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Abstract  

Accurate lesion segmentation is critical in stroke rehabilitation research for the quantification of 
lesion burden and accurate image processing. Current automated lesion segmentation methods 
for T1-weighted (T1w) MRIs, commonly used in rehabilitation research, lack accuracy and 
reliability. Manual segmentation remains the gold standard, but it is time-consuming, subjective, 
and requires significant neuroanatomical expertise. We previously released a large, open-
source dataset of stroke T1w MRIs and manually segmented lesion masks (ATLAS v1.2, 
N=304) to encourage the development of better algorithms. However, many methods developed 
with ATLAS v1.2 report low accuracy, are not publicly accessible or are improperly validated, 
limiting their utility to the field. Here we present ATLAS v2.0 (N=955), a larger dataset of T1w 
stroke MRIs and manually segmented lesion masks that includes both training (public) and test 
(hidden) data. Algorithm development using this larger sample should lead to more robust 
solutions, and the hidden test data allows for unbiased performance evaluation via 
segmentation challenges. We anticipate that ATLAS v2.0 will lead to improved algorithms, 
facilitating large-scale stroke rehabilitation research. 
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Background & Summary 

Large neuroimaging datasets are increasingly being used to identify novel brain-behavior 
relationships in stroke rehabilitation research.1,2 Lesion location and lesion overlap with extant 
brain structures and networks of interest are consistently reported as key predictors of stroke 
outcomes.3-6 However, in order to examine these measures in large datasets, accurate 
automated methods for detecting and delineating stroke lesions are needed. Two critical 
barriers limiting accurate automated segmentation in rehabilitation research are the variability in 
post-stroke neuroanatomy across patients and the limited amount of diverse data with which to 
train and test segmentation algorithms.  

In acute stroke, large clinical neuroimaging datasets have led to improvements in segmentation 
algorithms for clinical MRI protocols (e.g., diffusion weighted imaging, FLAIR, or T2-weighted 
MRI).7-9 However, MRIs are not routinely collected as part of stroke rehabilitation clinical care, 
which usually commences at subacute or chronic stages. To obtain neuroimaging data at this 
stage, rehabilitation researchers often recruit people with stroke to participate in research 
studies, requiring significant time, funding effort and cost to generate even small datasets. In 
addition, high-resolution T1-weighted (T1w) MRIs are typically used at this stage to identify and 
delineate lesioned tissue, as T1w MRI provides excellent spatial resolution and is required for 
registering other research imaging data, such as functional MRI and diffusion MRI. However, 
lesions are often more challenging to identify at this later stage, and T1w single-channel 
imaging is incompatible with most multispectral tools developed for acute clinical imaging. Of 
the existing automated lesion segmentation tools for single-channel, T1w MRI data, most are 
not highly accurate or reliable10 and require significant manual effort for quality control and 
correction.1 Due to these challenges, manual lesion segmentation remains the gold standard in 
stroke rehabilitation research, but it is inefficient, subjective, and limits large-scale stroke 
rehabilitation research.  

Machine learning, and in particular, deep learning algorithms, have been applied to address this 
problem, but they require large, diverse training datasets to create generalizable models that 
can perform well on new data. To this end, we previously released a public dataset of 304 
stroke T1w MRIs and manually segmented lesion masks called the Anatomical Tracings of 
Lesions After Stroke (ATLAS) v1.2 dataset.11 ATLAS is the largest dataset of its kind and 
intended to be a resource for the scientific community to develop more accurate lesion 
segmentation algorithms. It is also meant to be used as a standardized benchmark with which to 
compare the performance of different segmentation methods.10 The data are derived from 
diverse, multi-site data from 11 research cohorts worldwide and harmonized by the ENIGMA 
Stroke Recovery working group.1 ATLAS v1.2 has been accessed and cited widely since its 
release in 2018, with reports including the improved performance of stroke lesion segmentation 
algorithms using novel methods, particularly deep learning and convolutional neural networks 
(e.g.12-28). 
 
