘 ∈ {5, … ,10} 31. Despite methodological differences between the studies, e.g., we 

administered psilocybin orally, measured PPL, scanned participants multiple times after 

administration, and applied diametrical clustering; it is encouraging that our findings offer convergent 

evidence that decreased frontoparietal connectivity is a critical neural characteristic of the psilocybin-

induced drug experience. We show here, for the first time, that these changes are proportionally 

related to PPL and SDI across the duration of the psychedelic experience. Contributing to our 

mechanistic understanding of the neurobiological mechanisms that shape psilocybin effects, our 

finding implicates a systems-level neural correlate (frontoparietal state prevalence) to the relation 
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between available psilocin, which we have previously shown to be associated with 5-HT2AR 

occupancy, and subjective intensity of the psychedelic experience11. 

Consistent with the observed effects on fractional occurrence, we observed some evidence that dwell 

time, i.e., average time spent in the state before switching, of the frontoparietal states were similarly 

negatively associated with PPL and SDI. However, this effect was statistically significant for only a 

subset of the evaluated number of brain states, k. Notably, the integral of the subject-specific survival 

function for which hazard ratios were estimated is proportional to fractional occurrence. This means 

that dwell time models not merely the (instantaneous) probability of being in a given state but also 

the exponential decrease of that probability over consecutive time points. We infer that the 

numerically consistent associations with fractional occurrence and dwell time reflect a psilocybin-

induced “bias shift” away from the observed frontoparietal brain states.  Previous studies examining 

brain state switching mechanisms have typically evaluated transition probability matrices and specific 

state-to-state transition probabilities conditioned only on the current state. Although dwell time is 

related to the diagonal elements of the transition matrix, modeling it as a hazard ratio informs state 

survival across a broader time window, giving a more complete perspective on brain state dynamics. 

Modeling dwell time using survival analysis does not model all state-to-state transition probabilities 

individually. However, many of these transitions occur only rarely, and the set of statistical tests 

squares with the number of brain states, k, both of which constrain associated statistical estimates. In 

this way, we view the Cox proportional hazards model as a valuable trade-off for evaluating state dwell 

time and switching probability.  

Previous studies applying LEiDA have reported alterations in a “fully connected” brain state, 

characterized by all elements having the same sign31,32,39,42–46. Here we also observed this fully 

connected state and report an increase in fractional occurrence significantly associated with SDI, but 

not PPL. Interestingly, however, Figure S11 shows that we would not have identified this fully 

connected state if we applied LEiDA using the Euclidean k-means clustering method described 

previously. The observed slope estimates for the fully connected state are similar, and opposite to 

those for the two frontoparietal states for 𝑘𝑘 ≥ 8, and approximately half that of frontoparietal state 

1 for 𝑘𝑘 < 8. Similarly, dwell time for the fully connected state was significantly positively associated 

with both PPL and SDI. Here, hazard ratio estimates were similar for all three highlighted brain states 

regardless of k. These results indicate that while psilocin induces a decrease in the fractional 

occurrence and dwell time of frontoparietal connectivity dynamics, only approximately half of the 

corresponding increase in brain activity can be explained by a shift toward the fully connected state. 

As fractional occurrences must sum to one across all states, these findings suggest additional increases 

are spread across other states below the statistical significance threshold, given the current data. 
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Here we have presented the application of diametrical clustering, which we view as a fundamentally 

more appropriate clustering method than k-means based on Euclidean distance because eigenvectors 

are, in practice, normalized to unit length. As such, the 21,600 points to be clustered exist on a (𝑃𝑃 −

1)-dimensional spherical manifold, with P = 90 being the number of regions in the specified AAL atlas. 

