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Abstract  13 

The prevalence of most complex diseases varies across human populations, and a 14 

combination of socioeconomic and biological factors drives these differences. Likewise, 15 

divergent evolutionary histories can lead to different genetic architectures of disease, 16 

where allele frequencies and linkage disequilibrium patterns at disease-associated loci 17 

differ across global populations. However, it is presently unknown how much natural 18 

selection contributes to the health inequities of complex polygenic diseases. Here, we 19 

focus on ten hereditary diseases with the largest global disease burden in terms of 20 

mortality rates (e.g., coronary artery disease, stroke, type 2 diabetes, and lung cancer). 21 

Leveraging multiple GWAS and polygenic risk scores for each disease, we examine 22 

signatures of selection acting on sets of disease-associated variants. First, on a species 23 

level, we find that genomic regions associated with complex diseases are enriched for 24 

signatures of background selection. Second, tests of polygenic adaptation incorporating 25 

demographic histories of continental super-populations indicate that most complex 26 

diseases are primarily governed by neutral evolution. Third, we focus on a finer scale, 27 

testing for recent positive selection on a population level. We find that even though some 28 

disease-associated loci have undergone recent selection (extreme values of integrated 29 

haplotype scores), sets of disease-associated loci are not enriched for selection when 30 

compared to baseline distributions of control SNPs. Collectively, we find that recent 31 

natural selection has had a negligible role in driving differences in the genetic risk of 32 

complex diseases between human populations. These patterns are consistent with the 33 

late age of onset of many complex diseases. 34 
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Introduction 35 

Disease risks have evolved substantially over recent human history (Crespi 2010; 36 

Quintana-Murci 2016). Increases in population size and changes in eating habits following 37 

the agricultural revolution have led to an increase in nutritional and infectious diseases 38 

and a decline in the overall health of many populations (Mummert, et al. 2011). While 39 

mortality from infectious diseases has decreased significantly in the 20th century 40 

(Armstrong, et al. 1999), the “transition to modernity” now puts the global population at a 41 

greater risk of non-communicable diseases (Corbett, et al. 2018). Indeed, the leading 42 

causes of death in sub-Saharan Africa have shifted from communicable diseases in 43 

children to non-communicable diseases in adults over the past three decades, with 44 

stroke, depression, diabetes, and ischemic heart disease dominating among middle-45 

income countries (Bigna and Noubiap 2019).  46 

Substantial heterogeneity in the mortality rates of non-communicable diseases 47 

exists across the globe (Warnecke, et al. 2008; Allen, et al. 2017). For example, disease 48 

burdens of stroke are high in Asia (Kim and Johnston 2011), and men of African descent 49 

suffer the highest mortality from prostate cancer (Rebbeck 2017). These and other health 50 

inequities arise from a complex combination of socioeconomic, demographic, 51 

environmental, and genetic causes. Socioeconomic factors like poverty and lack of 52 

access to quality treatment are known to increase chronic kidney disease risks (Nicholas, 53 

et al. 2015). Similarly, environmental factors like exposure to abandoned uranium mines 54 

have been reported to increase risks of hypertension, kidney disease, and cancer in some 55 

Native American populations (Lewis, et al. 2017). A population’s genetic makeup can also 56 
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impact disease susceptibility. For example, some women of Ashkenazi descent carry 57 

mutations in BRCA1 and BRCA2, which subjects them to higher risks of breast cancer 58 

(Struewing, et al. 1997). We note that the narrow sense heritabilities of many complex 59 

diseases exceed 30%, i.e., a substantial proportion of the variance in disease risk is due 60 

to genetics (Visscher, et al. 2012).  61 

The past decade has seen an upsurge in our collective understanding of the 62 

genetics of complex diseases. Genome-wide association studies (GWAS) have identified 63 

large numbers of disease-associated SNPs (Sollis, et al. 2023), and these SNPs can be 64 

used to generate polygenic predictions of disease risk (Lewis and Vassos 2020). One 65 

important lesson learned from GWAS is that most high-mortality non-communicable 66 

diseases are polygenic (Torkamani, et al. 2018), i.e., hereditary disease risks are due to 67 

the cumulative effects of many single nucleotide polymorphisms. Allele frequencies of 68 

disease-associated SNPs often vary among human populations, which in turn causes 69 

hereditary disease risks to vary across the globe (Adeyemo and Rotimi 2010). Multiple 70 

evolutionary phenomena contribute to population-level differences in allele frequencies, 71 

including natural selection (Lohmueller, et al. 2011) and stochastic processes like genetic 72 

drift and population bottlenecks (Tishkoff and Verrelli 2003; Chheda, et al. 2017). 73 

