1	Title: Antibodies targeting merozoites induce natural killer cell degranulation and
2	interferon gamma secretion and are associated with immunity against malaria
3 4	Authors: Dennis O. Odera ^{1,2} , James Tuju ² , Kennedy Mwai ^{2,3} , Irene N. Nkumama ¹ , Kristin
5	Fürle ¹ , Timothy Chege ² , Rinter Kimathi ² , Stefan Diel ¹ , Fauzia K. Musasia ¹ , Micha
6	Rosenkranz ¹ , Patricia Njuguna ² , Mainga Hamaluba ² , Melissa C. Kapulu ² , Roland Frank ¹ ,
7	Faith H. A. Osier ^{1,2,4} *, and CHMI-SIKA Study Team [#] .
8	Affiliations:
9	¹ Centre of Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
10	² Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute-
11	Wellcome Trust Research Programme, Kilifi, Kenya
12	³ Epidemiology and Biostatistics Division, School of Public Health, University of the
13	Witwatersrand, Johannesburg, South Africa.
14	⁴ IAVI Human Immunology Laboratory, Imperial College London, United Kingdom
15	[#] CHMI-SIKA Study Team members are listed in the supplementary information.
16	*Corresponding author. Fosier@iavi.org ; Faith.osier@med uni-heidelberg.de
17	
18	
19	
20	
21	
22	
24	
25	
26	
27	

28 NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

29 Abstract:

Natural killer cells are potent immune effectors that can be activated via antibody mediated 30 Fc receptor engagement. Using multiparameter flow cytometry, we found that natural killer 31 32 (NK) cells degranulate and release IFNy upon stimulation with antibody-opsonized Plasmodium falciparum merozoites. Antibody-dependent NK activity (Ab-NK) was largely 33 34 strain-transcending and enhanced the inhibition of invasion into erythrocytes. Ab-NK was associated with the successful control of parasitemia following experimental malaria 35 challenge in African adults. In an independent cohort study in children, Ab-NK increased 36 37 with age, was boosted by concurrent falciparum infections and associated with a lower risk of clinical episodes of malaria. Nine of 14 vaccine candidates tested induced Ab-NK including 38 39 some less well-studied antigens - P41, P113, MSP11, RHOPH3, and Pf_11363200. These 40 data highlight an important role for ab-NK in immunity against malaria and provide a new mechanism for the evaluation of vaccine candidates 41 42

- 43 One Sentence Summary: Antibody-dependent natural killer activation is induced by
- 44 merozoites and associated with immunity against malaria

45 Main Text:

46

47 INTRODUCTION

The World Health Organization (WHO) recently recommended the widespread use of 48 the RTS, S malaria vaccine in areas with moderate to high malaria transmission intensity¹. 49 50 Whilst a major landmark as no other malaria vaccine has advanced this far, RTS,S is modestly efficacious and the protection it induces wanes rapidly². Vaccine development for 51 malaria remains an urgent priority. Repeated exposure to *P. falciparum* parasitemia under 52 53 conditions of high transmission intensity results in long term immunity to clinical episodes of 54 malaria³. Passive transfer experiments demonstrated the importance of antibodies in mediating protection⁴, but the precise mechanisms that underpin their actions are still under 55 56 investigation and there are no universally accepted correlates of protection. Numerous studies focus on the Fab-dependent neutralization of parasites that occurs for instance when 57 antibodies inhibit the invasion of erythrocytes by merozoites, with inconsistent results⁵. 58 59 Antibody-dependent Fc-mediated interactions with effector cells are increasingly being recognized as important correlates of protection⁶⁻¹⁰ 60

61

The abundance of natural killer (NK) cells in peripheral blood positions them as 62 prime immune effectors¹¹. They are known to target malignant or virus-infected cells through 63 an array of germ-line encoded activation receptors 12,13 . They can also be activated by 64 opsonized malaria parasites via the low-affinity immunoglobin FcyRIIIa (CD16)⁷. Activation 65 of NK cells leads to degranulation and the release of cytotoxic molecules like granzyme B, as 66 well as the secretion of pro-inflammatory cytokines such as IFN γ^{14} , with high Plasma levels 67 of both associated with reduced parasitemia *in-vitro*¹⁵ and in cohort studies¹⁶. Recent studies 68 have shown that malaria-immune sera target *P. falciparum* infected erythrocytes via NK cells 69

70	leading to their destruction ^{9,17} . Merozoites may also be cleared in a similar fashion as
71	antibodies to many merozoite antigens have been associated with protection against malaria
72	and are considered as leading vaccine candidates ^{18,19}
73	
74	We developed a novel antibody dependent natural killer cell assay (ab-NK) focused
75	on <i>P. falciparum</i> merozoites. We demonstrate that anti-merozoite antibodies induce NK cell
76	degranulation and IFN γ production in a largely strain-transcending fashion and enhance
77	invasion-inhibition in-vitro. We use a human malaria challenge study in adults and an
78	independent prospective cohort study in children and demonstrate for the first time that ab-
79	NK targeting merozoites is predictive of protection. We identify specific merozoite antigens
80	that induce ab-NK and provide a novel mechanistic correlate to support the prioritization of
81	vaccine candidates.
82	
83	RESULTS
84	
85	Ab-NK activated following co-incubation with malaria-immune sera and merozoites
86	We tested whether merozoite-specific antibodies activated NK cells that were freshly
87	isolated (immediately following blood draw) from malaria-naïve donors. We measured the
88	levels of the classical surface marker of NK cell degranulation (CD107a) and intracellular
89	IFNy production. Activation was dependent on the presence of both malaria-immune sera and
90	merozoites (Fig. 1A and B). Malaria-immune but not naïve sera activated NK cells in a dose-
91	dependent fashion (Fig. S1A and B). We minimized assay variability by pooling NK cells
92	from three independent donors in each experimental run (Fig. 1B). We validated the assay
93	further using individual samples from malaria-exposed adults from Junju, Kenya, a region
94	with moderate malaria transmission intensity (Fig. 1C & 1D).

As expected, ab-NK was significantly correlated with total IgG against merozoites, Spearman's R = 0.54 and 0.56 for CD107a and IFN γ respectively, P < 0.0001 (Fig. 1E). This correlation was greater for the cytophilic IgG1 and IgG3 isotypes (CD107a R = 0.54 & R = 0.51, P < 0.0001), when compared with the non-cytophilic IgG2 and IgG4 (CD107a R = 0.47 & R = 0.39, P < 0.0001; Fig. S2 A and B).)