The cluster centroids should be estimated respecting this geometry, which is not the case with 

Euclidean k-means (Figure S1). Additionally, diametrical clustering acknowledges the antipodal 

symmetry along both directions of a given eigenvector. The classical LEiDA approach seemingly 

addresses this axial symmetry by flipping the 90-dimensional leading eigenvector for every time point, 

𝑡𝑡, if the number of positive elements exceeds the number of negative elements. Especially in the case 

of an eigenvector with similar numbers of positive and negative loadings, slight variations can result 

in sign flips that place otherwise similar eigenvectors in different areas of this region space, which can 

affect clustering results when antipodal symmetry is not considered (see Figure S1). More recent 

approaches to address this include estimating the cosine distance metric and the use of “k-medoids”, 

which labels specific observed data points as centroids46. However, this leaves unresolved the 

limitation of the sign-flip procedure. By acknowledging that the points are distributed on an 

antipodally symmetric unit hypersphere using diametrical clustering, we obviate the need for 

eigenvector sign flips. Table S12 highlights that although these two strategies can and do produce 

convergent centroids in some circumstances, there are instances where the two methods diverge 

(e.g., see State 6 in Figure S11). We view diametrical clustering as a technically more appropriate 

method for clustering eigenvectors since it explicitly models vectors with unit length and arbitrary 

sign. Therefore, we suggest it is used in future studies investigating dFC using LEiDA. 

In this study, we did not address the question of the optimal number of brain states (i.e., cluster 

centroids). Rather, we explored a range of k, 2 to 20, consistent with previous studies32,39,40. An 

encouraging sign of the robustness of our observations is that cluster centroids were robust to 

initialization (Figure S10) and stable across k (Figure S9). Opportunities remain for developing the 

methodology surrounding the clustering of dynamic BOLD time series. Like other k-means methods, 

diametrical clustering applies a hard class assignment. Probabilistic estimates of cluster assignment 

for points on a spherical manifold can be estimated using the Watson mixture model, and non-circular 

cluster outlines can be estimated using the Bingham distribution34,36,47. These methods are not 

commonly used, and their development may assist in clustering dynamic functional connectivity data 

structures and more objectively estimating how many brain states to include. Finally, retaining only 

the first eigenvector from the eigenvalue decomposition of the phase coherence matrix may remove 

meaningful information. The rank of a matrix with cosine entries is always two since the angle 

difference identity allows us to construct two linearly independent vectors, cosine and sine of the 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 17, 2021. ; https://doi.org/10.1101/2021.12.17.21267992doi: medRxiv preprint 

https://doi.org/10.1101/2021.12.17.21267992
http://creativecommons.org/licenses/by-nc-nd/4.0/


input vector, respectively, that fully characterize all information in the input matrix (see Methods). 

The instantaneous leading eigenvector constructed as part of the LEiDA pipeline is thus some linear 

combination of those two trigonometric identities. We observed that, on average, 58% of the variance 

was explained by the first eigenvector. Future methodological studies should consider whether 

modeling a multivariate Hilbert phase series without explicitly computing coherence maps and their 

eigenvectors is possible.  

We have previously reported a negative association between static functional connectivity within a 

priori defined resting-state networks, as well as clusters of brain regions showing increased global 

functional connectivity as a function of PPL and SDI using rs-fMRI data evaluated here20. Although the 

orientation of those and the current findings are conceptually convergent, there are differences. The 

brain states resolved here by our clustering method are not easily translated to canonical resting-state 

networks. The frontoparietal states observed here share some regional overlap with default mode 

network elements (blue nodes; precuneus, posterior cingulate cortex, and to some extent 

ventromedial prefrontal cortex) and executive control network (red nodes; lateral anterior prefrontal 

cortex, posterior parietal cortex), but notable regions are absent, such as the angular gyrus from the 

default mode network. Further, some areas related to visual processing are encompassed by the 

frontoparietal states (blue nodes; lingual gyrus, calcarine sulcus, cuneus). Together, our studies 

present complementary perspectives on the associations between resting-state connectivity and PPL 

and SDI.  