However, it is presently unknown how much natural selection, as opposed to neutral 74 

evolution, contributes to global health inequities.  75 

Here, we focus on the ten hereditary diseases with the largest global disease 76 

burden in terms of mortality rates (Figure 1). Leveraging findings from multiple recent 77 

GWAS, we apply tests of natural selection to sets of disease-associated SNPs. We 78 
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address the following questions: 1) On a species level, have complex diseases 79 

experienced purifying selection? 2) To what extent are population-level differences in 80 

hereditary disease burdens due to polygenic adaptation and natural selection? 3) Are our 81 

findings robust to different ascertainment patterns of GWAS? 82 

 83 

New Approaches 84 

This paper examines whether sets of disease-associated SNPs are enriched for 85 

signatures of natural selection. As such, it focuses on signatures of selection acting on 86 

traits, as opposed to individual SNPs. Due to the highly polygenic nature of complex 87 

diseases, most individual SNPs have small effect sizes. However, significant evolutionary 88 

forces may be at play when multiple low-effect variants collectively contribute to disease 89 

susceptibility. Most existing tests of selection focus on individual SNPs or genes, including 90 

B-statistics, which identify loci under purifying selection (McVicker, et al. 2009), and 91 

integrative haplotype scores (iHS), which identify loci under recent positive selection 92 

(Johnson and Voight 2018). Recently, methods such as PolyGraph have been developed 93 

to identify selection acting on sets of SNPs (Racimo, et al. 2018). However, PolyGraph 94 

only focuses on adaptive evolution and does not leverage haplotype homozygosity 95 

information. Here, we adopt a polygenic framework that leverages B-statistics and iHS 96 

values to identify diseases that have been subject to purifying selection or recent positive 97 

selection. 98 

Our approach consolidates SNP-level information to identify whether trait-99 

associated SNPs are enriched for outlier values of test statistics compared to control 100 
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SNPs. Recognizing that each SNP does not contribute equally to disease risk, we account 101 

for their varying effects by weighting each data point by its effect size; outlier SNPs count 102 

more in our trait-level selection tests if they have large effect sizes. For each set of 103 

disease-associated SNPs, we obtained 1000 sets of matched control SNPs. These 104 

control SNPs are matched with respect to allele frequency, linkage disequilibrium (LD) 105 

patterns in the ascertained populations, gene density, and distance to the nearest gene. 106 

For each SNP set, we identify the proportion of SNPs, weighted by effect size, that 107 

exceeds an accepted outlier threshold (B < 0.317 for tests of background selection and 108 

|iHS| > 1.96 for tests of recent positive selection, see Methods). Enrichment tests involve 109 

comparing outlier proportions of disease-associated SNP sets to control sets to generate 110 

a percentile rank, with higher percentiles indicating greater trait-level signatures of 111 

selection (supplementary Fig. S1). Our approach differs from that of other research teams 112 

(Abraham, et al. 2022) in that we look for outlier enrichment, as opposed to trait averages, 113 

plus we weigh each SNP by effect size. Additional details can be found in the Methods 114 

section. 115 

 116 

Results 117 

Global differences in the mortality rates of polygenic diseases 118 

Here, we focus on hereditary diseases that have the largest public health burden. Well-119 

powered GWAS data exist for ten of the top twenty global causes of death, as reported 120 

by the WHO (World Health Organization 2020). These maladies are mostly comprised of 121 

cardiometabolic diseases, certain cancers, and neurological disorders (Table 1). 122 
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Although these diseases have the highest burden on a global scale, populations around 123 

the world differ significantly in their mortality rates, exceeding an order of magnitude in 124 

some cases. Focusing on nine countries that have comparable populations in the 1000 125 

Genomes Project (1KGP) (1000 Genomes Project Consortium 2015), the heatmap in 126 