100

101 Ab-NK is strain-transcending across African isolates of *P. falciparum*

102 We compared ab-NK against five *P. falciparum* parasite isolates using 20 samples 103 from malaria-exposed adults from Junju. Four of the five isolates were long-term laboratory-104 cultured strains of diverse geographical origin; NF54, FCR3, and D10 from West Africa and 105 Dd2 from South East Asia. The fifth was isolated in Kenya (East Africa), has recently been 106 adapted to laboratory culture conditions and is subsequently referred to as the clinical isolate. 107 The pairwise correlation coefficients for ab-NK degranulation were significant and high 108 between the laboratory isolates of African origin (NF54, FCR3, D10; Spearman's R = 0.86 to 109 0.92, P < 0.001) but lower when compared to the clinical isolate (Spearman's R = 0.45 to 0.56, P = 0.010, Fig. 1F). The latter may relate to the deletion of genes following long-term 110 parasite culture²⁰. The pairwise correlation coefficient between the SE Asian (Dd2) versus 111 112 West African laboratory isolates (NF54, FCR3, D10) was markedly lower (Spearman's R =0.23 to 0.33, P = 0.245, Fig. 1F), consistent with the distinct genomic architecture observed 113 between parasite isolates from Asia and Africa^{21,22}. Surprisingly, a significantly higher 114 115 correlation was observed between the Kenyan clinical isolate and the SE Asian laboratory strain (Spearman's R = 0.70, P < 0.001) suggesting that these are more closely related. 116 117 Similar results were observed for ab-NK IFNy production levels (Fig. S3) 118

119 Ab-NK enhanced *P. falciparum* invasion inhibition

120	P. falciparum merozoite invasion is a complex process that occurs within a narrow
121	time window following schizont egress. To test whether ab-NK had an impact on merozoite
122	invasion in-vitro, we used a modified standard invasion inhibition assay. Donor NK cells,
123	uninfected red blood cells and freshly isolates merozoites were co-cultured in the presence or
124	absence of antibodies. Malaria immunoglobulin (MIG) but not naïve antibodies inhibited
125	parasite invasion. Interestingly, NK cells enhanced MIG-mediated invasion inhibition by
126	48%. Anti-rAMA-1 (polyclonal antibodies raised in immunized rabbits) was included as a
127	positive control for invasion inhibition (Fig. 1G).
128	

- Merozoites were opsonized with a pool of malaria-immune or naïve plasma with 132
- 133 PHA/ionomycin included as a positive control. Data are from four independent experiments

134	and show the median with 95% confidence interval (95% CI); Kruskal-Wallis test. (B) Inter-
135	assay variation was evaluated between days 1 versus 2 or 3. Pooled NK cells from 3
136	independent donors were tested using the same 30 malaria-immune samples on 3 separate
137	days.(C & D) P. falciparum merozoites opsonized with Plasma from individual malaria-
138	exposed adults (red circles, n=21) or malaria-naïve plasma (blue circles, n=4) were co-
139	incubated with donor NK cells. Representative flow plots of NK cells incubated with
140	merozoites in the presence of the respective plasma are shown. An additional pool of hyper
141	immune sera (PHIS, comprised of sera from Junju adults with high ELISA responses against
142	the 3D7 schizont lysate; brown circles, n=4) was included as a positive control. Error bars
143	represent 95% CI of the median values; Kruskal-Wallis test. (E) Pairwise correlation between
144	the proportion of IFN γ secreting or degranulating (CD107a+) NK cells activated by
145	opsonized P. falciparum 3D7 merozoites and merozoite ELISA quantifying total IgG
146	responses (n=142). (F) Spearman's correlation heatmap between the proportion of NK cells
147	degranulating upon activation by opsonized merozoites from five P. falciparum strains of
148	different geographical origins (n=20). (G) Viable merozoites were co-incubated with
149	uninfected erythrocytes and test immunoglobulins in the presence or absence of donor NK
150	cells. Data represent the median with 95% confidence intervals of three independent
151	experiments.

152

Table 1: Ab-NK predicts protection following malaria challenge

	IRR (95%CI)	P value	HR (95%CI)	P value
CHMI Adults n=	=142			
CD107a+	0.42 (0.27-0.63)	< 0.001	0.26 (0.15-0.47)	< 0.001
$IFN\gamma+$	0.47 (0.29-0.74)	0.001	0.19 (0.09-0.41)	< 0.001

154 155 Incidence risk and hazard ratios (IRR, HR) with 95% confidence intervals (CI) estimated in

the modified Poisson (left panel) and Cox regression (right panel) models, respectively. All

multivariate models were adjusted for low levels of antimalarial drugs (below minimalinhibitory concentrations) and volunteer location of residence.

159

160 Ab-NK is associated with protection following malaria challenge

We next assessed ab-NK in samples collected on the day before challenge (C-1) in a controlled human malaria infection (CHMI) study in semi-immune Kenyan adults²³. The study endpoints were clinical symptoms of malaria with any evidence of malaria parasites by blood film positivity or parasitemia > 500 parasites/µl, both of which warranted immediate treatment²³. Treated volunteers were further classified into those who developed fever and those who did not (febrile versus non-febrile). Untreated volunteers were sub-classified based on parasite detection by PCR into PCR-ve and PCR+ve groups²⁴.

168 We asked whether ab-NK before challenge was associated with protection.

169 Volunteers who were not treated (protected) had significantly higher levels of ab-NK cell

170 degranulation and IFN γ than those that were treated (unprotected). (Mann-Whitney t test, P <

171 0.00001; Fig. 2A and 2B). Among the treated volunteers, there was no difference in ab-NK

172 between those that were febrile versus non-febrile. Likewise, in the untreated (protected) sub-

173 group, there was no difference between those who were either PCR + or PCR-ve. (Fig. 2C).

174 To test for associations with protection, we stratified ab-NK cell into high versus low sub-

175 groups based on threshold values derived from maximally selected rank statistics 25 . For both

176 degranulation and IFNγ production, high ab-NK was associated with a significantly lower

177 risk of treatment (incidence rate ratio 0.42 and 0.47 respectively, P < 0.001; Table 1).

178 Furthermore, the time to detection of clinical malaria (study endpoints) after the tenth day

179 post-challenge was longest in volunteers with high compared to low levels of ab-NK, Cox

180 regression hazard ratio (HR) 0.26 and 0.19 for degranulation and IFNγ production

181 respectively, P < 0.001; Table 1, Fig 2D). These analyses were adjusted for the potential

- 182 confounding effects of low levels of lumefantrine (below the minimum inhibitory
- 183 concentrations) that were detected in the C-1 samples, and the geographical origin (location
- of residence) of the volunteers. 184
- 185
- 186

188 Figure 2. Antibody-mediated NK cell activity is associated with *in vivo* parasite growth.

- Comparison of ab-NK degranulation (A) and IFNy production (B) in treated (n=56) versus 189
- non-treated (n=86) volunteers. Bars represent 95% CI of the median values; Mann-Whitney 190
- 191 test. (C) Sub-group analysis ab-NK degranulation for treated volunteers who either developed
- fever (febrile n=26) or did not (non-febrile n=30), and for untreated volunteers in whom 192
- parasites were either detected by PCR (PCR+ve n=53) or remained negative (PCR-ve n=33). 193

- 194 Bars represent 95% CI of the median values; Kruskal-Wallis with Dunn's multiple
- 195 comparison test. (**D**) Kaplan-Meier curves for the time to treatment for volunteers with a high
- 196 (red) versus low(blue) ab-NK degranulation; log-rank test, P<0.0001 n=142.
- 197

198 Not all potential merozoite vaccine candidate antigens induce Ab-NK

199 To distinguish distinct merozoite antigens that induce ab-NK from those that

200 potentially did not, we developed a plate-based ab-NK assay utilizing recombinant antigens.