The current study examined only acute psilocybin effects on dynamic functional connectivity, while 

previous studies indicate that psilocybin induces lasting changes in clinical symptoms, mood, and core 

personality traits. To date, three studies have examined long-term psilocybin effects on functional 

brain imaging, both primarily examining static connectivity measures48–50. Two of these studies 

analyzed dynamic conditional correlation51 as a variance measure of edge-specific correlation 

coefficients49,50. Further evaluation of lasting modulation of connectivity dynamics will provide 

complementary insight into the neurobiological mechanisms underlying lasting behavioral and clinical 

effects of psilocybin. 

Our model estimates that a plasma psilocin level of 20 µg/L, corresponding to 70% neocortex 5-HT2AR 

occupancy11, results in a more than 50% decrease in the fractional occurrence of frontoparietal state 

1 (for k = 7). Although this indicates a pronounced change in this brain state, the fact that two 

participants showed lower fractional occurrence values at baseline indicates individual variability in 

these connectivity motifs that needs to be understood more thoroughly. The absence of a brain state 

identifiable only before or after drug administration suggests that even marginal changes in 
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connectivity dynamics can encompass profound perceptual alterations induced by psychedelics. It is 

likely that alternative methods for measuring or quantifying functional connectivity dynamics or brain 

function will provide complementary insights into the neural mechanisms underlying psychedelics. 

For example, a magnetoencephalography study reported pronounced alterations resting-state 

network activity following psilocybin administration52. Findings across the field to date suggest that 

relevant acute neural effects of psychedelics remain to be fully explored. 

Our study is not without its limitations. Pulse and breathing rate data were not available, and 

therefore, we could not directly regress physiological noise from our data. To overcome this limitation, 

we attempted to model noise sources via the anatomical component correction algorithm53. Head 

motion was more prevalent during brain scans following psilocybin administration20. This is an 

inherent challenge to scanning participants during peak periods of the psychedelic experience. We 

performed image realignment and regressed out motion parameters and their first derivatives. 

Additionally, we excluded two full scan sessions, where motion artifacts were pervasive. Nevertheless, 

we cannot preclude motion-related effects on our results. Furthermore, despite intriguing convergent 

evidence of psilocybin effects on connectivity dynamics, our sample size is small (𝑁𝑁 = 15). Clustering 

in a high-dimensional space exposes risk to the “curse of dimensionality”, where most points in space 

are equally far away from each other, which can hinder the performance of clustering strategies. Here 

we modeled 21,600 points, approximately 12x as many points as used in a previous, related study31. 

Our convergent findings and the stability of our centroids (Figure S9 and S10) support the validity of 

our findings. Nevertheless, replication in this emergent field is critical, and thus, our results would 

greatly benefit from replication in other data sets17.  

In conclusion, we report that acute psilocybin-induced modulation of brain connectivity dynamics is 

significantly associated with PPL and SDI. These findings implicate distributed functional motifs in the 

acute and possibly lasting effects of this drug. Methodologically, we propose an alternative method 

for clustering eigenvectors that more closely reflects their spherical manifold and sign ambiguity. We 

also highlight a number of important and relevant analyses of data-driven brain states, including 

survival analysis of dwell time and assessment of clustering stability.  

 

Methods 

A brief description of experimental procedures is provided here; a full description can be found 

elsewhere20.  

Experimental procedures 
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Fifteen healthy participants (age 34.3 ± 9.8 years, six females) with no or limited prior experience with 

psychedelics were recruited for a brain imaging study, including a single psilocybin intervention. All 

participants provided written informed consent and were healthy, including screening for 

neurological, psychiatric, or somatic illnesses. Two psychologists prepared participants and supported 

them at all stages of the intervention.  

