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Abstract 22 

Current scoring systems for prognosis of breast cancer are available but usually 23 

consider only one prognostic feature. We aim to develop a novel prognostic scoring 24 

system based on both immune-infiltration and metastatic features to not only assess the 25 

patient prognoses more accurately but also guide therapy for patients with breast cancer. 26 

Computational immune-infiltration and gene profiling analysis identified a 12-gene 27 

panel firstly characterizing immune-infiltrating and metastatic features. Neural network 28 

model yielded a precise prognostic scoring system called metastatic and 29 

immunogenomic risk score (MIRS). The influence of MIRS on the prognosis and 30 

therapy of breast cancer was then comprehensively investigated. MIRS significantly 31 

stratifies patients into high risk-group (MIRShigh) and low risk-group (MIRSlow) in both 32 

training and test cohorts. The MIRSlow patients exhibit significantly improved survival 33 

rate compared with MIRShigh patients. A series of analyses demonstrates that MIRS can 34 

well characterize the metastatic and immune landscape of breast cancer. Further 35 

analysis on the usage of MIRS in chemotherapy suggests that MIRShigh patients may 36 

benefit from three chemotherapeutic drugs (Cisplatin, Tamoxifen and Vincristine). 37 

Higher immune infiltration and significantly prolonged survival are observed in 38 

MIRSlow patients, indicating a better response in immune checkpoint inhibitor therapy. 39 

Our analysis demonstrates that MIRS could effectively improve the accuracy of 40 

prognosis for patients with breast cancer. Also, MIRS is a useful webtool, which is 41 

deposited at https://lva85.github.io/MIRS/, to help clinicians in designing personalized 42 

therapies for patients with breast cancer. 43 
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treatment 45 

Introduction 46 

Cancer has long history in mankind and remains the leading cause of death, with 47 

breast cancer being one of the most common malignancies in women worldwide (1, 2). 48 

Breast cancer is also the second most common cause of death in cancer-related deaths 49 

among women. (3, 4). Despite tremendous advancement of medicine over the years has 50 

lowered the mortality rate, the high level of heterogeneity in breast cancer still makes 51 

the prognosis and treatment challenging.  52 

Over the decade, a considerable amount of work has been done to develop 53 

prognostic measures on the progression of breast cancer (5). The majority (~80%) of 54 

breast cancer becomes invasive (6) and approximately 20~30% of them results in 55 

distant metastasis after treatment (7). Metastasis is thereby the most fatal development 56 

of breast cancer, which greatly reduces the rate of long-term survival from 90% to 5% 57 

(8). However, most metastasis-based signatures were developed based on organ-58 

specific metastatic events, yet breast cancer consists of tumors with extremely 59 

heterogeneous cell types, resulting in the discrepancy between prognosis and survival 60 

(9, 10). Hence currently available metastasis-based prognostic measures have poor 61 

performance (11). On the other side, tumor-infiltrating lymphocytes have already been 62 

reported to be inextricably linked to therapeutic efficacy and patient survival in various 63 

cancers (12, 13). Many prognostic predictors were developed by assessing the level of 64 
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the infiltration of immune cells into tumor and were preferably adopted for prognosis 65 

in cancers (14, 15). These histological strategies based on the analysis of a small 66 

proportions of immune cell marker genes support the prognostic significance of 67 

immune infiltration but still have limitations. Firstly, strategies for describing the level 68 

of immune infiltrate are the first limitation of the current studies (16). Specifically, each 69 

immune cell subset is computationally estimated by reference profiles based on bulk 70 

analysis of tissue samples. This is the main drawback because the transcriptional 71 

program of immunocytes exhibits high plasticity under tumor microenvironments (17). 72 

Secondly, while most studies were used the immune-related characteristics to improve 73 

cancer prognosis, only one or two subsets of immunocyte are included and these subsets 74 

lack functional variation, thus the treatments based on these indicators fail to achieve 75 

satisfactory immune response effects (18). Therefore, prognostic indicator based on 76 

only one characteristic without considering other crucial features is insufficient to 77 

accurately assess risk stratification and direct treatment strategies. 78 

Given the limitations of the aforementioned work a more comprehensive approach 79 

should be developed to assess prognostic value and translate it into clinical practice. 80 

For the first time, we develop a prognostic signature for breast cancer patients, 81 

integrating immune-related gene signatures involved in metastasis, to classify patients 82 

with breast cancer into groups of high and low risk for potential therapeutic strategies. 83 

We construct a Neuron network to estimate gene weights, which exhibit outstanding 84 

performance in binary classification. A metastatic and immunogenomic risk score 85 

(MIRS) is then established, which has conspicuous power to predict survival status 86 
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compared with previously published indicators based on single feature. Ultimately, the 87 

ability of MIRS to predict the treatment is identified, suggesting its potential to guide 88 

therapeutic tactics in breast cancer.  89 

Materials and Methods 90 

Collection and pre-processing of breast cancer data 91 

All analyzed expression profiles and the corresponding clinical datasets were 92 

collected from Gene Expression Omnibus (GEO), The Cancer Genome Atlas (TCGA, 93 

https://www.cbioportal.org/datasets), and Molecular Taxonomy of Breast Cancer 94 

International Consortium (METABRIC, https://www.cbioportal.org/datasets). Only the 95 

datasets available with sufficient overall survival information were included, consisting 96 

of 8,424 patients from 14 cohorts. The detailed information of each cohort is presented 97 

in Table S1 and S2. 98 

Raw series matrix files generated by Affymetrix were downloaded from GEO 99 

database. The R package GEOquery (19) was used to process raw matrix data. 100 

Duplicated genes detected by multiple probes were retained by taking the maximum 101 

expression value of the probe sets. Gene expression value was normalized by log2 102 

transformation. Each GEO and RNA-seq dataset were processed independently. 103 

Construction of immune cell infiltration groups  104 

A set of biomarkers is derived from Charoentong et al (20), comprising 45 immune 105 

signatures related to immune cell types, immunogenomic pathways and functions. The 106 
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concrete gene signatures for each immune cell type were obtained from (21), and the 107 

immune-related pathways and functions were downloaded from database ‘ImmPort’ 108 