The reach of the ATLAS v1.2 dataset has also extended beyond stroke lesion segmentation. It 
has also been used as a key example of a large, public neuroimaging dataset,29 to provide 
published guidelines on how to perform lesion segmentation,30 to evaluate the performance of 
different hippocampal segmentation methods in stroke,31 to test other non-stroke automated 
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methods, such as anomaly32 and asymmetry detection,33 and as inspiration for future AI 
programs and large public datasets,34 among other uses. It is a valuable educational resource 
and has been used as a teaching resource in courses on machine learning and computer vision 
as well as for student thesis projects. It has been cited by over 60 publications and downloaded 
over 1500 times from over 30 countries in the past several years since its release, 
demonstrating its significant global impact on the scientific and academic community.  
 
However, while ATLAS v1.2 spurred the development of many new automated lesion 
segmentation methods (Table 1), there are still no publicly available automated methods that 
have reported performance reliable enough to be used for research. Although no published 
standards exist, in our own research we estimate that a minimum Dice coefficient, or measure 
of overlap between the true lesion and the predicted lesion mask,35 of greater than 0.85 needs 
to be reached before a method can be declared sufficiently reliable to replace manual 
segmentation. In 2018, we used the ATLAS v1.2 dataset as a benchmark to evaluate publicly 
available automated lesion segmentation methods using T1w MRIs, but the best performing 
method (Lesion Identification with Neighborhood Data Analysis, or LINDA)36 only had an 
average Dice coefficient of 0.5 on ATLAS v1.2.10  Similarly, all of the more recently published 
methods that were trained and tested on ATLAS v1.2 report an average Dice coefficient under 
0.7 (see Table 1 for details). In addition, because ATLAS v1.2 is a completely public dataset, 
without a partitioned test dataset, it is possible for researchers to overfit their model, not perform 
proper validation, or incorrectly calculate the Dice coefficient. This can lead to artificially inflated 
performance metrics. ATLAS v1.2 did not contain separate test data, which is necessary to 
reliably evaluate algorithm performance and generalizability to new data. Finally, of the 17 
different methods published using ATLAS v1.2, 12 papers did not report publicly available code, 
limiting their utility to the scientific community. 
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Table 1. Published Methods for Automated Lesion Segmentation Using ATLAS v1.2 1 
A summary of published automated lesion segmentation methods that were trained from ATLAS v1.2, 2 
with brief summaries of their method, validation method, and reported Dice coefficient. Blue rows indicate 3 
methods using cross-validation. Yellow rows indicate methods using one hold-out. *Indicates an out-of-4 
distribution method that is trained only on non-lesioned images and detects outliers that possibly 5 
represent stroke lesions. **Indicates an incorrect equation for the Dice index computation; the correct 6 
Dice is 0.148 and the reported Dice is listed in parentheses.  7 
 8 

Article Method 
Reported 
Dice  

Code 
Publicly 
Available 

n Validation Method 
Input size 
2D/3D  
(H, W, D) 

     
Cross-validation 

 

Basak et al., 2021 DFENet 0.546 no 229 5-fold cross-validation 
2D 192, 192 or  
3D 192, 192, 4 

Hui et al., 2020 PSPF and U-Net 0.593 no 239 6-fold cross-validation  2D 176, 176 

Lu et al., 2020 EDCL w/ 3D Unet 0.148 (0.584)** no 239 5-fold cross-validation 3D 64, 64, 64 

Qi et al., 2019 X-Net 0.487 yes 229 5-fold cross-validation 2D 192, 224 

Zhang et al., 2020 MI-UNet 0.567 no 229 5-fold cross-validation 
2D 233, 197 or  
3D  49, 49, 49 

     
One hold-out  
Train, Validation, Test   

Chen et al., 2018 U-Net / GMM* 0.500 / 0.170 no 220 unclear / 0, 0, 100 (%) 
2D 128, 128 or 256
256 

Chen et al., 2020 VAE* / GMVAE* 0.110 / 0.120 no 220 0, 0, 100 / 0, 0, 100 (%) 2D 200, 200 