Psilocybin was taken orally in multiples of 3 mg psilocybin capsules, dosed according to body weight 

(total dose: 0.24 ± 0.04 mg/kg) in a single-blind cross-over study design. Within each cross-over, 

participants received either psilocybin or a non-psychedelic drug (ketanserin); only the psilocybin data 

are reported here. Functional neuroimaging data were acquired once before and at regular intervals 

(approximately 40, 80, 130, and 300 minutes) after administration. Immediately after each rs-fMRI 

acquisition, participants were asked to rate their perceived subjective drug intensity on a Likert scale 

from 0 to 10 (0 = “not at all intense”, 10 = “very intense”). Following each subjective rating, a blood 

sample was drawn from an intravenous catheter to determine the concentration of unconjugated 

psilocin in plasma20,54. The study was approved by the ethics committee for the capital region of 

Copenhagen and the Danish Medicines Agency.  

 

Neuroimaging data acquisition 

MRI data were acquired on a 3T Siemens Prisma scanner (Siemens, Erlangen, Germany) with a 64-

channel head coil. A structural T1-weighted 3D image was acquired at the pre-drug imaging session 

(inversion time = 900 ms, TE/TR = 2.58/1900 ms, flip angle = 9o, matrix 256x256x224, resolution 0.9 

mm isotropic, no gap). BOLD fMRI data were acquired using a T2*-weighted gradient echo-planar 

imaging sequence (TE/TR = 30/2000 ms, flip angle = 90o, in-plane matrix = 64x64 mm, in-plane 

resolution = 3.6x3.6 mm, 32 slices, slice thickness = 3.0 mm, gap = 0.75 mm). 300 volumes (10 minutes) 

were acquired in each imaging session. Participants were instructed to close their eyes and let the 

mind wander freely without falling asleep. In total, 74 scan sessions were acquired across the 15 

participants. 

 

fMRI data preprocessing 

fMRI data preprocessing was performed separately for each of the 10-minute rs-fMRI scan sessions. 

The data were preprocessed in SPM12 (http://www.fil.ion.ucl.ac.uk/spm). Steps included 1) slice-

timing correction, 2) spatial realignment and field unwarping, 3) co-registration of the T1-weighted 

structural image to the first functional volume, 4) segmentation of the T1-weighted image into gray 
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matter, white matter, and cerebrospinal fluid (CSF) maps, 5) normalization of the Anatomical 

Automatic Labeling (AAL) atlas38 to the co-registered structural images, and 6) smoothing of functional 

images (4mm FWHM Gaussian kernel). Motion and signal variance artifacts were identified using 

Artifact detection Tool (ART, https://www.nitrc.org/projects/artifact_detect). Individual scan sessions 

where more than 50% of volumes exceeded the ART threshold were excluded from the analysis. Based 

on this criterion, two scan sessions from a single participant were excluded, resulting in 21,600 rs-fMRI 

volumes included in subsequent analyses. fMRI time-series were denoised using CONN55 by voxel-wise 

nuisance regression of 1) three translation and three rotation parameters from realignment and their 

first-order derivatives, and 2) anatomical component correction using the first five principal 

components and their first-order derivatives from white-matter and CSF time-series53. Time-series 

data were bandpass filtered between 0.008 and 0.09 Hz. We used the AAL atlas to parcellate the 

denoised functional images into 90 cortical and subcortical regions. 

 

Extraction of BOLD phase-series 

For each scan session, we estimated regional phase-series from the BOLD signals 𝑠𝑠(𝑡𝑡) by constructing 

the analytic signal 𝑧𝑧(𝑡𝑡) = 𝑠𝑠(𝑡𝑡) + 𝑖𝑖𝑠𝑠ℎ(𝑡𝑡), where 𝑖𝑖  is the imaginary unit and 𝑠𝑠ℎ(𝑡𝑡) = 𝑠𝑠(𝑡𝑡) ∗ 1
𝜋𝜋𝜋𝜋

 is the 

Hilbert transform, where ∗  represents the convolution operator. The analytic signal is circularly 

evolving and can thus be described by instantaneous (i.e., per time point) amplitude 𝑎𝑎(𝑡𝑡) =