(22). Single sample gene set enrichment analysis (ssGSEA) implemented in R package 109 

GSVA was used to quantify the infiltration level of different immune cells, 110 

immunogenomic pathways and the activity of immune-related functions via expression 111 

data of breast cancer (23). Based on the results of ssGSEA, patients in TCGA breast 112 

cancer cohort (TCGA-BRCA) were divided into high and low immune cell infiltration 113 

groups using hierarchical clustering analysis (Figure S1) (24). 114 

Identification of immune and metastatic candidate 115 

genes 116 

Using Wilcoxon rank-sum (Wilcoxon) test, the differentially expressed genes 117 

(DEGs) related to tumor immune infiltration were detected from high and low immune 118 

infiltration conditions according to the filtering criteria |log2FC| > 0.5 and adjusted p < 119 

0.05 using Benjamini and Hochberg (BH) method (25). Meanwhile, utilizing the 120 

Wilcoxon test with the same criteria in the comparison between metastasis and primary 121 

breast cancer groups from the union of GSE10893 and GSE3521, the DEGs involved 122 

in metastatic mechanism were then identified. For these two DE analyses, Venn 123 

analysis found 52 metastatic and immunogenomic candidate genes. The heatmap of 124 

these DEGs are visualized in Supplementary Figures S3-S4. 125 
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Establishment of prognostic risk score 126 

Univariate Cox proportional hazard regression analysis was designed to screen 127 

features related to overall survival (OS) from 52 candidate genes in TCGA BRCA 128 

cohort. The filtered gene list is provided in Table S2. Subsequently, only the genes with 129 

absolute Hazard ratio (HR) larger than 1 and p-value less than 0.05 were retained. To 130 

eliminate collinearity, the eligible candidate genes were further filtered depending on 131 

the criteria that the square root of Variance Inflation Factor (VIF) was less than 2 and 132 

the Pearson Correlation Coefficient was smaller than 0.5. Ultimately, 12 prognostic 133 

genes that were significantly correlated with patients’ OS were identified. 134 

These 12 prognostic signatures were classified into binary status. One was defined 135 

as the protective status in which HR was less than 1 whereas another was the dangerous 136 

status in which the corresponding HR was greater than 1. The expression status of each 137 

protective mRNA was assigned as 1 if the expression level of this mRNA was above 138 

the median of the expression values of all samples, otherwise it would be assigned as 139 

0. In contrast, the expression of dangerous mRNA was assigned as 1 if it had expression 140 

value below median, otherwise assigned as 0. This approach not only allows the risk 141 

score, which is based on protective and dangerous genes, to simultaneously contribute 142 

to consistent survival outcome, but also avoids the influence of inconsistent sequencing 143 

platforms. To date, several machine learning methods were found to be successful in 144 

various data mining problems, including those with transcriptomic data (26, 27). 145 

Therefore, a multilayer perceptron neuron network was built to estimate the weights of 146 

the 12 prognostic genes. In the Figure S4, the 𝑛𝑒𝑡𝒏𝟏
= 𝑊1,1𝑖1 +  𝑊2,1𝑖2 + ⋯ +147 
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 𝑊12,1𝑖12 +  𝑏1 was defined, where 𝑊 is the weight of each input node and 𝑖𝑗  (𝑗 =148 

1,2, . . ,12) is the ‘0-1’ status of gene. Then we exploited rectified linear unit (ReLU): 149 

 150 

𝑅𝑒𝐿𝑈(𝑛𝑒𝑡𝑛1
) = 𝑂𝑢𝑡𝑛1

= {
𝑛𝑒𝑡𝑛1

, 𝑛𝑒𝑡𝑛1
> 0

0, 𝑛𝑒𝑡𝑛1 ≤ 0
 , 151 

  152 

and 𝑛𝑒𝑡01 = 𝑊1,1
′ ∗ 𝑂𝑢𝑡𝑛1 + 𝑊2,1

′ ∗ 𝑂𝑢𝑡𝑛2 + 𝑊3,1
′ ∗ 𝑂𝑢𝑡𝑛3 + 𝑊4,1

′ ∗ 𝑂𝑢𝑡𝑛4 + 𝑏2 153 

as an activation function in the hidden layer. In the output layer, we applied the Softmax 154 

function to each node and designated probability of death: 155 

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑛𝑒𝑡01) = 𝑂𝑢𝑡01 =
𝑒𝑛𝑒𝑡01

𝑒𝑛𝑒𝑡01 + 𝑒𝑛𝑒𝑡02
∈ (0,1). 156 

We then created two nodes 𝑎0 = 0 and 𝑎1 = 1  for alive and dead, respectively. 157 

Cross entropy error is computed as: 158 

𝐸 =  ∑ 𝐸𝑖 = −𝑎0
𝑖 ∗ 𝑙𝑜𝑔(𝑜𝑢𝑡01

𝑖 ) − 𝑎1
𝑖 ∗ 𝑙𝑜𝑔(𝑜𝑢𝑡02

𝑖 ),   𝑤ℎ𝑒𝑟𝑒 𝑖 𝑖𝑠 𝑖𝑡ℎ 𝑠𝑎𝑚𝑝𝑙𝑒.

𝑁

𝑖=1

 159 

Finally, the value of each weight was optimized by minimizing 𝐸  using gradient 160 

descent. The R packages Tensorflow and Keras were employed to construct neuron 161 

network. After training, the coefficient of each prognostic gene was then determined as 162 

the maximum weight in the hidden layer (26). 163 

Lastly, the risk score that consists of 12 metastatic and immunogenomic prognostic 164 

genes (MIRS) for each patient is defined as the following: 165 

𝑀𝐼𝑅𝑆𝑖 = ∑ 𝑤𝑒𝑖𝑔ℎ𝑡𝑗 × 

𝑚

𝑗=1

𝐼{𝑝𝑟𝑜𝑡𝑒𝑐𝑡ive 𝑔𝑒𝑛𝑒 𝑗}  + ∑ 𝑤𝑒𝑖𝑔ℎ𝑡𝑘 × 

𝑛

𝑘=1

𝐼{𝑑𝑎𝑛𝑔𝑒𝑟𝑜𝑢𝑠 𝑔𝑒𝑛𝑒 𝑘} 166 

where 𝑚 and 𝑛 denote the number of protective and dangerous genes, respectively, 167 