Kervadec et al., 2020 Enet 0.474 yes 229 203, 26, 0 unclear 

Liu et al., 2019 MSDF-Net 0.558 no 229 160, 69, 0 2D 224, 177 

Paing et al., 2021 3D U-Net 0.668 no 239 60, 20, 20 (%) 3D 197, 233, 189 

Qi et al., 2020 U-Net 0.518 no 229 120, 40, 69 2D 224, 192 

Sahayam et al., 2020 MUDCap3 0.670 no 229 160, 69, 0 3D 256, 256, 256 

Tomita et al., 2020 3D-ResU-Net 0.640 yes 239 76, 11, 13 (%) 3D 144, 172, 168 

Wang et al., 2020 CPGAN 0.617 no 239 129, 40, 60 2D 256, 256 

Xue et al., 2020 U-Net (9 paths) 0.540 yes 54 0, 0, 54 3D 192, 224, 192 

Yang et al., 2019 CLCI-Net 0.581 yes 220 55, 18, 27 (%) 
2D 224-233, 176-
197 

Zhou et al., 2019 D-Unet 0.535 no 229 80, 20, 0 (%) 
2D 192, 192 or  
3D 192, 192, 4 

 9 
 10 

 11 

  12 
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To address the above-mentioned concerns, we created ATLAS v2.0, which expands upon and 13 
replaces ATLAS v1.2. ATLAS v2.0 contains 955 T1w MRIs with manually segmented lesion 14 
masks from 33 different research cohorts across 20 institutions worldwide (including ATLAS 15 
v1.2 data, which are denoted in the accompanying meta-data). We also created an additional, 16 
completely hidden test dataset of 135 T1w MRIs with manually segmented lesion masks from 8 17 
new research cohorts across 4 countries.  18 

ATLAS v2.0 improves on ATLAS v1.2 in several ways. First, it contains more than three times 19 
as much data as ATLAS v1.2 and from more diverse cohorts, providing a bigger dataset for 20 
training and testing. Second, ATLAS v2.0 provides a single lesion mask file that encompasses 21 
all detected lesions, instead of having separate files per lesion, which previous users reported 22 
as being cumbersome in ATLAS v1.2. Third, ATLAS v2.0 fixes minor errors and issues with 23 
registration and orientation noted in previous ATLAS releases. Finally, and most importantly, 24 
ATLAS v2.0 is split into a public release of 655 T1w MRIs and lesion masks and a hidden test 25 
dataset of 300 T1w MRIs. For the hidden dataset, only the T1w MRIs are publicly available, and 26 
the lesion masks are hidden. The accompanying lesion masks will be made available only for 27 
testing algorithm performance in lesion segmentation challenges and competitions (see Lesion 28 
Segmentation Challenges). Notably, the training and test set contain similar distributions of 29 
data, such that an algorithm trained on the training set should perform well on the test set. 30 
However, we also created an additional dataset of 135 cases (T1w MRI and lesion masks) that 31 
are from completely new cohorts; none of this data is publicly released. These T1w MRIs and 32 
lesion masks are only available to segmentation challenges in order to examine the 33 
generalizability of algorithms on completely unseen data. In these ways, we aim to reduce the 34 
risk of research groups overfitting their data and reporting inflated algorithm performance, with 35 
an overall goal of improving the state of the field. We also strongly encourage lesion 36 
segmentation challenges to require public sharing of submitted methods to facilitate greater 37 
scientific dissemination. In the current paper, we describe the ATLAS v2.0 dataset, along with 38 
several lesion segmentation challenge platforms that aim to utilize this dataset.  39 

 40 

Methods 41 

Data overview 42 

Similar to our previous ATLAS v1.2 release, the ATLAS v2.0 dataset was aggregated from data 43 
collected for various research purposes, with specific eligibility criteria, and therefore may not be 44 
representative of the general population of all patients with stroke. The data are derived from 45 
studies that were approved by their local ethics committee and were conducted in accordance 46 
with the 1964 Declaration of Helsinki. Informed consent was obtained from all subjects. The 47 
ethics committee at the receiving site (the University of Southern California) approved the 48 
receipt and sharing of the de-identified data, which do not contain any personal identifiers.  49 