�𝑠𝑠(𝑡𝑡)2 + 𝑠𝑠ℎ(𝑡𝑡)2  and phase 𝜃𝜃(𝑡𝑡) = 𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑎𝑎𝑎𝑎 �𝑠𝑠ℎ(𝜋𝜋)
𝑠𝑠(𝜋𝜋)

� . The instantaneous phase is a sawtooth curve 

representing the locally linear temporal phase angle variation with a discontinuity at the jump from 

−𝜋𝜋 to 𝜋𝜋 (see Figure 1A, 2nd panel), and generally contains the oscillatory information in 𝑠𝑠(𝑡𝑡), while 

𝑎𝑎(𝑡𝑡)  encompasses (potentially spurious) amplitude information. Instantaneous phase coherence 

between brain region pairs (𝑗𝑗, 𝑘𝑘) ∈ {1, … ,90}2 was described using the symmetric phase coherence 

map 𝑨𝑨𝜋𝜋  for every time point 𝑡𝑡  with elements 𝐴𝐴𝜋𝜋,𝑗𝑗,𝑘𝑘 = 𝑎𝑎𝑐𝑐𝑠𝑠 �𝜃𝜃𝜋𝜋,𝑗𝑗 − 𝜃𝜃𝑛𝑛,𝑘𝑘�. Since 𝑨𝑨𝜋𝜋  has 𝑃𝑃
2

2
− 𝑃𝑃  unique 

elements, we may be well served by describing its information in lower dimensions using the 

eigenvalue decomposition. Due to the angle difference identity cos�𝜃𝜃𝑗𝑗 − 𝜃𝜃𝑘𝑘� = cos 𝜃𝜃𝑗𝑗 cos 𝜃𝜃𝑘𝑘 +

sin𝜃𝜃𝑗𝑗 sin𝜃𝜃𝑘𝑘, for any two regions 𝑗𝑗 and 𝑘𝑘, 𝑨𝑨𝜋𝜋 can be decomposed into two P-dimensional orthogonal 

eigenvectors, which are each a linear combination of the vectors 𝒄𝒄 = cos𝜽𝜽𝜋𝜋 and 𝒔𝒔 = sin𝜽𝜽𝜋𝜋. For each 

time point, we retained only the eigenvector 𝒗𝒗1,𝜋𝜋 corresponding to the largest eigenvalue, thereby 

capturing the dominant instantaneous connectivity pattern.  
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Clustering 

The (Dimroth-Scheidegger)-Watson distribution models data distributed on the axially symmetric unit 

hypersphere34,36. If we assume that eigenvectors can be described by a mixture of independent 

Watson distributions, we can disentangle clusters by estimating a Watson mixture model. Diametrical 

clustering is derived from mixture modeling of multivariate Watson distributions where only the mean 

direction is modeled, disregarding cluster variance and covariance structures35,36. Diametrical 

clustering can be regarded as the standard k-means algorithm where centroid locations are updated 

according to the squared Pearson correlation similarity measure: 𝑠𝑠𝑖𝑖𝑠𝑠𝜋𝜋,𝑐𝑐 = �𝒗𝒗1,𝜋𝜋
𝑇𝑇 𝝁𝝁𝑐𝑐�

2
, where 𝝁𝝁𝑐𝑐  is the 

centroid of cluster c, and 𝒗𝒗1,𝜋𝜋 the leading eigenvector of the phase coherence map for any time point 

t or scan session. Diametrical clustering may be described as the limit where all Watson distributions 

in the mixture have shared concentration parameter 𝜅𝜅 → ∞. Importantly, this approach addresses 

two limitations of previously applied clustering techniques, namely 1) the ability to group correlated 

and anticorrelated unit norm vectors into the same cluster and 2) by constraining the optimization to 

the surface of the associated hypersphere. The squared Pearson correlation is equivalent to the 

squared cosine similarity for normalized vectors, and thus equivalent to finding the cosine of the angle 

between the unit vectors. We initialized our algorithm using k-means++ rewritten for diametrical 

clustering56. For each k, 5 replications of the clustering algorithm were run, where the best of the 5 

replications (in terms of the sum of squared Pearson correlation to the nearest centroid) was chosen 

as the output.  