- 201 We could thus detect and quantify antigen-specific ab-NK. We tested ab-NK for 14 *P*.
- 202 *falciparum* merozoite surface-associated antigens identified as potential vaccine candidates in

203 a previous study¹⁸. This analysis was conducted in a subset of CHMI samples with high (n=8)

or low (n=2) levels of ab-NK against whole merozoite extract. We found that antigen-specific

ab-NK varied between antigens and individuals. We identified 8 potential merozoite targets

206 of ab-NK out of the 14 tested (Fig. 3A). These included well-characterized vaccine

207 candidates like AMA-1, MSP3 and MSP2 and less-well studied antigens like P41, P113,

208 MSP11, RHOPH3, and *Pf_*11363200 that have independently been associated with clinical

209 protection $^{14-16}$. (Fig. 3A). Responses against other leading blood stage vaccine candidates

such as *Pf*Rh5 and EBA-175 had negligible ab-NK. Although we had pre-selected individuals

- 211 with high ab-NK degranulation against whole merozoite extract, this did not always translate
- 212 into high levels of antigen-specific ab-NK. This suggests that additional antigens that were
- 213 not tested here contributed to the functional response against the whole merozoite (Fig. 3B).
- Additionally, we and others previously found that the breadth of the antibody response was
- associated with enhanced function 19,28,29 . In keeping with this, whole merozoite extract ab-
- 216 NK cell degranulation and the breadth of antigen-specific ab-NK cell degranulation were
- 217 strongly correlated (Fig. 3C and Fig 3D).

218 219 Figure 3. Potential targets of antibodies that mediate ab-NK. (A) Antigen-specific ab-NK 220 cell degranulation from a subset of CHMI individuals (n=10) against 14 unique recombinant P. falciparum merozoite antigens. Blue line represents the cut-off value based on the mean 221 222 plus 3 standard deviations of the tag fragment (CD4 tag). Error bars represents 95% CI of the 223 median (Red line). (B) Heatmap of individual level antigen-specific ab-NK cell degranulation 224 from A. Each row represents a single CHMI participant and each column represents 225 responses to a single recombinant merozoite surface associated antigen. (C) Ab-NK cell 226 degranulation against whole merozoite extract was associated with the breadth of antigen-227 specific recognition. Error bars represents 95% CI of the median (Red line) n= 142; Kruskal-228 Wallis test. (**D**) The sum of antigen-specific ab-NK cell degranulation against 14 unique

- 229 recombinant merozoite antigens was correlated with NK cell degranulation against
- 230 merozoites; Spearman correlation R = 0.80.
- 231 Table 2: Junju cohort baseline characteristics

Age category (n)	<5 years (151)	>5 years (142)	0-12 years (293)	
Sex n(%positive)				
Male	71 (47%)	72 (49%)	143 (48%)	
Malaria slide positive n(%)				
At cross sectional sampling	28 (23%)	52 (36%)	80 (27%)	
Malaria episodes				
n (%positive)	77 (51%)	45 (31%)	122 (41%)	
Ab-NK activity seropositive n (%)				
CD107a+ve	99 (65%)	101 (71%)	200 (67%)	
IFNγ+ve	8 (6%)	12 (10%)	12 (10%)	

232 233

234 Ab-NK increases with age following natural infections

We next examined the acquisition of antibodies that mediated NK cell activity in 293 235 samples collected from a longitudinal cohort study of children living in Junju, Kenya³⁰. At 236 237 the time of sampling, 67% of the children had antibodies that mediated NK cell degranulation 238 while only 10% had antibodies that induced IFNy production, respectively (Table 2). 239 Notably, we observed significantly lower ab-NK in children compared to adults living in the same location (Fig. S4A). Ab-NK increased with age (Fig. 4A; Fig. S4B). Additionally, 240 241 children who were parasite slide positive at the time of sampling showed higher NK cell 242 degranulation but not IFNy production than slide negative children, suggesting a boosting effect of ab-NK by active P. falciparum infection (Fig. 4B). Antibody responses against three 243 244 malaria vaccine candidates (AMA-1, MSP2 and MSP3) had been measured in this cohort in a previous study³⁰. Ab-NK in children was modestly correlated with antibody recognition of 245

AMA1 (CD107a+: R = 0.35 and IFN γ +: R = 0.31), MSP2 (CD107a+: R = 0.28 and IFN γ +: R = 0.35), and MSP3 (CD107a+: R = 0.25 and IFN γ : R= 0.24; Spearman's R for all comparisons P< 0.0001; Fig. S4C). However, despite the modest correlation, the breadth of antibody recognition against the three merozoite antigens was associated with increased NK cell activity against the whole merozoite in children, again suggesting an additive effect when multiple targets are considered (Fig. 4C).

252

253 Ab-NK is associated with protection against clinical episodes of malaria in children

254 To date, no longitudinal cohort study has assessed the relationship between ab-NK 255 against merozoites and protective immunity in children living in Kenya. We stratified ab-NK into high versus low categories based on derived thresholds²⁵ and fitted them to a Poisson 256 regression analysis, adjusting for age and previous *P. falciparum* exposure as confounders⁶. 257 We found that both degranulation and IFNy production were significantly associated with 258 259 clinical protection CD107a (IRR: 0.34 (95% CI, 0.19-0.61); P < 0.000 and IFN γ ; (IRR: 0.61) 260 (95% CI, 0.38-0.97); P < 0.040; Table 3). These findings were confirmed in a Cox regression analysis in which the time to the first malaria episode was analyzed as the outcome variable 261 262 (log-rank test, P<0.0001; Fig. 4D).

Figure 4. Antibody-mediated NK cell degranulation is associated with clinical 264 265 protection in a prospective cohort study in Kenyan children. (A) Comparison of Ab-NK in Junju children over or under 5 years of age. (B) Ab-NK response in children who had an 266 267 active P. falciparum infection compared to those without. Error bars represent 95% CI of the 268 median values; Mann-Whitney test (n=293). (C) Antibody-mediated NK cell degranulation is correlated with the breadth of total IgG responses against recombinant MSP2, MSP3 and/or 269 AMA-1. Error bars represent 95% CI of the median values; Kruskal-Wallis test with Dunn's 270 271 multiple comparison test (n=293). (**D**) Ab-NK cell degranulation is associated with clinical 272 protection in children. NK cell degranulation responses were categorized as high or low (blue) based on a threshold²⁵; log-rank test, P= 0.001 (n=293). Each dot represents a technical 273 274 replicate.

276 Table 3: Ab-NK is associated with a reduced risk of clinical malaria episodes in children

from Junju, Kenya 277

Junju Children 0-12 years (n=293)	IRR (95%CI)	P value	HR (95%CI)	P value
CD107a+	0.34(0.19-0.61)	0.000	0.26(0.13-0.52)	0.000
IFNγ+	0.61(0.38-0.97)	0.038	0.54(0.30-0.97)	0.040

278 279 Ab-NK cell degranulation and IFNy production were fitted to modified Poisson regression models. Results are presented as incidence risk ratios (IRR) or hazard ratios (HR) with 95% 280 281 confidence interval (CI). P-values >0.05 were considered significant. All models were 282 adjusted for age and previous P. falciparum exposure as confounders.