For each subject file, we first performed quality control of the image. Images were excluded if 50 
large motion artifacts or other disruptions made it difficult to identify the lesion. Next, brain 51 
lesions were identified, and masks were manually drawn in native space. Our team identified 52 
and traced lesions using ITK-SNAP37,38 (version 3.8.0; Figure 1; see lesion segmentation details 53 
below). After tracing, we reviewed and edited lesion masks as necessary using a standardized 54 
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quality control protocol. In a subset of the data, lesion masks were received from the originating 55 
site and edited and checked for quality by our team. All team members received lesion-tracing 56 
training and followed a standard operating protocol for tracing lesions to ensure consistency 57 
across tracers.11 All lesion masks were checked for quality by two separate trained team 58 
members. During the quality control process, we ensured that the boundaries of the lesion 59 
segmentation were accurate and that all identifiable lesions in the brain were traced.  60 

ATLAS v2.0 includes all the same subjects as v1.2, with the removal of repeated subjects that 61 
had two timepoints (n=9) so that in ATLAS v2.0, each subject is only represented once. All 62 
subject files have undergone a lesion tracing and preprocessing pipeline (Figure 2) and are 63 
named and stored in accordance with the Brain Imaging Data Structure (BIDS) 64 
(http://bids.neuroimaging.io/).39 Meta-data on scanner information, sample image headers for 65 
each cohort, and lesion information for each subject in the training dataset is included in the 66 
Supplementary Materials. However, subject demographic information, such as age, sex, or 67 
other clinical measures, is not shared due to privacy concerns.  68 

Data were randomly split into public training and hidden test datasets across sites, so that the 69 
testing set includes a similar multi-site composition as the training set. As mentioned previously, 70 
lesion challenges will also have access to additional data from new sites in order to test the true 71 
generalizability of algorithms to completely unseen data. Finally, any previously released data 72 
used as part of ATLAS v1.2 was kept as part of the public training dataset to prevent 73 
contamination of the test dataset.  74 

 75 

Data Characteristics 76 

The T1w MRI data were collected on 1.5-Tesla and 3-Tesla MR scanners. All data are high-77 
resolution (e.g., 1 mm3 or higher), with the exception of four cohorts who have at least one 78 
dimension with a resolution between 1-2 mm3 (R027, R047, R049, R050).  Each cohort was 79 
collected on a single scanner using the same parameters except for 2 cohorts (R027, R049). In 80 
these cases, the meta-data includes an example of each scanning parameter.  81 

During the review process for each lesion mask, meta-data on number of lesions and lesion 82 
location (left vs. right hemisphere, cortical vs. subcortical) was manually recorded by a trained 83 
team member. This detailed information for each subject can be helpful for sorting the data into 84 
subgroups with different lesion characteristics. In the training dataset (n=655), 59.9% of 85 
subjects had only a single lesion, and 38.1% had multiple lesions. Of the total subjects with 86 
multiple lesions, 7.2% had multiple lesions contained in either the left or right hemispheres only 87 
(noted as “Unilateral”), 18.5% had multiple lesions in both hemispheres (noted as “Bilateral”) 88 
and 12.4% had multiple lesions with at least one lesion in either the cerebellum or brainstem 89 
(noted as “Other”) (Table 2). Lesions were counted as separate and additional if they were non-90 
contiguous with any other lesion. Lesions were nearly equally distributed between left and right 91 
hemispheres, with 57.1% of subjects exhibiting at least one left hemisphere lesion, 58.8% 92 
exhibiting one right hemisphere lesion, and 22.9% with one lesion in either the cerebellum or 93 
brainstem (noted as “Other”). Lesions were also documented as either subcortical, cortical, or 94 
other. Consistent with the criteria used for ATLAS v1.2, lesions defined as subcortical were 95 
contained completely within the white matter and subcortical structures. Among all lesions in the 96 
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training dataset, 25.5% were cortical, 59.7% subcortical, and 14.8% other (Table 3). 97 
Corresponding meta-data includes this information on lesion number and location for each 98 
subject in the training dataset. 99 