To retrieve recurrent interregional phase coherence patterns, we grouped the 21,600 leading 

eigenvectors into k clusters, which we denote “brain states” (see Figure 1D). The optimal number of 

brain states is not known or well-defined; therefore, we produced models for k ranging from 2 to 20, 

with higher k revealing more fine-grained patterns. The diametrical clustering algorithm returns k 

unordered cluster directions and labels of volumes assigned to each model according to the squared 

Pearson correlation. To match specific centroids across different k, e.g., the green triangles in Figure 

3, we selected a template (e.g., 𝑘𝑘 = 7 for frontoparietal state 1 and the fully connected state, 𝑘𝑘 = 11 

for frontoparietal state 2), and, for all other k, found the centroid that most closely matched this 

centroid in terms of squared Pearson correlation. For the diametrical clustering versus Euclidean k-

means comparison, the output centroids from the latter were normalized to unit length before 

matching. In Supplementary video S2, the estimated centroids for k were assigned to the closest 

centroid for 𝑘𝑘 − 1 without replacement.  

 

Brain network state occurrence  
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To identify associations between brain state dynamics and PPL and SDI, we calculated the fractional 

occurrence for each brain state, as defined by the fraction of time points in a scan session assigned to 

that brain state. For each state, this produced 72 FO estimates, one for each scan session, and 

corresponding PPL and SDI. We modeled the association between FO and PPL (or SDI) with a random 

intercept linear mixed-effects model to account for inter-subject variability. The models were fitted 

using maximum likelihood, and we used the likelihood ratio to test for significance of the fixed effect 

and generate confidence intervals unadjusted for multiple comparisons (CIunadj). To account for 

multiple testing across a set of k states, we performed permutation testing with max-T adjustment 

and 100,000 permutations by scrambling the normalized residuals of the linear mixed-effects 

model57,58. The initially observed statistical estimates (likelihood ratios) were then compared to the 

distribution of maximum statistics across the k models for every permutation, and a corresponding p-

value was calculated as the number of permutations where the initial likelihood ratio exceeded the 

maximum statistic. Permutation testing and Max-T correction were performed within-k and separately 

for the models with PPL and SDI as fixed effects, respectively.  

 

Brain network state dwell time 

We employed survival analysis to model state dwell time, i.e., the time spent in a brain state before 

switching. Whenever the brain state changed within a scan session, we noted the number of preceding 

samples t and the corresponding subject, PPL, and SDI. The first active state from a scan session was 

excluded since we cannot estimate the true dwell time in this case. We performed right censoring for 

the last active state in a scan session. We modeled the dwell time of a brain state using a Cox 

proportional hazards model, including a frailty element z to account for inter-subject variability: 

𝜆𝜆(𝑡𝑡|𝑥𝑥𝑛𝑛𝑛𝑛 , 𝑧𝑧𝑛𝑛) = 𝑧𝑧𝑛𝑛𝜆𝜆0(𝑡𝑡) exp�𝑥𝑥𝑛𝑛𝑛𝑛𝛽𝛽� , where 𝑎𝑎 = 1, … ,𝑁𝑁  denotes subjects 𝑙𝑙 = 1, … ,𝑁𝑁𝑛𝑛  denotes 

sessions for subject n, and 𝑥𝑥𝑛𝑛𝑛𝑛  the corresponding PPL or SDI37,59.  We report the estimated hazard ratio 

𝐻𝐻𝐻𝐻 = 𝑒𝑒𝛽𝛽� = 𝜆𝜆�𝑡𝑡�𝑥𝑥 = 1�
𝜆𝜆�𝑡𝑡�𝑥𝑥 = 0� , which is proportional in the covariate level (PPL or SDI). The associated 

confidence interval is defined as 𝑒𝑒𝛽𝛽±1.96 𝑠𝑠𝑠𝑠(𝛽𝛽), where 𝑠𝑠𝑒𝑒(𝛽𝛽) is the estimated standard error of the 

coefficient estimate. 𝜆𝜆0(𝑡𝑡)  represents the common baseline hazard irrespective of subject or 

covariate level. We could not find any existing permutation test specifically for frailty Cox proportional 

hazards models. Therefore, we controlled the FWER using Bonferroni-Holm correction60 applied 

within-k.  