weight is the maximum weight from the hidden layer. Additionally, 𝐼{𝑝𝑟𝑜𝑡𝑒𝑐𝑡𝑖𝑣𝑒 𝑔𝑒𝑛𝑒 𝑗} 168 

and 𝐼{𝑑𝑎𝑛𝑔𝑒𝑟𝑜𝑢𝑠 𝑔𝑒𝑛𝑒 𝑘 } denote the following indicator functions: 169 

𝐼{𝑝𝑟𝑜𝑡𝑒𝑐𝑡ive 𝑔𝑒𝑛𝑒 170 

= {
1, P𝑟𝑜𝑡𝑒𝑐𝑡ive 𝑔𝑒𝑛𝑒 𝑗 <   𝑀𝑒𝑑𝑖𝑎𝑛 expression value across all samples,
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 171 
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𝐼{𝑑𝑎𝑛𝑔𝑒𝑟𝑜𝑢𝑠 𝑔𝑒𝑛𝑒 𝑗}172 

= {
1, D𝑎𝑛𝑔𝑒𝑟𝑜𝑢𝑠 𝑔𝑒𝑛𝑒 k >  𝑀𝑒𝑑𝑖𝑎𝑛 expression value across all samples,
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 173 

Statistical analysis 174 

All statistical analyses were performed using R software. The R packages pheatmap 175 

and ggplot2 were used to plot heatmap and other graphs. The R package forestplot was 176 

used to draw forest plot. The pROC package was employed to generate the Receiver 177 

Operating Characteristic (ROC) curve and calculate the Area Under Curve (AUC), 178 

which was an indicator to evaluate the predictive performance of risk score. 179 

Based on the risk score, breast cancer patients in the investigated cohort were 180 

stratified into subtypes of high risk or low risk depending on whether the value of 181 

(𝑀𝐼𝑅𝑆 𝑖𝑛 𝑒𝑎𝑐ℎ 𝑝𝑎𝑡𝑖𝑒𝑛𝑡)/(𝑚𝑒𝑑𝑖𝑎𝑛 𝑜𝑓 𝑀𝐼𝑅𝑆 𝑖𝑛 𝑎𝑙𝑙 𝑝𝑎𝑡𝑖𝑒𝑛𝑡𝑠)  was greater or 182 

less than 1. This stratification method allows reasonable comparisons between different 183 

data platforms. OS curves were established by Kaplan–Meier survival (KM) curve 184 

function ggsurvplot, as implemented in R package survminer, and the difference in 185 

survival distributions between risk subgroups was estimated by two-side log-rank test. 186 

Based on univariate Cox proportional hazard regression analysis, the targeted 187 

prognostic genes which were significantly correlated with OS were disclosed and the 188 

Hazard ratio (HR), 95% confident interval of HR and p-value were also evaluated. 189 

Multivariate Cox proportional hazard regression model was implemented to assess 190 

whether the risk score is an independent prognosis factor when compared with other 191 

important clinical features. All statistical tests were considered significant with p-value 192 
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< 0.05. 193 

Full details about data and methods descriptions, including data information, gene 194 

set enrichment analysis and mutation landscape analysis. 195 

Results 196 

Screening of candidate genes from three public datasets 197 

To obtain significant prognostic biomarkers in breast cancer, we proposed a 198 

systematic scheme of bioinformatic analysis (Figure 1). Given that the processes of 199 

metastasis and immune infiltration in tumor play various important roles in cancer 200 

development, we hypothesize that the expression of genes which were associated with 201 

metastasis and immune infiltration in tumor should be correlated to the OS of cancer 202 

patients. We thereby identified prognostic signatures based on these two characteristics. 203 

Concretely, using ssGSEA method, the expression profile of 1,100 patients from TCGA 204 

cohort were used to construct groups of high and low immune cell infiltration. Then the 205 

patients were classified into the high immune infiltration group and low immune 206 

infiltration group (Figure 2A and Figure S1). Furthermore, to validate the reliability of 207 

the above grouping tactic, we investigated the expression level of two immune-related 208 

gene families between these two groups: CD1 and IL1. As expected, the expression of 209 

both immune-related gene families in the high immune infiltration group is 210 

significantly higher than that in the low immune infiltration group (Figure 1B and 211 

Figure S5). Additionally, compared with low immune cell infiltration group, high 212 

immune cell infiltration group exhibits a higher fraction of immune cell, stromal cell 213 
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but lower tumor purity using ESTIMATE (28) algorithm (Figure 2C). Furthermore, we 214 

found that high immune cell infiltration group had significantly higher proportions in 215 

most immune cell types than low immune infiltration group (Figure 2D) using 216 

CIBERSORT algorithm under the permutation test with 1000 times. These findings 217 

support that our immune cell infiltration grouping is highly confident to be used in 218 

downstream analyses. Next, 1,222 differentially expressed genes were identified via 219 

differential expression (DE) analysis between these two groups, which represents a 220 

high-confidence dataset of genes related to immune infiltration (Table S4).  221 

On the other part, aimed at identification of metastasis-related candidates, DE 222 

analysis between metastasis and primary patients with breast cancer were performed 223 

using two GEO cohorts (GSE10893 and GSE3521). The reason why we only chose 224 

these two GEO datasets is that they have relatively balanced sample sizes between the 225 

metastasis and primary groups when compared with other cohorts (Table S1). For 226 

instance, TCGA breast cancer cohort contains 1,165 primary individuals but only 23 227 

metastatic individuals. There is no doubt that such an extremely imbalanced data would 228 

lead to biased result in DE analysis. This step yielded a union of 2,159 DE genes from 229 

the results of these two GEO datasets (Table S4). Finally, a total of 52 genes was 230 

obtained by intersecting 1,222 immune-infiltration-related genes and 2,159 metastasis-231 

related genes (Figure 2E), which represents prognostic candidates associated with both 232 

tumor-immune infiltration (Figure 2F) and metastasis (Figure 2G).  233 
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Construction and validation of MIRS in breast cancer 234 

cohorts 235 

Univariate Cox regression analyses were performed to estimate the prognostic 236 

relationship between candidate genes and overall survival in TCGA cohort. Among 237 

these 52 candidate genes, 15 genes with p-value less than 0.05 were selected for follow-238 

up study (Table S2). Given that too many redundant variables would result in 239 

overfitting in the linear model, we employed the analyses of Variance Inflation Factor 240 

and Pearson Correlation Coefficient to eliminate the redundant genes (Figure 3A and 241 