283

284 DISCUSSION

Defining the mechanisms that underpin the potent efficacy of malaria 285 286 immunoglobulin observed in passive transfer experiments provides a strong evidence-base for rational vaccine development. We report for the first time that anti-merozoite antibodies 287 engage Fc receptors on natural killer cells, thereby unleashing potent anti-parasite effector 288 289 activity. Ab-NK was associated with clinical protection in two independent studies and induced responses against multiple parasite strains, including a recently adapted clinical 290 291 isolate. Additionally, we identify a subset of merozoite antigens that induce ab-NK and show that the breadth of antigen-specific ab-NK mirrors that quantified against merozoites. Our 292 293 data augment the accumulating body of evidence that targeting combinations of antigens may be instrumental for malaria vaccine design 18,19,29,31-35. We also provide a new mechanism for 294 295 the prioritization and subsequent evaluation of vaccine candidates. 296 Although several immune mechanisms have been proposed as correlates of 297 protection, none have focused on Fc-antibody-dependent targeting of merozoites by natural

killer cells. The growth inhibition assay (GIA) is considered the gold standard for the 298

299 assessment of antibody function and is thought to assess a combination of invasioninhibition, growth inhibition and possibly merozoite $egress^{36-39}$. Unfortunately, it does not 300 reliably predict protection. Other studies have investigated the role of complement⁷, 301 monocytes⁶ and neutrophils⁸, marking the increasing importance of Fc-mediated function¹⁰, 302 with promising results that need further validation in additional studies Importantly, our 303 304 unique challenge study allowed us to overcome many of the limitations of cohort studies that 305 often lead to conflicting results when any functional correlate of protection is considered. The 306 timing and intensity of our experimental parasite challenge was accurately defined, and close 307 monitoring for clinical symptoms and parasite multiplication rates was feasible because 308 volunteers were hosted at a single location for the duration of the study. We included adults 309 from a single East African country to minimize genetic variability and pre-selected 310 individuals with a varied range of previous malaria exposure to allow us to explore its' 311 impact on the clinical outcome. Under these stringent conditions, we observed a strong and 312 significant correlation between ab-NK and protection. We found similar results in an 313 independent study, involving only children, and that utilized an entirely different design in which malaria infections occurred naturally under real-life conditions. 314 315 Natural killer cells have been extensively studied for their role in the early defense

against viral infections and cancers. Additionally, the modulation of their function underpins
an array of contemporary immunotherapeutic agents^{40,41}. Our study capitalizes on the unique
ability of the FcγRIIIa (CD16) to induce NK cell in response to antibody-coated targets,
without engaging other activating or inhibitory receptors⁴². The potential impact of this
mechanism on vaccines against infectious diseases is relatively understudied. Recently, a
human monoclonal antibody (mAb) against a conserved region of the haemagglutinin (HA)
protein, was shown to not only potently neutralize a broad range of influenza viruses, but also

to mediate ADCC⁴³. In HIV, evidence that ADCC-mediating antibodies complement
 neutralizing functions is accumulating^{44,45}.

In malaria, natural killer cells were identified as part of the early innate immune 325 response, through the production of IFN γ and soluble granzymes¹⁴. Although recent data 326 suggest that they can acquire a memory-like "adaptive" phenotype following repeated 327 exposure with malaria^{17,46}, our study utilized malaria-naïve NK cells to interrogate their 328 interaction with anti-merozoite antibodies. As shown for malaria antigens exposed on the 329 surface of infected red cells^{9,46,47} antibodies against merozoites induce Fc-receptor dependent 330 331 NK activation. In our studies, antibodies inducing ab-NK increased with age, were boosted by recent malaria infections and were strongly predictive of immunity. Furthermore, our 332 antigen-specific ab-NK assay provides novel insights on individual merozoite antigens that 333 334 induce functional antibodies and could guide rational vaccine design.

335 The detection of functional activity against a diverse panel of parasite strains is 336 noteworthy and a vitally important consideration when new assays and vaccine candidates are assessed^{5,35}. Previous studies investigating antibody-dependent NK effector function in *P*. 337 falciparum focused on a single laboratory strain^{9,17,46,47}. We found that ab-NK responses 338 against merozoites from diverse P. falciparum strains originating in Africa were strongly 339 340 correlated. Although this suggests that some of these antibodies target conserved epitopes, 341 further confirmation at the antigen and indeed epitope level is needed. Interestingly, the 342 weaker correlations between the African laboratory versus clinical isolate indicate that some antibodies do target polymorphic epitopes. In influenza, ADCC-mediating antibodies target 343 conserved epitopes in the HA protein⁴⁸, raising the exciting possibility of broadly protective 344 345 universal influenza vaccines.

We developed a high-throughput plate-based antigen-specific ab-NK cell assay⁴⁹ to home-in on specific merozoite antigens targeted by ab-NK. We tested a pragmatic panel of

348 merozoite antigens that were available to us from previous studies in a subset of samples 349 from adults⁵⁰. We observed high inter-individual variation and unique ab-NK antigen-specific 350 reactivity profiles in each sample. This was not surprising given the heterogeneity of antibody responses against malaria antigens that we, and others, have previously reported^{18,51}. 351 352 Interestingly, leading vaccine antigens known to induce invasion-inhibitory antibodies such as AMA1⁵², or Fc-dependent activity in phagocytosis such as MSP3⁶, were also targeted by 353 354 ab-NK in some, but not all individuals. Less-well studied vaccine candidates such as Pf113 355 and P41 also induced ab-NK in a proportion of individuals. Notably, some individuals 356 elicited high levels of ab-NK against the whole merozoite, but not against a broad range of 357 tested antigens. Further dissection of antigen and epitope specificity is warranted and may be 358 instructive for vaccine design.

359 Previous studies have demonstrated that the breadth of the antibody response against selected parasite antigens is an important predictor of protection against malaria^{18,19,29,31–35,53}. 360 361 The breadth of antibody reactivity against the 14 P. falciparum antigens tested in the current 362 study was associated with higher ab-NK against the whole merozoite. This mirrors observations from other functional studies in which the breadth of the antigen-specific 363 functional Fc-antibody dependent response was correlated with protection^{18,19}. These data 364 365 suggest that an effective malaria vaccine modelled on naturally acquired immunity may not 366 only need to incorporate multiple antigens, but also induce antibodies that trigger diverse 367 effector functional activity. The influenza example is a case in point; a multifunctional human 368 mAb was identified that simultaneously neutralizes virus and induces $ADCC^{43}$.

We identify antibody-mediated NK cell activity targeting merozoites as a strong
predictor of naturally acquired immunity against *P. falciparum* malaria. Our antigen-specific
assay facilitates throughput and will galvanize additional studies focusing on specific vaccine

- 372 candidates. Further dissection of ab-NK inducing antibodies at the epitope level may reveal
- important signatures for universal vaccine design.
- 374

375 MATERIALS AND METHODS

376 Study design and samples

377 Controlled human malaria infection (CHMI) study

378 The study design and details of the CHMI study have been described previously⁵⁴. Briefly, a

dose of 3200 infectious, cryopreserved *P. falciparum* NF54 sporozoites (Sanaria *Pf*SPZ) was

administered intravenously to 161 consenting Kenyan adults (18-45 years) with varying

degrees of prior exposure to malaria (based on ELISA responses to crude *P. falciparum* 3D7

schizont lysate). Testing for parasitemia was conducted twice daily from day 7 to 14; and

383 once from day 15 to 21 days post-challenge by qPCR. Subjects were treated either when they

had more than 500 $Pf/\mu L$, exhibited clinical symptoms and had any parasitemia or at the end

of the active follow up period on day 21. Data from 19 individuals were excluded due to

detectable drug levels⁵⁴ (Fig. S6). We analyzed 142 plasma samples collected one day before

the challenge (C-1) to test whether ab-NK was associated with a lower risk of clinical malaria

388 or parasitemia > 500 $Pf/\mu L$.