Figure 1 depicts mortality rates per 100,000 individuals for the ten polygenic diseases 127 

that have the largest global health burden. As seen in Figure 1, European countries have 128 

noticeably lower mortality rates of ischemic heart disease and stroke compared to other 129 

nations. By contrast, mortality rates of diabetes mellitus are considerably higher in South 130 

Asian and African countries. While socioeconomic and lifestyle factors play a 131 

considerable role in shaping mortality rates, these disparities can also be due to allele 132 

frequency differences at disease-associated loci. 133 

To investigate natural selection acting on complex polygenic diseases, we 134 

compiled germline variants associated with the disease from publicly available GWAS 135 

data (Table 1). Using a pruning and thresholding approach, we obtained sets of 136 

independent SNPs associated for each disease. These sets of disease-associated SNPs 137 

were then used to test for polygenic signatures of background selection on a species-138 

level, adaptation acting on continental scales, and recent positive selection in individual 139 

populations. Due to sample size and statistical power considerations, the main text of this 140 

paper primarily focuses on germline variants ascertained in European-ancestry GWAS. 141 

However, we later explore the impact of ascertainment bias and validate our results using 142 

germline variants ascertained in East Asian and multi-ancestry GWAS. 143 

 144 
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Evidence of background selection on a species level 145 

Background selection (BGS) refers to reduced genetic diversity at a non-deleterious locus 146 

caused by negative selection against linked deleterious alleles. This term emphasizes 147 

that a neutral mutation's genomic environment or genetic background significantly 148 

influences whether it will be preserved or eliminated from a population. BGS has 149 

previously been shown to affect linkage disequilibrium patterns and the distribution of 150 

heritable variation across the genome (Gazal, et al. 2017; Zeng, et al. 2018; O'Connor, et 151 

al. 2019; Wendt, et al. 2021).  152 

Given that BGS can influence the genetic architecture of complex traits, we tested 153 

whether SNPs that are associated with common polygenic diseases have undergone 154 

background or purifying selection. We used pre-computed B-statistics (McVicker, et al. 155 

2009) to measure the impact of BGS near individual genomic loci. These statistics 156 

quantify the expected amount of genetic diversity flanking a given site in the genome. We 157 

extended the B-statistic framework to trait-level analyses by quantifying the extent that 158 

sets of disease-associated SNPs are enriched for outliers (see New Approaches and 159 

Methods). 160 

SNPs that are associated with complex diseases are enriched for signatures of 161 

BGS. Figure 2 shows the percentile rank for each set of disease-associated SNPs 162 

compared to matched control sets.  Percentile ranks range from 88.0 (colon cancer) to 163 

above 99.9 (chronic kidney disease and hypertensive heart disease), indicating that 164 

disease-associated SNPs are more likely to have outlier values of B-statistics. Overall, 8 165 

out of 10 diseases had percentile ranks above 95, a fraction that was statistically 166 

significant (p-value = 1.605 x 10-9, one-tailed binomial test). We note that these trait-level 167 
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signatures of BGS are not simply due to disease-associated SNPs being found in 168 

functional regions of the genome, as control sets are matched for distance to the nearest 169 

gene. Our background selection analyses focused on variation existing on a species-170 

level. We next turn to signatures of selection acting on continental scales. 171 

 172 

Minimal signatures of polygenic adaptation on a continental scale 173 

Polygenic adaptation occurs through slight shifts in allele frequency at multiple loci 174 

(Barghi, et al. 2020). Although individual allele frequency changes may be small, their 175 

collective impact on the disease can be substantial. Disease-associated SNPs often vary 176 

in their allele frequencies across global populations (Kim, et al. 2018). Thus, we used 177 

PolyGraph (Racimo, et al. 2018) to quantify if such differences are driven by polygenic 178 

adaptation for the ten complex diseases. PolyGraph detects adaptation of polygenic traits 179 

due to allele frequency shifts at multiple loci using an admixture graph framework that 180 

considers the historical divergence of populations. It makes use of the ancestral and 181 

derived allele frequencies for each disease-associated loci at every population in the tree 182 

along with their effect sizes and compares them to a control distribution. 183 

Tests of polygenic adaptation for the ten hereditary diseases with the largest public 184 

health burden are shown in Fig. 3. Although PolyGraph identifies weak signals of 185 

polygenic adaptation on some branches, FDR-adjusted q-values do not pass the 186 

threshold of statistical significance for most diseases. Branch-specific statistics from 187 