3B). As a result, a panel of 12 genes is reserved to establish the predictive model.  242 

The TCGA-BRCA data (N = 1100 patients) were randomly classified into training 243 

data (N = 770 patients) and testing data (N = 330 patients) at a ratio of 7:3. We then 244 

optimized the weights for each gene with Neuron network in the training TCGA data. 245 

The MIRS for each patient was built by summation of Weight × 246 

𝐼{𝑝𝑟𝑜𝑡𝑒𝑐𝑡𝑖𝑣𝑒 𝑜𝑟 𝑑𝑎𝑛𝑔𝑒𝑟𝑜𝑢𝑠 𝑔𝑒𝑛𝑒} of all 12 genes (Table 1). MIRS was initially used to 247 

predict patient’s survival status, which yielded great predictive performance with AUC 248 

accuracy of 0.875 in the training TCGA cohort (Figure 3C). In addition, all the patients 249 

were classified into MIRShigh group and MIRSlow group using the median value of 250 

MIRS as risk cut-off. As shown in Figure 3D, patients in MIRSlow group had 251 

significantly longer OS or disease-free survival (DFS) time than those in MIRShigh 252 

group (log-rank p<0.001) (Figure 3D and Figure S6-A).   253 

To further examine the robustness and feasibility of this MIRS model, a 254 

comprehensive survival analysis with KM method was performed in three independent 255 
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testing cohorts. Notably, MIRS exhibited robust predictive capacity with AUC of 0.934, 256 

0.901, and 0.904 in GSE96058, GSE86166 and GSE20685, respectively (Figure 3E and 257 

3G, Supplementary Figure S6-C). Regarding the survival analyses, consistent with the 258 

result of the training data, the patients who are divided into MIRShigh group have 259 

significantly worse OS than those in MIRSlow group (Figure 3F, Figure 3H and 260 

Supplementary Figure S6-B). These analyses indicated that MIRS had precisely 261 

prognostic ability in breast cancer. The higher score of MIRS corresponds to poor 262 

outcome, and the lower score of MIRS refers to favorable outcome.   263 

Correlation of MIRS with the metastatic and 264 

immunogenomic landscape between the high and low 265 

subtypes 266 

We want to further scrutinize the correlation of metastatic and immunogenomic 267 

landscape with MIRS in breast cancer patients. Initially, we investigated the correlation 268 

between MIRS and the fraction of immune cell, stromal cell, as well as tumor purity 269 

via ESTMATE in the GSE86166 cohort. The results showed that MIRSlow group had a 270 

higher fraction of immune cell and stromal cell cell but a lower tumor purity (Figure 271 

4A). Similar situations were observed in GSE96058 (Figure S7). Reasonably, a higher 272 

fraction of immune cell and lower tumor purity reflects a high level of infiltrating T-273 

lymphocytes in the patients of MIRSlow group, which is consistent with previous 274 

survival analysis.  275 

Moreover, 730 genes were identified to be correlated to the 12 genes of MIRS 276 
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(Spearman Correlation Coefficient ≥ 0.4) using GSE86166, subsequently, functional 277 

enrichment analysis achieved via METASCAPE, indicating various immune-related 278 

processes and pathways were significantly enriched, including T cell activation, 279 

Cytokine-cytokine receptor interaction and B cell activation (Figure 4B). This 280 

observation discloses a strong correlation of MIRS with immune activity. Alternatively, 281 

we applied ssGSEA analysis to evaluate the immune infiltration level in GSE86166 282 

using 17 immune-related biological functions and pathways derived from the immune-283 

related database ‘ImmPort’ (22). The result illustrates that most of the 17 items show 284 

significant difference between MIRShigh and MIRSlow group (Figure 4C). Notably, all 285 

immune-related biological processes and pathways exhibit significantly higher level of 286 

immune infiltration in MIRSlow group (Figure 4C), which is consistent with our 287 

previous analysis. Moreover, we estimated the correlation of MIRS with three 288 

important immune checkpoint molecules: PD-1, PD-L1 and CTLA4. As illustrated in 289 

Figure 4E, compared with MIRShigh group, MIRSlow group shows significantly higher 290 

expression (Wilcoxon test P < 0.0001). MIRS scores are moderately correlated to the 291 

expression levels of PD-1, PD-L1 and CTLA4 (Figure 4D). Overall, the differences in 292 

tumor immunogenicity between the MIRS groups are significant, MIRShigh group has 293 

relatively low immune infiltration level while MIRSlow group has relatively high 294 

immune infiltration level. Similar results were also observed in TCGA and GSE96058 295 

cohort (Supplementary Figure S8). This finding further suggested MIRSlow group 296 

maight have better response in therapy of immune checkpoint blockade. 297 

To investigate the correlation between MIRS score and metastatic mechanism, we 298 
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firstly downloaded the metastasis breast cancer (METABRIC) cohort from human 299 

cancer metastasis database https://hcmdb.i-sanger.com/, which contains primary tumor 300 

and metastatic tumor. Then the functional analysis achieved by GSEA detects 23 301 

qualified metastasis-related gene sets (NES| > 1, NOM p-value < 0.05 and FDR q-value 302 

< 0.25). After that, ssGSEA analysis was used to evaluate the above significant 303 

metastatic pathways. We observe that the metastatic pathways exhibit significant 304 

difference between two MIRS groups, and the majority of MIRShigh group had higher 305 

ssGSEA score (Figure 4G). A higher ssGSEA score suggests high activity of metastatic 306 

processes. Similar results are found in TCGA and GSE96058 cohort (Figure S9-S10). 307 

Furthermore, the expression discrepancy of three well-known genes (DCC, MMP9 and 308 

ETS) were found to be correlated to the invasion and metastasis in breast cancer (29) 309 