This metadata information is not provided for individual subjects within the test dataset (n=300) 100 
to avoid biasing algorithms. However, it is presented at a group level. The test dataset is derived 101 
from 24 cohorts. Overall, 68.7% of subjects had only a single lesion and 31.3% had multiple 102 
lesions. Of the subjects with multiple lesions, 5.3% were marked “Unilateral”, 14.3% were 103 
marked “Bilateral”, and 11.7% were marked “Other” (Table 2). Lesions were nearly equally 104 
distributed between left and right hemispheres, with 51.7% of subjects exhibiting at least one left 105 
hemisphere lesion, 56.3% with at least one right hemisphere lesion, and 22.3% with at least one 106 
lesion in either the cerebellum or brainstem (noted as “Other”). Lesions were also documented 107 
as either subcortical, cortical, or other (existing in the cerebellum or brainstem). Among all 108 
lesions in the testing dataset, 32.0% were cortical, 51.7% subcortical, 16.3% other (Table 3). 109 
Data characteristics between the training and test datasets were similar. 110 

 111 

Table 2. Lesion number and hemisphere location per subject. 112 

The number of subjects with one lesion or multiple lesions, subdivided into specific areas (left, right, 113 
other) is shown for all 955 subjects, separated by training and test datasets. 114 

 Subjects with One Lesion Subjects with Multiple Lesions 
 

 Left Right Other Unilateral Bilateral Other 

Training data 
(n=655) 

173 
(26.4%) 

187 
(28.5%) 

46 
(7.0%) 

47 
(7.2%) 

121 
(18.5%) 

81 
(12.4%) 

Testing data 
(n=300) 

88 
(28.3%) 

95 
(31.7%) 

23 
(7.7%) 

16 
(5.3%) 

43 
(14.3%) 

35 
(11.7%) 

 115 

Table 3. Lesion location (subcortical vs. cortical). 116 

The number of lesions identified in specific regions (cortical, subcortical, or other), separated by 117 
hemisphere, is shown for all 955 subjects (separated into training and test datasets). Note that subjects 118 
could have multiple lesions, thus resulting in a total number of lesions that is greater than the total 119 
number of subjects.  120 

 Cortical Lesions Subcortical Lesions  
Other Total 

Lesions  Left Right Left Right 

Training data 
(n=655) 

132 
(12.0%) 

149 
(13.5%) 

333 
(30.2%) 

324 
(29.4%) 

163 
(14.8%) 1101 

Testing data 
(n=300) 

65 
(14.3%) 

80 
(17.7%) 

119 
(26.3%) 

115 
(25.4%) 

74 
(16.3%) 453 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted December 11, 2021. ; https://doi.org/10.1101/2021.12.09.21267554doi: medRxiv preprint 

https://doi.org/10.1101/2021.12.09.21267554


 121 

Training for Individuals Performing Lesion Tracing 122 

The research team responsible for the lesion segmentation and quality control followed the 123 
same training procedure to the training for the team that created ATLAS v1.2,11 with the 124 
exception of using ITK-SNAP instead of MRIcron, due to its semi-automated lesion interpolation 125 
tool. Training for the lesion identification and tracing process involved study of in-depth 126 
neuroanatomy, standardized protocols, instructional videos, and consultations with a 127 
neuroradiologist. This protocol includes tracing the same initial set of lesions twice per person, 128 
with extensive feedback provided from multiple team members. Our standard operating 129 
procedures are freely available online (https://github.com/npnl/ATLAS/). The training manual for 130 
ITK-SNAP37 is freely available (http://www.itksnap.org/docs/fullmanual.php) and was also used 131 
as part of the lesion tracing process. 132 
 133 