PolyGraph for each disease are listed in supplementary File S. Visually, this is illustrated 188 

by the preponderance of gray branches in Fig. 3. Although there are instances of 189 

branches with non-zero selection parameters (blue and red branches coloration in Fig. 190 
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3), these patterns were not replicated in PolyGraph analyses that used SNPs that were 191 

ascertained in other non-European GWAS (supplementary Figs. S2 and S3). Collectively, 192 

our PolyGraph analyses indicate that genetic drift is the primary cause of continental 193 

differences in allele frequencies for the diseases analyzed here. Subsequent tests of 194 

selection zoom in on individual populations.  195 

 196 

Sparse signatures of recent positive selection on a local scale 197 

To identify diseases under recent positive selection, we employ the integrated Haplotype 198 

Score (iHS), which can identify partial selective sweeps from stretches of extended 199 

haplotype homozygosity. iHS statistics are normalized based on a genome-wide empirical 200 

distribution, and extreme negative or positive iHS scores are considered potential 201 

indicators of recent positive selection (|iHS| > 1.96). Given iHS's emphasis on more recent 202 

selection, we narrowed our scope from major continental populations to 26 diverse 203 

populations from the 1KGP. 204 

We performed an enrichment analysis to test if SNPs sets associated with each of 205 

the ten diseases are enriched for outlier iHS values when compared to controls. These 206 

analyses were repeated for all 26 populations in the 1KGP (Fig. 4). Higher percentiles in 207 

these polygenic tests are indicative of enrichment for outlier iHS values, i.e., recent 208 

positive selection. Notably, most diseases show low percentile values in all 26 209 

populations, implying that the complex diseases analyzed in this study are not major 210 

targets of recent positive selection. Overall, only 6 out of 260 tests had percentile ranks 211 

above 95 when compared to controls (p-value = 0.9906, one-tailed binomial test). 212 
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Interestingly, ischemic heart disease shows some enrichment for outlier iHS values 213 

in South Asian populations, while hypertensive heart disease exhibits the most 214 

pronounced enrichment in genomes from Lima, Peru (PUR). The Peruvian population 215 

also demonstrates enrichment for other diseases when tested with SNP sets ascertained 216 

in non-European populations. Recent studies have shown evidence of associations 217 

between cardiovascular disease and adaptation to high altitude in Peruvian populations 218 

(Caro-Consuegra, et al. 2022; Hernandez-Vasquez, et al. 2022). These findings, along 219 

with our results, suggest that adaptive alleles may have pleiotropic effects with respect to 220 

disease risks. However, it is crucial to note that none of the observed percentile scores 221 

are high enough to withstand Bonferroni corrections. 222 

 223 

Robustness of our findings to ascertainment bias 224 

A major challenge when using GWAS data is ascertainment bias (Kim, et al. 2018). The 225 

ability to infer disease associations relies on allele frequencies being within an 226 

intermediate range in the discovery population, coupled with substantial effect sizes. This 227 

means that sets of disease-associated SNPs can differ across studies, particularly when 228 

the ancestries of study participants differ. This inherent variability in SNP sets and effect 229 

sizes can potentially yield varying outcomes in tests of polygenic selection. In this paper, 230 

we comprehensively address the issue of ascertainment bias by evaluating whether the 231 

conclusions of our polygenic tests of natural selection are similar for GWAS SNPs that 232 

were ascertained in different populations. When possible, we analyzed three different 233 

ascertainment schemes for each disease, i.e., SNP sets that were ascertained in 234 

European, East Asian, and multi-ancestry GWAS (Table 1).  235 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 16, 2023. ; https://doi.org/10.1101/2021.12.10.21267630doi: medRxiv preprint 

https://doi.org/10.1101/2021.12.10.21267630
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Our tests of polygenic selection reveal consistent patterns regardless of the 236 

ancestry of the original source GWAS (Table 1). Although isolated exceptions exist, we 237 

found that disease-associated SNPs were strongly enriched for signatures of BGS 238 

regardless of whether the original GWAS was European, East Asian, or multi-ancestry 239 