(Figure 4F), and MIRS exhibits moderately negative correlation with the expression of 310 

these genes (Figure 4H).  311 

We also examined the relationship between intrinsic molecular subtypes and MIRS. 312 

In breast cancer, major subtypes based on the ER, PR and HER2 exist on tumor cells. 313 

As shown in Figure S15, although the expression levels of ER, PR and HER2 were 314 

moderately correlated with MIRS, the differences in the expression levels of ER, PR 315 

and HER2 between high and low MIRS subtypes were statistically significant in TCGA 316 

and GSE86166. Additionally, for TCGA cohort, we noticed the imbalanced proportions 317 

of intrinsic molecular subtypes between MIRShigh and MIRSlow groups (Figure 4I). 318 

48.09% of LumA tumor and 22.5% of Normal-like tumor are present in MIRShigh group 319 

whereas 32.33% of LumB tumor in MIRSlow subtype. However, we found that higher 320 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted December 17, 2021. ; https://doi.org/10.1101/2021.12.16.21267775doi: medRxiv preprint 

https://doi.org/10.1101/2021.12.16.21267775


proportion of Basal-like tumor was present in MIRSlow subtype. In Muenst et al.’ study 321 

(30), they pointed out that the number of tumor-infiltrating lymphocytes was the highest 322 

in the basal-like subtype, which may support a high enrichment of basal-like tumor in 323 

MIRSlow group. We also found that the normal-like had significantly lower MIRS than 324 

other molecular subtypes, in contrast to the LumB subtype had the highest MIRS 325 

(Figure 4J). In addition, a statistically significant difference was detected among these 326 

five intrinsic molecular subtypes by using Kruskal-Wallis method (Figure 4J).  327 

Similar results were found in METABRIC cohort (Supplementary Figure S11). These 328 

analyses indicate that MIRS group exhibited chaotic correlation with classic molecular 329 

subtypes, which could be attributed to the high tumorous heterogeneity in breast cancer. 330 

Identification of MIRS related biological characteristics in 331 

prognosis of breast cancer 332 

The above analyses implied high correlations between MIRS and tumor-infiltration 333 

microenvironment as well as tumor metastasis. We further explore the molecular 334 

mechanism of 12-gene panel underlying the prognosis of breast cancer. Initially, 335 

through literature, we found that the majority of those prognosis-related genes, except 336 

for APOA5, has been reported to be involved in the processes of tumorigenesis (Table 337 

S6). It is worth mentioning that APOA5, encoding an apolipoprotein, is associated with  338 

cardiovascular diseases (31, 32), but little work studies its roles in tumorigenesis and 339 

prognosis. To delineate its potential prognostic role in breast cancer, we divided 340 

APOA5 expression into four quartiles, then GSEA analysis between the highest and 341 
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lowers quartiles in TCGA-BRCA was conducted. Interestingly, many metastatic and 342 

immune-related pathways were observed to be enriched in the highest quartile, 343 

including EMT, TNFα signaling and Immune response regulating signaling pathways 344 

(Figure 5A and S12A). Subsequent survival analysis of pan-cancer based on TCGA 345 

cohorts was performed via Kaplan-Meier Plotter (https://kmplot.com/analysis/) (33), 346 

indicating that APOA5 may serve as prognostic indicator in many cancers (Figure 347 

S12B). The breast cancer patients with the highest APOA5 expression have a worse 348 

survival outcome (Figure S12B). Overall, our analysis hinted that APOA5 may exert 349 

its prognostic function to affect the immune activity in breast cancer, and it is likely to 350 

be a potential target for the future research of breast cancer therapy.  351 

Genomic mutations are mostly involved in the survival prognosis of various cancers 352 

(34). Thus, we tested the associations between somatic mutations and MIRS in TCGA 353 

BRCA data. According to the analysis in the study of Chen et al (35), only the genes 354 

with somatic mutation frequencies more than 2.5% were included. By analyzing the 355 

mutation annotation of TCGA BRCA cohort, we selected the top 10 genes by mutation 356 

frequency. As provided in Figure 5B and C, MIRSlow group has increased frequency of 357 

mutation events than MIRShigh group. Rizvi et al (36) and Capalbo et al’ studies (37) 358 

demonstrated that the patients with more mutations might have an increased number of 359 

neoantigens that enhance response to immunotherapy. This result might explain, in the 360 

present study, the reason that MIRSlow group has better prognostic outcomes than 361 

MIRShigh group. 362 

Recently, tumor mutation burden (TMB) is the paramount prognostic measure in 363 
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cancer survival (38). We further investigated the associations between MIRS and TMB. 364 

As illustrated in Figure 5D, the patients in MIRSlow group exhibited markedly increased 365 

TMB when compared with those with MIRShigh group. Lee et al (39) and Karn et al’s 366 

studies (40) showed that high TMB was associated with improved survival. 367 

Additionally, Chen et al (35) reported that the increased TMB was correlated to 368 

improved response to PD-1 blockades therapy. Correlation analysis between MIRS and 369 

TMB demonstrated that MIRS score was negligibly correlated with TMB (Spearman 370 

coefficient: R = -0.1, p = 0.0011; Figure 5E). These findings indicate that MIRS may 371 

be related to immunotherapy response, and the patients with lower MIRS may have 372 

probably response in immunotherapy. 373 

The role of MIRS in the prediction of therapeutic 374 

benefits 375 

To explore predictive ability of MIRS in immunotherapy for each patient, T cell 376 

inflamed score (TIS), IFN -gamma signature, antigen presenting machinery genes 377 

(APM) and Immunotherapyscore (IPS) (20, 41, 42), which are prevailing predictors of 378 

clinical response to immunotherapy across different tumor types were compared. 379 

Notably, the higher of TIS, IFN-gamma score, APM and IPS mean that patients 380 

receiving immunotherapy are more likely to response All patients in GSE20711 and 381 