389

390 Longitudinal study: Junju cohort

The Junju cohort was established in 2005 as part of a malaria vaccine trial⁵⁵, and participants have been followed up since then. Briefly, we analyzed 304 plasma sample collected at the beginning of the malaria transmission season in May 2008 from children aged between 0-12 years and resident in Junju village, Kilifi County. The *Plasmodium falciparum* parasite rate standardized to the age group 2–10 years (*Pf*PR_{2–10}) was 29% at the time of sampling. Active follow-up involved weekly visits to participants homes where a questionnaire for clinical

397 symptoms was administered and temperature was recorded. In addition, study personnel were 398 resident in the village and were contacted by caregivers contacted at any time if the children 399 were unwell. A clinical malaria episode was defined either as a temperature of >37.5°C plus any parasitemia for children under 1 year, or a temperature of >37.5°C plus a parasitemia of 400 $>2500 Pf/\mu L$ for children older than 1 year⁵⁶. We analyzed data spanning the malaria 401 402 transmission season of approximately 6 months duration. Independent samples collected from adults in Junju (n = 40) were used to establish and optimize the ab-NK cell assay. A pool of 403 404 hyper-immune sera collected from malaria-exposed adults (PHIS) from Kilifi, Kenya and a commercial Malaria Immune Globulin⁵⁷ (MIG) were used for validation experiments and as 405 positive controls. 406

407

408 Cultivation, purification and quantification of viable *P. falciparum* merozoites

409 *P. falciparum* laboratory adapted strains of West African (NF54, FCR3, D10) and SE Asian

410 origin (Dd2), as well as a recently adapted clinical isolate from Kilifi, Kenya (P0000072)

411 were cultured in RPMI-1640 media supplemented with 0.5% Albumax, 25µg/mL

412 gentamycin, 50µg/mL Hypoxanthine, 2mM L-glutamine and 25mM HEPES buffer. Cultures

413 were maintained at 2% parasitemia with O-positive erythrocytes obtained from malaria-naïve

414 donors (less than 2 weeks old). Free viable merozoites were isolated as previously described

415 ⁵⁸.Briefly, *P. falciparum* cultures were allowed to attain 10-15% parasitemia and

416 synchronized at the ring stage using 5% sorbitol. After 24 hours, late stage pigmented

417 trophozoites were harvested by Magnetic Activated Cell Sorting (MACS) column purification

418 as per the manufacturer's instructions (Miltenyibiotec), attaining trophozoite purifications of

- 419 80-95%. The enriched trophozoites were put back in culture and allowed to develop until
- 420 they began to undergo schizogony (segmented nuclei) whereby 1mM of a protease inhibitor
- 421 (E64; SIGMA) was added to allow maturation into late schizonts but inhibit rupture. Mature

422	schizonts were collected and passed through a $1.2 \mu m$ microfilter previously blocked in 1%
423	casein in PBS for 10 minutes to release free viable merozoites. These were either
424	immediately used in the IIA-ADCC assay or washed twice in PBS, quantified and stored at -
425	80°C until needed. The relative concentration of the stored merozoites was determined using
426	CountBright TM absolute counting beads as per the manufacturer's instructions. In brief, $50\mu L$
427	of counting beads with a known concentration was mixed with a known volume of
428	merozoites stained with 100µL 1X SYBR® dye for 15 minutes at 24°C and acquired on a BD
429	FACSCaliburII flow cytometer. Merozoites were resuspended in 1XPBS at a working
430	concentration of 5×10^7 merozoites/mL and stored at -80°C.
431	
432	Recombinant expression of <i>P. falciparum</i> merozoite antigens
433	The recombinant merozoite antigens were expressed in-house as previously described ⁵⁰ . In
434	brief, Expi293F cells (Invitrogen) were cultured to a density of 2.0×106 cells/mL and
435	transfected with expression vectors using the Expifectamine 293 transfection reagent
436	(Invitrogen). Cells were then incubated at 37°C with 8% CO2 in an orbital shaker at 125 rpm.
437	Culture supernatants were harvested 6 days post-transfection and proteins purified using Ni-
438	NTA purification columns (Invitrogen).
439	
440	ELISA
441	A standardized ELISA protocol was performed as published ^{6,29,30,59} . In brief, a pre-
442	determined concentration of recombinant P. falciparum recombinant antigens (30ng/well) or
443	free whole merozoites (5×10^5 merozoites/well) were coated overnight at 4°C. The plates were
444	washed with PBS followed by blocking with 1% casein in PBS (Invitrogen) for 2 hours at

- 445 37° C. After four washes, 50μ L of test plasma sample diluted 1:20 in PBS was added to the
- 446 plates in duplicate and incubated for 1 hour at 37°C, followed by four additional washes. The

plates were incubated for 1 hour at 37°C with 100µL of secondary anti-human IgG, IgG1, 447 IgG2, IgG3 or IgG4 (Invitrogen) antibodies used to determine total IgG or IgG isotype 448 specific antibody responses, respectively. Plates were washed and 100µL of OPD substrate 449 450 (Invitrogen) in PBS was added and incubated for 20 minutes for color development. The reaction was stopped with 1M hydrochloric acid solution (Sigma) and optical density 451 452 quantified at 492nM. Plasma samples from a pool of hyper immune adults (PHIS) and a pool of malaria-naïve German donors were used as positive and negative controls respectively. 453 454 Samples were considered seropositive if they had an optical density higher than the mean 455 plus 3 standard deviation of the naïve controls.

456

457 NK cell isolation

458 Venous blood was collected from healthy malaria-naïve donors and PBMCs were

459 subsequently isolated within 4 hours of collection using density gradient separation on a

460 histopaque (1077g/dL) monolayer. The PBMCs were washed twice in PBS, assessed for

461 viability using trypan blue exclusion and resuspended in cold RPMI-1640 media

462 supplemented with 10% fetal calf serum (Sigma) at a final concentration of 1.0×10^7 cells/mL.

463 The NK cells were isolated from the PBMCs by depleting non-NK cells lymphocytes

464 (negative selection) using an NK isolation kit as per the manufacturer's instructions

465 (Miltenyibiotec). Briefly, 20μ L of a cocktail of monoclonal antibodies was added to 1.0×10^7

466 PBMCs and incubated for 30 minutes followed by 30 minutes incubation with 40μ L of

467 microbeads at 4°C. The PBMC mixture was then passed through a MACs column followed

468 by 5ml of cold RPMI-1640 before collecting NK cells in the flow-through. The enriched NK

469 cell mixture was washed, resuspended in fresh NK cell medium, (RPMI-1640, 10% FCS, 1%

- 470 Penicillin/streptomycin and 2mM L-glutamine) and used on the same day. The NK cell
- 471 isolation efficiency and cell purity (> 90%) was confirmed by flow cytometry (Fig. S1D).