(compare Fig. 2 and supplementary Figs. S4 and S5). Similarly, tests of positive selection 240 

acting on continental and local scales revealed that most differences in complex disease 241 

risks are not driven by natural selection. Although there were slightly stronger signatures 242 

of positive selection for SNPs that were ascertained in East Asian GWAS, PolyGraph 243 

results were largely robust to GWAS ancestry (compare Fig. 3 and supplementary Figs. 244 

S2 and S3). The haplotype homozygosity of disease-associated variants did not 245 

appreciably differ from that of control sets, and this pattern was consistent across 246 

ancestries (compare Fig. 4 and supplementary Figs. S6 and S7). Although the detectable 247 

genetic architectures of complex diseases may differ between populations, the genomic 248 

signatures of selection acting on these traits are largely robust to ascertainment bias. 249 

 250 

Discussion  251 

Focusing on the ten diseases with the largest global health burden, we tested whether 252 

sets of disease-associated SNPs are enriched for signatures of natural selection. B-253 

statistics revealed that most complex diseases have been subject to purifying selection 254 

on a species-level. Results from Polygraph and iHS statistics were largely negative. This 255 

implies that recent positive selection has not been a major driver of population-level 256 

differences in the risks of polygenic diseases. 257 
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 Complex disease risks appear to have evolved neutrally over recent human 258 

history. Although frequencies of disease-associated alleles differ between populations, 259 

these differences are largely due to genetic drift. Population genetics theory reveals that 260 

effects of genetic drift are inversely proportional to effective population size. Because of 261 

this, population bottlenecks and serial founder effects are likely to have had an outsized 262 

role in the divergence of hereditary disease risks across human populations (Keinan, et 263 

al. 2007). Our results are consistent with prior studies that that have found minimal 264 

evidence of selection in traits like type 2 diabetes in the Polynesians (Sun, et al. 2021). 265 

We note that our study focused on polygenic signatures of selection. Exceptions to this 266 

general pattern exist for a small subset of disease-associated loci, and future studies 267 

examining whether these exceptions are due to pleiotropy or genetic hitchhiking are likely 268 

to be fruitful. 269 

Socioeconomic factors likely contribute more to differences in disease burden than 270 

genetic differences at trait-associated SNPs. Although many complex diseases have 271 

substantial heritabilities (Visscher, et al. 2012), these traits are highly polygenic and allele 272 

frequency differences at numerous loci of small effect loci can balance out. Other factors, 273 

like education, income, and access to health care, play a large role in determining 274 

mortality rates. Indeed, the Human Development Index (HDI) is correlated with many 275 

public health statistics. For example, mortality rates of colorectal cancer are high in 276 

countries that have a high HDI, while mortality rates of ischemic heart disease are high in 277 

countries that have a low HDI (UNDP 2022). An intriguing avenue of future research 278 
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involves quantifying how much genotype-environment interactions contribute to health 279 

disparities (Rosenberg, et al. 2019). 280 

One potential limitation of our study is that it relies on disease associations inferred 281 

from GWAS. By necessity, GWAS hits are subject to ascertainment bias. However, our 282 

findings are robust to differences in the ancestries of discovery cohorts. Furthermore, the 283 

“known unknowns” (Kim, et al. 2018), i.e., alleles of small effect that have yet to be 284 

implicated in a GWAS, are unlikely to change the conclusions of this paper. Each of these 285 

as-yet-undiscovered disease associations makes only a small contribution to heritability 286 

and their collective summary statistics are expected to resemble genome-wide baselines 287 

(Carvalho, et al. 2022). Regardless, genetic differences in disease burdens across human 288 

populations appear to be governed more by neutral evolution than by natural selection. 289 

 290 

Methods 291 

Datasets 292 

We conducted a comprehensive analysis of genome-wide association studies (GWAS) 293 

encompassing ten diseases across three distinct ascertaining populations: European, 294 

East Asian, and multi-ancestry (Table 1). Notably, due to an insufficient number of 295 

significant associations identified for Alzheimer’s Disease in East Asian and multi-296 

ancestry ascertained GWAS, we excluded this trait from ascertainment bias testing. 297 

Significant SNPs with a p-value < 5x10-5 were extracted from each GWAS. Subsequently, 298 