GSE58812 with MIRSlow showed significantly increased predictor scores than those 382 

with MIRShigh (Figure 6A and S13A), which hints that MIRSlow group is more likely to 383 

have immunotherapy response. To further appraise the prognostic capability of 384 
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MIRSlow group in immunotherapy, the differences in overall survival between MIRShigh 385 

and MIRSlow groups were compared using KM survival analysis in breast cancer testing 386 

cohort. Unfortunately, there are hitherto few public datasets of breast cancer patients 387 

receiving immunotherapy. Instead, the data of melanoma from Liu et al (43) and 388 

TCGA-SKCM dataset with patient receiving immunotherapy were used in present 389 

analysis. As a result, compared with PD-1 and TMB biomarkers upon receiving anti-390 

PD-1 treatment, MIRS showed robust AUCs (Figure 6B-D). Furthermore, the patients 391 

with MIRShigh have significantly shorter overall survival than their counterparts (Figure 392 

6E and Figure S13B). MIRS significantly increases in patients with stable disease (SD) 393 

or progressive disease (PD) when compared with those with complete response (CR) 394 

or partial response (PR) (Figure 6F and Figure S13CB). Besides, the distributions of 395 

CR/PR and SD/PD across MIRShigh and MIRSlow groups were also validated. We found 396 

that patients in MIRSlow group had better response to immunotherapy than those in 397 

MIRShigh group (Figure 6G and Figure S13DC).  398 

Moreover, to assess therapeutic value of MIRS in chemotherapy, we examined its 399 

predictive potential in GSE20685 with the breast cancer patients who receive adjuvant 400 

chemotherapy. The optimal cutoffs of MIRS were determined by the median cutoff, 401 

then the patients were stratified into MIRShigh and MIRSlow group. Survival analysis 402 

displays that the breast cancer patients with MIRSlow had much better survival than 403 

those with MIRShigh in adjuvant chemotherapy cases (Figure 6H). We also investigated 404 

the prognosis of different MIRS subtypes with or without adjuvant chemotherapy. As 405 

illustrated in Figure 6I, we found that MIRShigh group had statistically significant 406 
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differences between the patients who were treated with adjuvant chemotherapy and 407 

those without adjuvant chemotherapy. However, a consistent result was not observed 408 

in those patients with MIRSlow (Figure 6J). These results indicated that adjuvant 409 

chemotherapy might be more beneficial to MIRShigh group. Based on the gene sets of 410 

different drug treatments retrieved from MSigDB database, GSEA predicted that 411 

MIRShigh was significantly correlated with drug sensitivity in TCGA cohort (Figure 6K). 412 

Moreover, the R package pRRophetic was used to estimate the sensitivity of three 413 

chemotherapeutic drugs, including cisplatin, tamoxifen and vincristine, which have 414 

been commonly used in breast cancer treatment. The results showed that estimated IC50 415 

values of cisplatin and vincristine significantly decrease in MIRShigh subtype (Figure 416 

6L). We did not display IC50 boxplot of tamoxifen due to the R package ‘pRRophetic’ 417 

does not contain resistant information regarding tamoxifen. 418 

These results suggest that MIRS holds massive potential for predicting the response 419 

to chemotherapy and immunotherapy in breast cancer patients. In brief, the patients 420 

with MIRShigh may benefit from the chemotherapy, and patients with MIRSlow are likely 421 

to be more sensitive to the immunotherapy.  422 

 423 

Comparison of MIRS with the previously prognostic 424 

models 425 

Before the creation of MIRS, Shimizu et al (26) demonstrated that 23-gene panel 426 

(mPS) helps predict OS in breast cancer patients based on analogous neuron network 427 
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model; Cui’s score (44) constructed 8-gene signature based on traditional Lasso Cox 428 

model. We then comprehensively evaluate the prognostic power of our MIRS, mPS and 429 

Cui’s score by 0prognostic Cox analyses based on a variety of public datasets. Our 430 

MIRS performed very well in different cohorts (Figure 7A). Although mPS showed to 431 

be more robust than MIRS in many datasets, some of the HRs in mPS panel were not 432 

significant (P value > 0.05) (Figure 7B). Cui’s score performed the worst among these 433 

models (Figure 7C). 434 

Furthermore, we scrutinized the predictive potential of these three models in the 435 

response to immunotherapy. The malignant melanoma cohort data (43) that receives 436 

anti-PD-1 therapy was used. The optimal cutoffs of Cui’s score and mPS value were 437 

determined by the median. KM survival curves of MIRS show a significant difference 438 

in OS between MIRShigh and MIRSlow group (Figure 7E). On the contrary, the survival 439 

analysis of mPS and Cui’s score revealed that patients with low mPS or Cui’s score 440 

showed no statistically significant difference when compared with those with high 441 

mPS or Cui’s score (Figure 7F-G). MIRS, mPS and Cui’s score were also examined 442 

with time-dependent ROC analysis in the testing cohort for prediction in 443 

immunotherapeutic benefits. Notably, our MIRS exhibited much better predictive 444 

ability than mPS and Cui’s score for OS at 1 year, 1.5 years, and 2 years, respectively 445 

(Figure 7D). 446 

Discussion 447 

With the development of transformative technologies, analyses of high throughput 448 
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sequencing data have significantly deepened the understanding of modern biology, 449 

enabling the scientists to thoroughly explore key characteristics in a variety of cancers. 450 

Metastasis and tumor-immune infiltration are two of the major characteristics, and have 451 

been extensively proven to be associated with tumorigenesis, drug resistance and 452 

prognosis in breast cancer (43). Quite a few studies have disclosed the roles of 453 

metastasis and tumor-immune infiltration as prognostic factors in predicting the 454 

survival outcomes for breast cancer (45). Unfortunately, breast tumors are highly 455 

heterogeneous among individuals, and much current work has only considered organ-456 

specific metastasis or immune infiltration level and thus insufficient to achieve robust 457 

predictive power on prognosis. To address this issue, in this study we developed a 458 

comprehensive and efficient prognosis model, considering metastasis and immune 459 

infiltration levels together, to aid clinicians in providing precise treatment strategies. 460 

Given the promising predictive value of MIRS, we systematically investigated the 461 

relationships between MIRS and clinical pathological characteristics. In different 462 

sequencing platform data, MIRS demonstrated as an independent prognosis factor 463 

compared with other conventional clinical features (Figure S14). As illustrated in 464 