 

Visualizations, code, and data availability 
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We have published the MATLAB (The MathWorks, inc.) and R code used to generate the results 

presented in this study at (https://github.com/anders-s-olsen/psilocybin_dynamic_FC). We used 

BrainNet Viewer61 (https://www.nitrc.org/projects/bnv/) to generate connectivity visualizations. The 

datasets generated and/or analyzed during the current study are available from the corresponding 

author on reasonable request. 
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Supplementary material 

 

Supplementary Figure S1: Three-dimensional illustration highlighting the distribution of eigenvectors on an antipodally 
symmetric unit (hyper)sphere (A), and the conceptual advantage of clustering with respect to this manifold (B) over 
Euclidean distance clustering (C), which is susceptible to locating centroids off the manifold, where observed points cannot 
exist. In LEiDA, a sign-flip procedure is applied before k-means clustering, which restricts observation space, potentially 
cutting through data clusters. The learned states for Euclidean k-means are inferior to diametrical clustering in this 
hypothetical example.  
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Supplementary video S2: Please find the video here: https://xtra.nru.dk/downloads/misc/AllCentroids_psilocybinDFC.avi. 
Estimated brain states using LEiDA and diametrical clustering for number of clusters, k, in the range 2 to 20. For 𝑘𝑘 ≥ 3, 
states were ordered by cycling through the estimated brain states for 𝑘𝑘 − 1 and, for each brain state in the previous k, 
selecting the brain state for the current k with the largest squared Pearson correlation coefficient. If this coefficient was 
negative, the new brain state was flipped for visualization purposes. We highlight three brain states: The fully connected 
(FC) state for all k, the frontoparietal state 1 (FP1) for 𝑘𝑘 ≥ 4, and FP2 for 𝑘𝑘 ≥ 8.  

 

  