472

NK cell degranulation and intracellular cytokine assay 473

- Whole merozoites (4.5×10^6 merozoites/well) or recombinant *P. falciparum* antigens 474 (30ng/mL) were coated overnight in 96 well-culture plates at 4°C. The wells were washed
- 475
- with PBS and blocked for 2 hours at 37°C with 1% casein in PBS. The coated plates were 476
- opsonized with heat-inactivated, pre-diluted (1:20) plasma samples for 5 hours at 37°C. 477
- Freshly isolated NK cells were added into each well $(2.0 \times 10^3 \text{ NK cell/well})$. Anti-human 478
- CD107a PE (1:50), brefeldin A and monensin (5µg/mL) were added and the plate was 479
- incubated for 18 hours at 37 °C in 5% CO². The NK cells were washed, centrifuged at 1500 480
- rpm for 5 minutes and resuspended in FACS buffer (PBS, 1% BSA, 1mM EDTA and 0.1% 481
- 482 sodium azide). Their viability was assessed by staining with a fixable viability dye eFluor
- TM520 for 10 minutes at 4°C. The temperature was maintained at 4°C for all subsequent steps. 483
- A cocktail of anti-human monoclonal antibodies comprising of anti-CD56 APC, anti-CD3 484
- 485 PE-Cv5 and anti-CD16 APC-Cv7, was used to stain the corresponding NK cell surface
- 486 markers for 30 minutes. The cells were subsequently washed twice with FACS buffer; fixed
- with CELL fix (BD) for 10 minutes and permeabilized with a permeabilization buffer (BD) 487
- for 10 minutes. The permeabilized NK cells were stained intracellularly with anti-human 488
- 489 IFNy PE-Cy7 for 1 hour in the dark. Finally, the NK cells were washed thrice in
- permeabilization buffer, resuspended in FACS buffer and stored at 4°C awaiting acquisition. 490
- Controls wells included: 1) un-opsonized merozoites, 2) merozoites opsonized with malaria-491
- naïve plasma, 3) merozoites opsonized with PHIS, 4) merozoites incubated with PBS only, 492
- and 5) NK cells incubated with 1ng/mL of Phytohemagglutinin (PHA) and 1ug/mL 493
- ionomycin (nonspecific NK cell stimulants). Acquisition was performed on the BD 494
- FACSCaliburII high-throughput system in a 96-well plate format using FACSDiva®. Data 495
- analysis was performed using Flow.Jo V10. 496

497 Modified invasion inhibition assay (IIA-ADCC)

498 Approximately 20,000 NK cells/well, uninfected erythrocytes and antibodies from malarianaïve or malaria-exposed adults were resuspended in P. falciparum culture media at a final 499 500 hematocrit of 0.5%/well) in a 96-well plate format. Synchronized schizonts (500µL pellet) 501 from P. falciparum strain NF54 was resuspended in 2500µL P. falciparum culture media and filtered through a 1.2µM membrane to release viable merozoites⁵⁸ and immediately added 502 into each well (40µL/well). The culture plate was incubated in a shaking incubator (50 rpm) 503 504 for 30 minutes at 37°C to promote invasion. Purified polyclonal anti-rAMA-1(1.5ng/well), 505 pooled malaria-naïve immunoglobulin (1.5ng/well) and a commercial anti-malaria 506 immunoglobulin, MIG (1.5ng/well) were tested. After the 30 minutes co-incubation of 507 merozoites, antibodies and NK cells; unbound antibodies and free merozoites were removed 508 by washing the culture twice in fresh *P. falciparum* culture media. Subsequently, NK cells were removed using density gradient separation by gently adding 80µL/well of histopaque 509 510 (1077g/dl) and spinning at 1800 rpm for 15 minutes without brakes. The culture was then 511 washed twice, resuspended in *P. falciparum* culture media (100µL/well) and maintained for an additional 30 hours at 37°C. At the end of incubation, parasites were stained using the 512 513 SYBR dye and enumerated by flow cytometry. Invasion inhibition was calculated against the 514 proportion of the parasitemia recorded in the reference wells (test well without any antibody 515 or NK cells)

516

517 Flow analysis

Flow data was analyzed using FlowJo V10.1 (TreeStar). For the analysis of phenotypic data,
positive gates for CD56, CD16 and CD3 were used to define NK cells. For the antibody
mediated functional data, positive gates for intracellular cytokine production and
degranulation were included with the resulting proportion of each subset tabulated.

522 Statistical Analysis

523 Data was analyzed using Prism 8.07 (GraphPad) or Stata (version 14). The Mann Whitney U test was used to compare medians between distinct pairs. The Kruskal-Wallis test was use to 524 525 compare more than two groups and supplemented by Dunn's test for multiple comparisons. A 526 nonparametric Spearmans' correlation was used to estimate the strength of pairwise correlations. The threshold level (analytical cutoff) above which ab-NK was associated with 527 protection was derived using maximally selected rank statistics²⁵. The responses were 528 grouped into two groups (high and low). Associations with protection were assessed in both 529 studies using the modified Poisson and Cox regression models^{6,29,30}. Potential confounders 530 531 were adjusted to the respective models and included; detectable levels of lumefantrine in the sample collected one day prior to challenge and the location of residence.in the CHMI study. 532 533 For the Junju cohort, we adjusted for, age and schizont reactivity as a proxy for previous 534 exposure.

535 Supplementary Materials

- 536 Fig. S1. Optimization of novel ab-NK assay
- 537 Fig. S2. Ab-NK activity is correlated with anti-merozoite antibody binding
- 538 Fig. S3. Ab-NK activity mediates strain transcending responses
- 539 Fig. S4. Antibody mediated NK cell activity in children.
- 540 Fig. S5. Flow cytometry gating strategy
- 541 Members of the CHMI-SIKA study team.
- 542
- 543 Acknowledgments: We thank all the study volunteers who participated in the CHMI-SIKA
- and Junju study. We are thankful to the larger study teams in Kilifi responsible for
- 545 recruitment, data entry, sample processing and storage. Additionally, we appreciate all our
- 546 malaria-naïve donors who provided us with fresh PBMCs.

547

548 **Funding:** We are grateful to all the study volunteers who have participated in the CHMI-549 SIKA study. We are also very grateful to the study teams at the study sites in Kilifi and 550 Ahero, the collaborating teams at Sanaria, the study investigators, and all the clinical and 551 laboratory teams. The CHMI-SIKA study was supported by a Wellcome Trust grant (107499) 552 and sponsored by the University of Oxford. This work was supported by a Sofja 553 Kovalevskaja Award from the Alexander von Humboldt Foundation (3.2 - 1184811 - KEN -554 SKP) and an EDCTP Senior Fellowship (TMA 2015 SF1001) which is part of the EDCTP2 555 programme supported by the European Union awarded to F.H.A.O. F.K.M. was supported by 556 a scholarship from the German Academic Exchange Service (DAAD), Funding Programme 557 57214224, ST-32-PKZ 91608705. This research was commissioned in part by the National 558 Institute for Health Research (NIHR) Global Health Research programme (16/136/33) using 559 UK aid from the UK Government. K.M. was supported by the NIHR Global Health Research 560 Unit Tackling Infections to Benefit Africa (TIBA). The views expressed in this publication 561 are those of the author(s) and not necessarily those of the NIHR or the Department of Health 562 and Social Care.