Identifying and Tracing Lesions 134 

For lesion identification, each T1w MRI was opened with ITK-SNAP (Figure 1) and examined 135 
carefully. Tracers also received training in the identification of white matter hyperintensities of 136 
presumed vascular origin40 and perivascular spaces, which were excluded from the lesion 137 
masks. Lesions were traced using either a mouse or stylus (i.e., Wacom Intuos Draw). All 138 
identified lesions for each subject were contained in a single image file. For lesions spanning a 139 
large number of slices (i.e., >50 slices), the “interpolation” tool was used. Upon completion, raw 140 
lesion mask files were saved and named according to a BIDS-compliant naming scheme (see 141 
also Data Records). All files were subsequently reviewed for quality control by two additional 142 
trained team members. If changes were necessary, edits were conducted by the original tracer. 143 
Upon approval, each subject’s raw mask and T1w image were added to the raw/native space 144 
dataset, then preprocessed and added to the preprocessed dataset. We recognize that manual 145 
tracing is a highly subjective process, even across similarly trained individuals, and we aimed to 146 
reduce any amount of tracing differences between tracers through multiple quality control steps.  147 

 148 
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Figure 1. Example of Lesion Segmentation in ITK-SNAP 150 

An example of the ITK-SNAP interface displaying a lesion segmentation mask (red) in in radiological151 
convention (the left hemisphere is shown on the right side of the screen). Axial (top left), sagittal (top152 
right), and coronal (bottom right) planes are shown. A video of the example lesion mask in ITK-SNAP can153 
be viewed through Schol-AR by scanning the QR code in the bottom right with a mobile device, or by154 
opening this PDF with a non-mobile web browser at www.Schol-AR.io/reader. 155 

 156 

157 

 158 

 159 

Preprocessing Normalization, Registration and Defacing 160 

In addition to releasing a dataset in native space with no preprocessing (raw; see Data Records 161 
below), we also released a preprocessed dataset that is archived with the International 162 
Neuroimaging Data-Sharing Initiative (INDI; Figure 2). Each step in the preprocessing pipeline is163 
identical to ATLAS v1.2, ensuring consistency across ATLAS versions. The pipeline includes 164 
intensity normalization and registration to a standardized template. In order to fully de-identify 165 
images, we also removed any potentially identifying non-brain data, such as facial images 166 
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(termed defacing), a common procedure required to fully anonymize an MR brain image. First, 167 
we corrected for intensity non-uniformity and performed an intensity standardization step, which 168 
was completed with scripts included in the MINC-toolkit (https://github.com/BIC-MNI/minc-169 
toolkit). After this correction, we used MINC tools to linearly register both T1w and lesion 170 
segmentation images to an MNI-152 template, which is included in the archive. Finally, we 171 
defaced the T1w images using the “mri_deface” tool from FreeSurfer (v1.22) 172 
(https://surfer.nmr.mgh.harvard.edu/fswiki/mri_deface). Per BIDS derivatives specifications, the 173 
T1w image and corresponding lesion mask are archived with file names of “sub-r***s***_ses-174 
1_space-MNI152NLin2009aSym_T1w.nii.gz” and “sub-r***s***_ses-1_space-175 
MNI152NLin2009aSym_label-L_desc-T1lesion_mask.nii.gz”, respectively (see also Data 176 
Records below for more details). Images that were previously excluded from ATLAS v1.2 due to 177 
errors in registration11 have now been included after manually correcting and inspecting them. 178 
After completion of the preprocessing pipeline, all subject files were visually inspected for quality 179 
to ensure correct lesion mask alignment and proper registration to the template (Figure 3). 180 
 181 
Figure 2. Lesion Tracing and Preprocessing Pipeline 182 
A flowchart diagram demonstrating the process for creating the two archived datasets: a raw dataset in 183 
native space archived with the Archive of Data on Disability to Enable Policy and research (ADDEP) (left 184 
blue box) and a preprocessed dataset in MNI-152 space archived with the International Neuroimaging 185 
Data-Sharing Initiative (INDI) (right blue box).  186 