Supplementary Table S3: Summary of statistical associations between either fractional occurrence or dwell time and PPL or 
SDI. Statistical parameters are shown for all brain states for which at least one of the four statistical models was 
statistically significant after FWER-correction, i.e., either max-T permutation testing for fractional occurrence (pFWER-maxT) or 
Bonferroni-Holm (pFWER-BH) for dwell time. Assigned centroid have been ordered consistently with their first appearance (see 
Supplementary Video S1). As such, the fully connected state is number 1, frontoparietal state 1 is number 4 and 
frontoparietal state 2 is number 8. p, uncorrected p-value; HR, hazard ratio; CIunadj, unadjusted 95% confidence interval. 
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Supplementary Figure S4: Frontoparietal state 2 and statistical associations for k=11. (A): 90-dimensional centroid, where 
region pairs with the same sign are said to be coherent. Some frontal regions, superior and inferior parietal regions, and 
temporal lobe regions showed coherence with each other (red). Likewise, areas around the parieto-occipital sulcus, cingulum, 
and medial orbital frontal cortex were coherent (blue). (B): Functional coherence map and connectivity representation of the 
brain state. Edges are shown if their strength exceeded the 75th percentile of absolute edge strengths. In the connectivity 
visualizations, negative edges are blue and positive edges are red, while nodes are colored according to the sign of their 
centroid element in (A). (C): Associations between the expression of frontoparietal state 2 and plasma psilocin level and 
subjective drug intensity using linear mixed models for fractional occurrence (left, each point is a scan session) and frailty Cox 
proportional hazards models for the dwell time (right). For dwell time, the marginal survival curves for pre-specified covariate 
levels are shown. Colors in plots of fractional occurrence (C, left) denote individual participants. 
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Supplementary Figure S5: Fully connected state and statistical associations for k=7. (A): 90-dimensional centroid, where 
region pairs with the same sign are said to be coherent. All centroid loadings for the fully connected state have the same 
sign, and thus display coherence across all regions. (B): Functional coherence map and connectivity representation of the 
fully connected state. Edges (red) are shown if their strength exceeded the 75th percentile of absolute edge strengths. In the 
connectivity visualizations, negative edges are blue and positive edges are red, while nodes are colored according to the 
sign of their centroid element in (A). (C): Associations between the activity of the full connected state and plasma psilocin 
level and subjective drug intensity using linear mixed models for fractional occurrence (left, each point is a scan session) and 
frailty Cox proportional hazards models for the dwell time (right). For dwell time, the marginal survival curves for pre-
specified covariate levels are shown. Colors in plots of fractional occurrence (C, left) denote individual participants. 
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Supplementary Figure S6: Frontoparietal state 1 centroid across k. For each 𝑘𝑘 ≥ 4, the centroid most similar to the template (highlighted) was selected. P-values at the bottom indicate family-
wise error rate corrected statistical significance of the association between either fractional occurrence (FO) or dwell time (DT) and either plasma psilocin level (PPL) or subjective drug intensity 
(SDI). P-values below 0.05 highlighted in red text. 
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Supplementary Figure S7: Frontoparietal state 2 centroids across k. For each 𝑘𝑘 ≥ 8, the centroid most similar to the template (highlighted) was selected. P-values at the bottom indicate 
family-wise error rate corrected statistical significance of the association between either fractional occurrence (FO) or dwell time (DT) and either plasma psilocin level (PPL) or subjective drug 
intensity (SDI). P-values below 0.05 highlighted in red text. 
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Supplementary Figure S8: Fully connected state centroids across k. For each 𝑘𝑘 ≥ 4, the centroid most similar to the template (highlighted) was selected. P-values at the bottom indicate family-
wise error rate corrected statistical significance of the association between either fractional occurrence (FO) or dwell time (DT) and either plasma psilocin level (PPL) or subjective drug intensity 
(SDI). P-values below 0.05 highlighted in red text
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Supplementary Figure S9: Within-state similarity across k. Heat-map of Pearson correlation coefficients between all pairs of 
k for each of the three highlighted brain states. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 17, 2021. ; https://doi.org/10.1101/2021.12.17.21267992doi: medRxiv preprint 

https://doi.org/10.1101/2021.12.17.21267992
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

Supplementary Figure S10: Stability histograms of brain state centroids across 1000 random initializations, each with 5 
replications. For every initialization, the relevant centroids were extracted by matching to the three template brain states 
(see Figures 4 and S4-5). If the identified centroid and template had negative Pearson correlation coefficient, the sign of the 
identified centroid was flipped. Pearson correlation coefficients between all 1000x1000 brain state pairs in each pool were 
computed and converted to z-scores using Fisher’s r-to-z transformation, and the corresponding histogram was fitted with a 
Gaussian curve.  
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Supplementary Figure S11: Qualitative differences and correlation coefficients, 𝜌𝜌, between diametrical clustering and 
Euclidean k-means clustering output centroids at k=7. k-means centroids have been ordered to maximize correlation with 
diametrical clustering centroids. 
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Supplementary Table S12: Summary Pearson correlation coefficients, 𝜌𝜌, including mean, 𝜇𝜇𝜌𝜌, and standard deviation, 𝜎𝜎𝜌𝜌, 
between the highlighted brain states from diametrical clustering and Euclidean k-means clustering. For every k, 1000 
initializations of each of the two clustering methods were run, the centroids most closely matching the frontoparietal states 
1 and 2 and the fully connected states were extracted, and the Pearson correlation coefficient between all 1000x1000 
centroid comparisons computed.  
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