Figure S17A, we observed differences between MIRS and Age, Gender and Metastasis 465 

variables. Subsequently, we used decision curve analysis (DCA) to decipher the effect 466 

in combining MIRS with clinical indicators. In the DCA analysis, the net benefit of 467 

clinical indicators combined with MIRS were better than of sole clinical indicator 468 

(Figure S17B). Additionally, we employed TCGA and GSE96058 datasets to 469 

investigate whether MIRS is suitable for all BRCA subtypes due to its complete subtype 470 
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information. However, we have not observed consistently predictive ability in both 471 

datasets (Figure S18). This unsatisfied performance may come from the fact that we 472 

built our MIRS model without tumor subtype information. Together, these results 473 

demonstrate the validity and reliability of MIRS in clinical applications, but it no 474 

suitable to all subtypes in breast cancer.  475 

Next, we compared MIRS with the representative prognostic models, mPS and 476 

Cui’s score. Univariate cox regression analysis using nine public cohorts indicated that 477 

MIRS and mPS performd well in most cohorts. These results indicated that, 478 

constructing a prognostic system considering only metastatic features may be 479 

insufficient. Compared with AI methods, traditional survival model showed weak 480 

power. Nonetheless, mPS scoring system, based on an analogous AI approach, does not 481 

work well in predicting immunotherapeutic. It might explain that the establishment of 482 

mPS does not consider immunogenomic features, thus failing to achieve satisfactory 483 

immunotherapeutic prediction.  484 

Apart from being informative regarding prognosis, MIRS can also act as an 485 

independent predictor to guide therapeutic strategies. Our analyses indicated that 486 

MIRShigh group had lower TIS, IPS, IFN-gamma score and APM score, implying 487 

MIRShigh group is more likely to escape from immunity in breast cancer. For further 488 

validation, we tested if the OS between MIRShigh and MIRSlow groups was associated 489 

with immunotherapy. We used two malignant melanoma cohorts with 490 

immunotherapeutic information by conducting KM analysis. This survival analysis 491 

showed that MIRSlow group exhibited improved survival and better response to 492 
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immunotherapy than MIRShigh. We speculate that the immunotherapy may achieve 493 

beneficial treatment for MIRSlow patients.  494 

Currently, chemotherapy is one of the main treatments for breast cancer. Hence, it 495 

is necessary to identify patients who may potentially benefit from chemotherapy. 496 

Through the analysis of breast cancer patients with chemotherapy clinical                 497 

information, we found that patients with MIRShigh respond better to chemotherapy than 498 

patients with MIRSlow. Chemotherapy has been reported to be related to immune 499 

infiltration (46). In the Ahn et al’s study (47), they demonstrated that the high level of 500 

the CD8+ TILs filtration is associated with chemotherapy resistance. This may be the 501 

reason that high filtration MIRSlow subtype shows favorable chemotherapy. These 502 

results emphasize the significance of MIRShigh patients who could benefit from 503 

chemotherapy.  504 

As a gene prognostic signature particularly designed for breast cancer patients, 505 

MIRS is a novel and robust approach in risk stratification and personalized treatment. 506 

However, there are still flaws in the current study. First, due to the remarkable intra-507 

tumor heterogeneity in breast cancer, we cannot cover all metastatic signatures despite 508 

a large numbers of breast cancer patients used in this study. Second, only the median 509 

cutoff of MIRS is used to classify the patients into high and low subtypes, the optimal 510 

cutoff of MIRS would be needed to provide rational strategies. Lastly, all the 511 

conclusions in this research are obtained from in silico studies, clinical experiments are 512 

required to confirm our findings. 513 

MIRS has the potential to assist oncologists to screen patients who are more likely 514 
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to benefit from immunotherapy or chemotherapy. It would be of great significance to 515 

validate the value of MIRS in prospective clinical trials.  516 
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 679 

Tables 680 

Table 1. The 12 prognostic genes for calculating the risk score in TCGA 681 

data 682 

Gene ID 
Category Gene expression 

(high) 

Gene expression 

(low) 

Weight 

APOA5 Dangerous 1 0 0.4703 

FAM9C Dangerous 1 0 0.5585 

IVL Dangerous 1 0 0.4467 

PAGE5 Dangerous 1 0 0.5637 

CACNA1E Protective 0 1 0.3596 

CCL25 Protective 0 1 0.5013 

CD1A Protective 0 1 0.1782 

CD1B Protective 0 1 0.7733 

GPR55 Protective 0 1 0.6999 
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LAX1 Protective 0 1 0.6383 

TNFRSF8 Protective 0 1 0.6234 

WNT10A Protective 0 1 0.4189 

 683 

 684 

Figure Legends 685 

 686 

Figure 1. Systematic bioinformatic analysis pipeline. 687 

 688 

Figure 2. Exploration of the immune cell infiltration grouping, and 52 candidate 689 

genes were expressed in BRCA samples from the TCGA, GSE10893, and 690 

GSE3521 datasets.  691 

(A) Heatmap for the high and low immune-cell infiltration grouping from the TCGA cohort.  692 

(B) Boxplots for the expression levels of the CD family gene between high and low infiltration groups.  693 

(C) Comparison of Stromal score, Immunity score, ESTIMATE score and Tumor purity between the 694 

high and low immune infiltration groups.  695 

(D) Boxplots illustrate the 22 immune cell proportion s between high and low immune infiltration 696 

groups.  697 

(E) Venn plot of the differentially expressed genes from the TCGA data and GEO datasets.  698 