LD pruning was performed to isolate independent associations with an r2 < 0.2 within the 299 

respective ascertained population, utilizing Plink 1.9 (Chang, et al. 2015) and 1KGP 300 
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phase 3 data (1000 Genomes Project Consortium 2015) as a reference. To ensure 301 

uniformity, the LiftOver tool (Hinrichs, et al. 2006) was employed to convert all coordinates 302 

of all GWAS SNPs to the hg19 build. 303 

In all our analyses, control SNPs were obtained using SNPSnap (Pers, et al. 304 

2015).Matching criteria included allele frequency, LD patterns, distance to gene, and 305 

gene density in the ascertained population. SNPs within the HLA region were removed. 306 

For European and East Asian ascertained GWAS, controls were matched within their 307 

respective populations from the 1KGP. In the case of multi-ancestry studies, controls 308 

were matched across pooled data from European, East Asian, and African populations to 309 

yield sets of SNPs. 310 

 311 

Trait-level distributions of summary statistics  312 

For the enrichment analyses, our focus is on assessing whether sets of disease-313 

associated SNPs, considered collectively, have undergone selection. To integrate the 314 

SNP-level information from test statistics into a comprehensive trait-level distribution, we 315 

employ kernel density estimation (KDE). This method allows us to derive a probability 316 

distribution of the test statistic for each trait. Unlike traditional estimation techniques, KDE 317 

is a nonparametric approach that does not assume that the data follows a known 318 

distribution. Instead, nonparametric models determine the structure from the underlying 319 

data itself. In our implementation, we opt for a Gaussian kernel and conduct a five-fold 320 

cross-validation using GridSearchCV (Pedregosa 2011) to determine the optimal kernel 321 

bandwidth for the KDE. Since each associated SNP also has a strength of association to 322 
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the disease (beta or effect size), we also weigh the SNPs according to their absolute 323 

effect sizes while implementing KDE. The outcome of KDE is a probability density function 324 

(PDF) with the area under the curve standardized to one. 325 

 326 

Outlier Enrichment: Background Selection 327 

We use B-statistic as a measure of background selection. B indicates the expected 328 

fraction of neutral diversity present at a site, with values close to 0 representing near 329 

complete removal of diversity due to selection and values near 1 indicating little effect. 330 

Using BEDTools (Quinlan and Hall 2010),we extracted B values for SNPs from GWAS 331 

and their matched controls. 332 

To check for background selection enrichment, we focus on lower B-values and 333 

calculate the probability of the trait having a B value less than 0.317 (area under the PDF 334 

from 0 to 0.317, AUC0.317). Previous research suggests a B value of around 0.317 is a 335 

threshold for the lowest 5% of B values across the human genome (Torres, et al. 336 

2018).We create PDFs for 1000 matched control sets using similar KDE steps described 337 

above. We estimate the probability of having a B-statistic of less than 0.317 in the control 338 

sets, where the SNPs are not linked to the disease but have similar allele frequencies 339 

and distances to genes. Comparing the AUC0.317 of the trait to the 1000 control AUC0.317 340 

gives us a percentile rank for the trait. A high percentile rank indicates that trait-associated 341 

SNPs are enriched for outlier B-statistics (supplementary Fig. S1A). 342 

Previous research has demonstrated that the B-statistic, while prone to potential 343 

misestimation and influenced by the assumptions of the underlying model, reliably 344 
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preserves the correct rank order of SNPs (Comeron 2014; Torres, et al. 2018).Thus, we 345 

expect McVicker et al.’s inference of B to provide good separation between the regions 346 

experiencing the weakest and strongest background selection effects at linked sites within 347 

the human genome.  Nevertheless, to ensure the robustness of our findings, we 348 

conducted additional enrichment analyses using more stringent B-statistic thresholds (0.2 349 

and 0.1) and obtained consistent results (supplementary Fig. S8). 350 

 351 

Outlier Enrichment: Recent Positive Selection 352 

We use an integrated Haplotype Score (iHS) to measure recent positive selection in 26 353 

global populations from the 1KGP (Johnson and Voight 2018). iHS values are assigned 354 

to each SNP in the genome and are normalized, with negative values indicating selection 355 

of the derived allele and positive values indicating selection of the ancestral allele. Since 356 

the iHS value is normalized genome-wide, any SNP with a value two standard deviations 357 

away from the mean i.e., |iHS|>1.96, is operationally considered to be under selection 358 