- 563
- 564
- 565 Author contributions: DOO and FHAO conceived and designed the experiments. DOO,

FHAO, RF and KM performed the analysis. JT, TC and RC contributed recombinant 566

567 antigens. DOO, INN, KF, SD and MR performed experiments. FHAO, PN, MH, MCK,

568 provided the clinical samples. DOO, RF and FHAO wrote and edited the paper. All authors

contributed to revision of the manuscript. 569

570

Ethical Statement: 571

The CHMI study was conducted at the KEMRI Wellcome Trust Research Programme in 572

573 Kilifi, Kenya with ethical approval from the KEMRI Scientific and Ethics Review Unit

574 (KEMRI//SERU/CGMR-C/029/3190) and the University of Oxford Tropical Research Ethics

575 Committee (OxTREC 2-16). All participants gave written informed consent. The study was

- 576 registered on ClinicalTrials.gov (NCT02739763), conducted based on good clinical practice
- 577 (GCP), and under the principles of the Declaration of Helsinki.
- 578 The Junju cohort, were originally recruited in 2005 and has been followed up, for clinical
- 579 episodes of malaria⁵⁵. In this study we used samples collected in 2008. Ethical approval for
- the Junju study was provided by the Kenyan National and Scientific Ethics Review
- 581 Committee protocol number 3149.
- 582
- 583 Competing Interests: All authors declare no conflict of interest
- 584

585 **Data and material availability:** The study protocol and outcomes are published²³.

586 Additional original data that support the findings of this study are available from the data

587 governance committee at KWTRP upon reasonable request; <u>dgc@kemri-wellcome.org</u>

- 588
- 589

590 **References**

- WHO Malaria fact sheets. WHO malaria Fact sheets. WHO [online],
 https://www.who.int/news-room/fact-sheets/detail/malaria https://www.who.int/news room/fact-sheets/detail/malaria (2021).
- RTSs, P. Efficacy and safety of RTS,S/AS01 malaria vaccine with or without a booster dose in infants and children in Africa: Final results of a phase 3, individually randomised, controlled trial. *Lancet* 386, 31–45 (2015).
- 597 3. Marsh, K. & Kinyanjui, S. Immune effector mechanisms in malaria. *Parasite*598 *Immunol.* 28, 51–60 (2006).
- 599 4. COHEN, S., McGREGOR, I. A. & CARRINGTON, S. Gamma-globulin and acquired
 600 immunity to human malaria. *Nature* 192, 733–737 (1961).
- 5. Duncan, C. J. A., Hill, A. V. S. & Ellis, R. D. Can growth inhibition assays (GIA)
 predict blood-stage malaria vaccine efficacy. *Hum. Vaccin. Immunother.* 8, 706–714
 (2012).
- 6. Osier, F. H. *et al.* Opsonic phagocytosis of Plasmodium falciparum merozoites:
 mechanism in human immunity and a correlate of protection against malaria. *BMC Med.* 12, 108 (2014).
- 607 7. Boyle, M. J. *et al.* Human antibodies fix complement to inhibit Plasmodium
 608 falciparum invasion of erythrocytes and are associated with protection against malaria.
 609 *Immunity* 42, 580–590 (2015).

- 8. Joos, C. *et al.* Clinical protection from falciparum malaria correlates with neutrophil
 respiratory bursts induced by merozoites opsonized with human serum antibodies. *PLoS One* 5, e9871 (2010).
- Arora, G. *et al.* NK cells inhibit plasmodium falciparum growth in red blood cells via antibody-dependent cellular cytotoxicity. *Elife* 7, 1–20 (2018).
- 615 10. Feng, G. *et al.* Mechanisms and targets of Fc γ -receptor mediated immunity to malaria 616 sporozoites. *Nat. Commun.* **12**, (2021).
- Björkström, N. K., Ljunggren, H. G. & Michaëlsson, J. Emerging insights into natural
 killer cells in human peripheral tissues. *Nat. Rev. Immunol.* 16, 310–320 (2016).
- 619 12. Vivier, E. *et al.* Innate or adaptive immunity? The example of natural killer cells.
 620 *Science* 331, 44–49 (2011).
- Kerry S. Campbell, J. H. NK cell biology: An update and future directions. *Am. Acad. Allergy, Asthma Immunol.* 132, 536–544 (2013).
- 4. Wolf, A.-S., Sherratt, S. & Riley, E. M. NK Cells: Uncertain Allies against Malaria. *Front. Immunol.* 8, 212 (2017).
- Kapelski, S., De Almeida, M., Fischer, R., Barth, S. & Fendel, R. Antimalarial activity
 of granzyme B and its targeted delivery by a granzyme B-single-chain Fv fusion
 protein. *Antimicrob. Agents Chemother.* 59, 669–672 (2015).
- b) 16. D'Ombrain, M. C. *et al.* Association of early interferon-gamma production with
 immunity to clinical malaria: a longitudinal study among Papua New Guinean
 children. *Clin. Infect. Dis.* 47, 1380–1387 (2008).
- Hart, G. T. *et al.* Adaptive NK cells in people exposed to Plasmodium falciparum correlate with protection from malaria. *J. Exp. Med.* 216, 1280–1290 (2019).
- 633 18. Osier, F. H. *et al.* New antigens for a multicomponent blood-stage malaria vaccine.
 634 *Sci. Transl. Med.* 6, 247ra102 (2014).
- Reiling, L. *et al.* Targets of complement-fixing antibodies in protective immunity against malaria in children. *Nat. Commun.* 10, 1–13 (2019).
- Biggs, B. A., Kemp, D. J. & Brown, G. V. Subtelomeric chromosome deletions in field
 isolates of Plasmodium falciparum and their relationship to loss of cytoadherence in
 vitro. *Proc. Natl. Acad. Sci. U. S. A.* 86, 2428–2432 (1989).
- Kumar, S. *et al.* Distinct genomic architecture of Plasmodium falciparum populations
 from South Asia. *Mol. Biochem. Parasitol.* 210, 1–4 (2016).
- 642 22. Miotto, O. *et al.* Multiple populations of artemisinin-resistant Plasmodium falciparum
 643 in Cambodia. *Nat. Genet.* 45, 648–655 (2013).
- Kapulu, M. C. *et al.* Controlled human malaria infection in semi-immune kenyan
 adults (Chmi-sika): A study protocol to investigate in vivo plasmodium falciparum
 malaria parasite growth in the context of pre-existing immunity [version 2; peer
 review: 2 approved]. *Wellcome Open Res.* 3, (2019).
- Kapulu, M. C. *et al.* Safety and PCR monitoring in 161 semi-immune Kenyan adults
 following controlled human malaria infection. *JCI insight* 6, (2021).