(F) Heatmap of the 52 candidate gene expression values between high and low immune infiltration 699 

groups from the TCGA dataset. Cluste1 represents the low immune infiltration level group, cluster 2 700 

represents the high immune infiltration level group. 701 

(G) Volcano plot of the 52 candidate genes between the primary and metastasis tumor groups both 702 

from the GSE3521 and GSE10893. The blue dots show the DE genes are down regulated in the 703 

metastasis group. The red dots display the DE genes are up regulated in the metastasis group. The p-704 

values were calculated using Wilcox rank sum test. 705 

 706 

Figure 3. Construction and validation of the MIRS in the training and testing 707 

cohorts. 708 

A. The square root of the variance inflation factor value for each candidate gene in the training 709 

data. 710 

B. Correlations between the candidate genes in the training TCGA data. Different correlations 711 

between two genes are represented by different colors. 712 

C. ROC curve for the patient's overall survival prediction in the training TCGA data.  713 

D. Kaplan-Meier curves of overall survival according to the MIRS subtypes in the training TCGA 714 

data. 715 

E. ROC curve for the patient's overall survival prediction in GSE96058. 716 

F. Kaplan-Meier curves of overall survival according to the MIRS subtypes in GSE96058. 717 

G. ROC curve for the patient's overall survival prediction in GSE86166. 718 

H. Kaplan-Meier curves of overall survival according to the MIRS subtypes in GSE86166. 719 

 720 
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Figure 4. Correlation of MIRS with the metastatic and immunogenomic 721 

landscape between the high and low MIRS subtypes. 722 

A. Comparison of the Stromal score, ESTIMATE score, Immune score, and Tumor purity between 723 

high and low MIRS subtypes in GSE86166. The p-values were calculated using Wilcoxon rank 724 

sum test. *p<0.05; **p<0.01; ***p<0.0001. 725 

B. Function enrichment bar plot for the genes in GSE86166 which were highly correlated 726 

(Spearman correlation coefficient≥  0.04) with 12 prognostic genes in GSE86166. 727 

C. Boxplots of the ssGSEA score for 17 immune-related biological functions and pathways 728 

between two MIRS subtypes in the GSE86166. The p-values were calculated using Wilcoxon 729 

rank sum test. *p<0.05; **p<0.01; ***p<0.0001. 730 

D. The spearman correlation between the gene expression levels of PD-1, PD-L1 and CTLA4 and 731 

MIRS score in the GSE86166 data, respectively. 732 

E. The boxplots of PD-1, PD-L1 and CTLA4 for two MIRS subtypes in the GSE86166 data. The 733 

p-values were calculated using Wilcoxon rank sum test. *p<0.05; **p<0.01; ***p<0.0001. 734 

F. The boxplots of DCC, MMP9 and ETS1 for two MIRS subtypes in GSE86166 dataset. The p-735 

values were calculated using Wilcoxon rank sum test. *p<0.05; **p<0.01; ***p<0.0001. 736 

G. Boxplots of the ssGSEA score for 23 metastatic biological functions and pathways between two 737 

MIRS subtypes in the GSE86166. The p-values were calculated using Wilcoxon rank sum test. 738 

*p<0.05; **p<0.01; ***p<0.0001. 739 

H. The spearman correlation between the gene expression levels of DCC, MMP9 and ETS1 and 740 

MIRS score in the GSE86166, respectively. 741 

I. Sankey diagram for the MIRS values with different intrinsic molecular subtypes in TCGA 742 

patients. 743 

J. Violin plots for the distribution of MIRS values in different intrinsic molecular subtypes at 744 

TCGA BRCA cohort. The p-values were calculated using Kruskal-Wallis test. *p<0.05; 745 

**p<0.01; ***p<0.0001. 746 

 747 

Figure 5. Identification of MIRS-related biological characteristics in prognosis of 748 

breast cancer. 749 

A. GSEA enrichment plots in TCGA. 750 

B. The Oncoplot of top 10 genes with the highest mutation frequency in high MIRS group (TCGA 751 

data). 752 

C. The Oncoplot of top 10 genes with the highest mutation frequency in low MIRS group (TCGA 753 

data). 754 

D. Boxplots of the MIRS score between the high and low TMB subtypes in TCGA data. The p-755 

values were calculated using Wilcoxon rank sum test. 756 

E. The spearman correlation between the MIRS score and TMB values in TCGA data. 757 

 758 

Figure 6. The therapeutic benefit of the MIRS value. 759 

A. The boxplot of TIS, IPS, APM score and IFN gamma score between the high and low MIRS 760 

in GSE20711.  761 

B. ROC curves between the expression level of PD-1, TMB and MIRS of anti-PD1 762 

immunotherapy response prediction in Liu et al data. 763 

C. Time-dependent ROC curves of MIRS for anti-PD1 immunotherapy response prediction in the 764 
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Liu et al data. 765 

D. Time-dependent ROC curves of the expression level for anti-PD1 immunotherapy response 766 

prediction in Liu et al data. 767 

E. Kaplan-Meier curves of overall survival according to MIRS subtypes in the Liu et al data. 768 

F. Violin plot illustrating the distribution of MIRS for patients with different immunotherapy 769 

response in Liu et al data. 770 

G. Bar graph showing the number of clinical responses to anti-PD-1 immunotherapy in the high 771 

and low MIRS subtypes in Liu et al data. 772 

H. Kaplan-Meier curves of overall survival according to MIRS subtypes with chemotherapy in 773 

GSE20685. 774 

I. Kaplan-Meier curves of overall survival according to the high MIRS subtype with or without 775 

chemotherapy in GSE20685. 776 

J. Kaplan-Meier curves of overall survival according to the low MIRS subtype with or without 777 

chemotherapy in GSE20685. 778 

K. GSEA predict that high MIRS group is negatively correlated with drug resistance in TCGA 779 

cohort.  780 

L. Chemotherapeutic sensitivity of two drugs (Cisplatin, Vincristine) were estimated and 781 

compared in TCGA cohort.  782 

 783 

Figure 7. Compare MIRS with previous prognosis signatures. 784 

A. A meta-analysis was performed using the prognosis results of MIRS in nine public datasets. 785 

B. A meta-analysis was performed using the prognosis results of mPS in nine public datasets. 786 

C. A meta-analysis was performed using the prognosis results of Cui’s score in nine public 787 

datasets. 788 

D. Time-dependent ROC curves of anti-PD-1 immunotherapy on the 1-,1.5-,2-year survival rates 789 

for Liu et al data. 790 

E. Kaplan-Meier curves of overall survival according to MIRS subtype with immunotherapy in 791 

Liu et al data. 792 

F. Kaplan-Meier curves of overall survival according to mPS subtype with immunotherapy in Liu 793 

et al data. 794 

G. Kaplan-Meier curves of overall survival according to Cui’s score subtype with immunotherapy 795 

in Liu et al data. 796 
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