(Voight, et al. 2006). 359 

Following the method detailed earlier, we construct trait-associated and 1000 360 

control set distributions using kernel density estimation (KDE). Subsequently, we 361 

calculate the probability of iHS values exceeding 1.96 or falling below -1.96 in both the 362 

trait and control distributions. We then derive a percentile rank for the trait AUC in 363 

comparison to the 1000 control sets. Higher percentile ranks signify that the trait exhibits 364 

more extreme iHS values compared to the controls (see supplementary Fig. S1B). 365 

 366 

Polygenic Adaptation 367 
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To investigate signals of polygenic adaptation, we use PolyGraph (Racimo, et al. 2018), 368 

a Markov Chain Monte Carlo (MCMC) algorithm that utilizes admixture graph information 369 

to deduce traces of polygenic adaptation in populations. To detect selection on a trait 370 

PolyGraph requires a set of summary statistics from GWAS, neutral or control SNPs that 371 

are not associated with the trait, and an admixture graph of the representative 372 

populations. PolyGraph requires knowledge of the ancestral alleles of all GWAS hits to 373 

polarize effect sizes. Thus, only GWAS hits where ancestral allele information was 374 

available from the 1KGP dataset were used in our study.  375 

The same set of control SNPs used for the enrichment analyses was used to build 376 

an admixture graph using MixMapper (Lipson, et al. 2014). We made scaffold trees with 377 

eight continental populations and added the population from Peru (PEL) as an admixed 378 

population (note that one branch leading to PEL represents Native American ancestry). 379 

We ran PolyGraph with its default parameters using 1,000,000 MCMC steps. PolyGraph 380 

reports a selection parameter alpha for each disease, a product of the selection coefficient 381 

for the advantageous allele and the duration of the selective process, and a p-value for 382 

selection on the entire admixture graph. To correct for multiple testing, we calculated 383 

FDR-adjusted q-values from the overall p-values of selection from PolyGraph (Table 1). 384 

 385 

Supplementary Material 386 

Supplementary material includes supplementary File S1 (.xslx) and a merged .pdf 387 

containing supplementary Figs. S1-S8. 388 

 389 
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Tables 609 

 610 

Trait Ascertained Population B-statistic 
%ile 

PolyGraph 
q-value 

Max iHS %ile 
(population) 

Ischemic Heart 
Disease 

European (Aragam, et al. 2022) 98.8 0.1689 98 (ITU) 

East Asian (Ishigaki, et al. 2020) >99.9 5.21x10-11 >99.9 (TSI) 

Multi-ancestry (Tcheandjieu, et al. 2022) 90.3 0.6884 86 (PEL) 

Stroke 

European (Malik, et al. 2018) 98.8 0.2951 88 (YRI) 

East Asian (Ishigaki, et al. 2020) 95.6 0.0941 84 (GWD) 

Multi-ancestry (Mishra, et al. 2022) 97.1 0.6884 74 (IBS) 

COPD 

European (Shrine, et al. 2019) 98.8 0.9245 93 (PUR) 

East Asian (Ishigaki, et al. 2020) >99.9 0.7000 95 (JPT) 

Multi-ancestry (Shrine, et al. 2023) 99.8 0.6884 89 (GIH, PUR) 

Lung Cancer 

European (McKay, et al. 2017) 91.8 0.9245 92 (GBR) 

East Asian (Ishigaki, et al. 2020) 74.9 0.1144 92 (GBR) 

Multi-ancestry (Byun, et al. 2022) 39.8 4.37x10-09 >99.99 (PEL) 

Alzheimer’s Disease European (Bellenguez, et al. 2022) 96.1 0.8876 94.5 (TSI) 

Type 2 Diabetes 

European (Cai, et al. 2020) 97.7 0.4697 85 (JPT) 

East Asian (Spracklen, et al. 2020) 94.1 0.1777 98 (CLM) 

Multi-ancestry (Mahajan, et al. 2022) 99.9 0.6884 99 (PEL) 

Chronic Kidney 
Disease 

European (Wuttke, et al. 2019) >99.9 0.0113 98 (CDX, PEL) 