650 651	25.	Hothorn, T. & Zeileis, A. Generalized maximally selected statistics. <i>Biometrics</i> 64 , 1263–1269 (2008).
652 653 654	26.	Fowkes, F. J. I., Richards, J. S., Simpson, J. A. & Beeson, J. G. The relationship between anti-merozoite antibodies and incidence of Plasmodium falciparum malaria: A systematic review and meta-analysis. <i>PLoS Med.</i> 7 , e1000218 (2010).
655 656 657	27.	Richards, J. S. <i>et al.</i> Identification and Prioritization of Merozoite Antigens as Targets of Protective Human Immunity to Plasmodium falciparum Malaria for Vaccine and Biomarker Development . <i>J. Immunol.</i> 191 , 795–809 (2013).
658 659 660	28.	Rono, J. <i>et al.</i> Breadth of anti-merozoite antibody responses is associated with the genetic diversity of asymptomatic plasmodium falciparum infections and protection against clinical malaria. <i>Clin. Infect. Dis.</i> 57 , 1409–1416 (2013).
661 662 663	29.	Osier, F. H. A. a <i>et al.</i> Breadth and magnitude of antibody responses to multiple Plasmodium falciparum merozoite antigens are associated with protection from clinical malaria. <i>Infect. Immun.</i> 76 , 2240–2248 (2008).
664 665 666	30.	Murungi, L. M. <i>et al.</i> A threshold concentration of anti-merozoite antibodies is required for protection from clinical episodes of malaria. <i>Vaccine</i> 31 , 3936–3942 (2013).
667 668	31.	França, C. T. <i>et al.</i> Identification of Highly-Protective combinations of plasmodium vivax recombinant proteins for vaccine development. <i>Elife</i> 6 , 1–22 (2017).
669 670 671	32.	Mensah-Brown, H. E. <i>et al.</i> Antibody Reactivity to Merozoite Antigens in Ghanaian Adults Correlates with Growth Inhibitory Activity against Plasmodium falciparum in Culture. <i>Open Forum Infect. Dis.</i> 6 , 1–10 (2019).
672 673	33.	Bustamante, L. Y. <i>et al.</i> Synergistic malaria vaccine combinations identified by systematic antigen screening. <i>Proc. Natl. Acad. Sci. U. S. A.</i> 114 , 12045–12050 (2017).
674 675	34.	Draper, S. J. <i>et al.</i> Recent advances in recombinant protein-based malaria vaccines. <i>Vaccine</i> 33 , 7433–7443 (2015).
676 677	35.	Beeson, J. G. <i>et al.</i> Challenges and strategies for developing efficacious and long- lasting malaria vaccines. <i>Sci. Transl. Med.</i> 11 , (2019).
678 679	36.	Boyle, M. J. <i>et al.</i> Sequential processing of merozoite surface proteins during and after erythrocyte invasion by Plasmodium falciparum. <i>Infect. Immun.</i> 82 , 924–936 (2014).
680 681	37.	Raj, D. K. <i>et al.</i> Antibodies to PfSEA-1 block parasite egress from RBCs and protect against malaria infection. <i>Science (80).</i> 344 , 871–877 (2014).
682 683	38.	Cecile, C. <i>et al.</i> Basigin is a receptor essential for erythrocyte invasion. <i>Nature</i> 480 , 534–537 (2012).
684 685 686	39.	Dent, A. E. <i>et al.</i> Contrasting Patterns of Serologic and Functional Antibody Dynamics to Plasmodium falciparum Antigens in a Kenyan Birth Cohort. <i>Clin. Vaccine Immunol.</i> 23 , 104–116 (2016).
687 688	40.	Muntasell, A. <i>et al.</i> Targeting NK-cell checkpoints for cancer immunotherapy. <i>Curr. Opin. Immunol.</i> 45 , 73–81 (2017).
689 690	41.	Shimasaki, N., Jain, A. & Campana, D. NK cells for cancer immunotherapy. <i>Nat. Rev. Drug Discov.</i> 19 , 200–218 (2020).

691 692 693	42.	Bryceson, Y. T., March, M. E., Ljunggren, HG. & Long, E. O. Synergy among receptors on resting NK cells for the activation of natural cytotoxicity and cytokine secretion. <i>Blood</i> 107 , 159–166 (2006).
694 695	43.	Bangaru, S. <i>et al.</i> A multifunctional human monoclonal neutralizing antibody that targets a unique conserved epitope on influenza HA. <i>Nat. Commun.</i> 9 , 1–15 (2018).
696 697	44.	Lee, W. S. <i>et al.</i> Anti-HIV-1 ADCC Antibodies following Latency Reversal and Treatment Interruption. <i>J. Virol.</i> 91 , (2017).
698 699	45.	Margolis, D. M., Koup, R. A. & Ferrari, G. HIV antibodies for treatment of HIV infection. <i>Immunol. Rev.</i> 275 , 313–323 (2017).
700 701 702	46.	Sherratt, S., Patel, A., Baker, D. A., Riley, E. M. & Goodier, M. R. Differential IL-18 Dependence of Canonical and Adaptive NK Cells for Antibody Dependent Responses to P. falciparum. <i>Front. Immunol.</i> 11 , 1–13 (2020).
703 704	47.	Damelang, T. <i>et al.</i> Antibody mediated activation of natural killer cells in malaria exposed pregnant women. <i>Sci. Rep.</i> 11 , 1–16 (2021).
705 706 707	48.	Jegaskanda, S., Reading, P. C. & Kent, S. J. Influenza-Specific Antibody-Dependent Cellular Cytotoxicity: Toward a Universal Influenza Vaccine. <i>J. Immunol.</i> 8 , 1–13 (2013).
708 709 710	49.	Vanderven, H. A. <i>et al.</i> What Lies Beneath: Antibody Dependent Natural Killer Cell Activation by Antibodies to Internal Influenza Virus Proteins. <i>EBioMedicine</i> 8 , 277–290 (2016).
711 712 713	50.	Kamuyu, G. <i>et al.</i> KILchip v1.0: A Novel Plasmodium falciparum Merozoite Protein Microarray to Facilitate Malaria Vaccine Candidate Prioritization. <i>Front. Immunol.</i> 9 , 1–16 (2018).
714 715 716	51.	Crompton, P. D. <i>et al.</i> A prospective analysis of the Ab response to Plasmodium falciparum before and after a malaria season by protein microarray. <i>Proc. Natl. Acad. Sci. U. S. A.</i> 107 , 6958–6963 (2010).
717 718	52.	Remarque, E. J., Faber, B. W., Kocken, C. H. M. & Thomas, A. W. Apical membrane antigen 1: a malaria vaccine candidate in review. <i>Trends Parasitol.</i> 24 , 74–84 (2008).
719 720 721	53.	Dent, A. E. <i>et al.</i> Plasmodium falciparum protein microarray antibody profiles correlate with protection from symptomatic malaria in Kenya. <i>J. Infect. Dis.</i> 212 , 1429–1438 (2015).
722 723 724 725	54.	Kapulu, M. C. <i>et al.</i> Naturally acquired immunity among Kenyan adults suppresses the West African P. falciparum NF54 strain in controlled human malaria infection (CHMI). <i>medRxiv</i> 2020.08.11.20172411 (2020) doi:10.1101/2020.08.11.20172411.
726 727 728	55.	Bejon, P. <i>et al.</i> A Phase 2b Randomised Trial of the Candidate Malaria Vaccines FP9 ME-TRAP and MVA ME-TRAP among Children in Kenya. <i>PLoS Clin. Trials</i> 1 , e29 (2006).
729 730 731	56.	Mwangi, T. W., Ross, A., Snow, R. W. & Marsh, K. Case definitions of clinical malaria under different transmission conditions in Kilifi District, Kenya. <i>J. Infect. Dis.</i> 191 , 1932–1939 (2005).

- 732 57. TAYLOR, T. E. *et al.* Intravenous immunoglobulin in the treatment of paediatric
 733 cerebral malaria. *Clin. Exp. Immunol.* 2, 357–362 (2006).
- 58. Boyle, M. J. *et al.* Isolation of viable Plasmodium falciparum merozoites to define
 erythrocyte invasion events and advance vaccine and drug development. *Proc. Natl. Acad. Sci. U. S. A.* 107, 14378–14383 (2010).
- Murungi, L. M., Kimathi, R. K., Tuju, J., Kamuyu, G. & Osier, F. H. A. Serological
 profiling for malaria surveillance using a standard ELISA protocol. *Methods Mol. Biol.*2013, 83–90 (2019).