East Asian (Kanai, et al. 2018) >99.9 0.0010 57 (CHB) 

Multi-ancestry (Wuttke, et al. 2019) >99.9 0.3186 70 (FIN, GWD) 

Hypertensive Heart 
Disorder 

European (Surendran, et al. 2020) >99.9 0.0160 99 (PEL) 

East Asian (Kanai, et al. 2018) >99.9 0.0100 96 (ESN) 

Multi-ancestry (Giri, et al. 2019) 99.9 0.6884 90 (CHS) 

Colon Cancer 

European (Law, et al. 2019) 88.0 0.9245 78 (GIH) 

East Asian (Lu, et al. 2020) 99.9 0.0061 72 (MSL) 

Multi-ancestry (Fernandez-Rozadilla, et al. 2023) 99.7 0.7225 62 (KHV) 

Breast Cancer 

European (Mavaddat, et al. 2019) 99.2 0.9245 89 (CHS) 

East Asian (Ishigaki, et al. 2020) 78.6 0.0265 81 (CDX) 

Multi-ancestry (Shu, et al. 2020) 98.9 0.9716 94 (CHS) 

 611 

Table 1. Top ten hereditary diseases with the highest global mortality from the 2020 World 612 

Health Organization Report. The second column list ancestries of each source GWAS 613 

used in our study. The third column summarizes the enrichment for BGS on these 614 
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diseases, comparing results across three ascertainment schemes to 1000 control sets. 615 

The fourth column provides insights into polygenic adaptation signals, presenting FDR-616 

adjusted q-values. Finally, the last column list the 1KGP population(s) exhibiting the 617 

highest enrichment for extreme iHS values in comparison to 1000 control sets of SNPs.  618 
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Figures 619 

 620 

 621 

Fig. 1. Heatmap demonstrating the age-standardized mortality rates per 100,000 622 

individuals for each disease in nine different countries (World Health Organization 2020). 623 

We observe heterogeneity in the mortality rates of each of these diseases. While some 624 

differences can be attributed to socioeconomic and lifestyle factors, this paper delves into 625 

the genetic contributors to each disease and tests if natural selection and a population’s 626 

evolutionary history significantly contribute to such inequities. 627 
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 628 

Fig. 2. Disease associated SNPs are enriched for signatures background selection. 629 

Plotted here are results from SNP sets that were ascertained in European ancestry 630 

GWAS. The percentile rank for each disease shows disease-associated SNPs are 631 

enriched for higher BGS compared to 1000 control sets before correcting for multiple 632 

testing, with a dotted line marks the 95th percentile of a control sets. SNP sets that were 633 

ascertained in East Asian and multi-ancestry GWAS yielded broadly similar patterns of 634 

BGS (supplementary Figs. S4 and S5).  As per (Torres, et al. 2018), a B-statistic outlier 635 

threshold of 0.317 was used. 636 
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 637 

Fig. 3. Minimal evidence of polygenic adaptation acting on common diseases. Plotted 638 

here are results from SNPs sets that were ascertained in European ancestry GWAS. 639 

MixMapper was used to generate the admixture graph and PolyGraph was used to test 640 

for polygenic signatures of adaptation. FDR-adjusted q-values are above 0.05 for eight 641 

out of ten diseases. The selection parameter alpha reports a product of the selection 642 

coefficient for the advantageous alleles and the duration of the selective process. SNP 643 

sets that were ascertained in East Asian and multi-ancestry GWAS yielded broadly similar 644 

patterns of polygenic adaptation (supplementary Figs. S2 and S3). 645 
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 646 

Fig. 4. Sparse signals of recent positive selection (partial sweeps) acting on complex 647 

diseases in 26 global populations from the 1KGP. Plotted here are results from SNPs 648 

sets that were ascertained in European ancestry GWAS. Percentile ranks quantify how 649 

much disease-associated loci are enriched for outlier iHS values compared to 1000 sets 650 

of control SNPs. Outlier threshold: |iHS|>1.96. Population acronyms are from the 1KGP. 651 

SNP sets that were ascertained in East Asian and multi-ancestry GWAS yielded broadly 652 

similar patterns (supplementary Figs. S6 and S7).  653 
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