 187 
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 188 
 189 
Figure 3. Example of Visual Quality Control 190 

Example of an image used to ensure proper registration of each subject’s brain (gray) and lesion191 
segmentation mask (reddish brown) to the MNI template (green). 192 

193 

 194 
 195 

Probabilistic Spatial Mapping of Lesion Location 196 

To visualize the average distribution of lesions contained in ATLAS v2.0 across the whole brain, 197 
we created a probabilistic map of all lesions in the full ATLAS v2.0 dataset (N=955) with the MNI 198 
template (Figure 4). This was completed with the mincaverage tool found in the MINC-toolkit 199 
(https://github.com/BIC-MNI/minc-toolkit). As noted previously, this may not be representative of 200 
all strokes and is only meant to visually demonstrate the voxels identified most commonly as 201 
lesioned in our dataset. This map has also been provided in NifTI format and uploaded to 202 
NeuroVault.org, where it can be freely accessed (https://neurovault.org/images/706022/). 203 
 204 
Figure 4. Probabilistic Lesion Overlap Map, on MNI_icbm152 template 205 

Visualization of the lesion overlap across all subjects (N=955) overlaid on the MNI template, with hotter206 
colors representing more subjects with lesions at that voxel. An interactive volumetric 3D display of this207 
data may be viewed through Schol-AR by scanning the QR code from Figure 1 with a mobile device, or208 
by opening this PDF with a non-mobile web browser at www.Schol-AR.io/reader. 209 
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  212 

Data Records 213 

Data are publicly available in preprocessed format (standardized to MNI-152 space) on INDI 214 
(http://fcon_1000.projects.nitrc.org/indi/retro/atlas.html), a free platform for neuroimaging data 215 
sharing. Raw data in native space are available on the Archive of Data on Disability to Enable 216 
Policy and research (ADDEP, http://doi.org/10.3886/ICPSR36684.v4), which has a more 217 
stringent data use agreement to maintain privacy of the raw data. For the test dataset (n=300), 218 
only the T1w scans, without lesion masks, are released on each platform so that users can test 219 
their algorithms on this data and submit their output to lesion segmentation challenges for 220 
evaluation. The meta-data denotes whether each subject in the training dataset was previously 221 
part of the ATLAS v1.2 release.  222 
Data are maintained in BIDS format.39 There are 33 total cohorts, and within each cohort folder 223 
are individual subject folders. We used the following naming convention: sub-r***s*** where r*** 224 
represents the research cohort number and s*** represents the subject number. All data are 225 
cross-sectional and from a single timepoint, so they all are denoted with “ses-1”. Native space 226 
images are labeled as “space-orig” while images normalized to the MNI-152 template are 227 
labeled as “space-MNI152Nlin2009aSym”. Finally, the description denotes that the lesion mask 228 
was traced from the T1w MRI (versus a different imaging modality, such as FLAIR).  229 

Following BIDS conventions, a lesion mask in native space would be named as such: “sub-230 
r***s***_ses-1_space-orig_label-L_desc-T1lesion_mask.nii.gz” and the corresponding T1w MRI 231 
would be named as “sub-r***s***_ses-1_space-orig_T1w.nii.gz.” As noted previously, the T1w 232 
MRI and lesion mask in MNI space are noted as: “sub-r***s***_ses-1_space-233 
MNI152NLin2009aSym_T1w.nii.gz” and “sub-r***s***_ses-1_space-234 
MNI152NLin2009aSym_label-L_desc-T1lesion_mask.nii.gz”, respectively. 235 

 236 

Technical Validation 237 

The ATLAS v2.0 dataset was developed using similar protocols and methods as the ATLAS 238 
v1.2 dataset, which has been successfully utilized to develop numerous lesion segmentation 239 
methods for the last several years.12-28 For ATLAS v2.0, detailed manual quality control for 240 
image quality occurred during the initial lesion segmentation, and all segmentations were 241 
examined for quality by two additional researchers. Following preprocessing, lesions were again 242 
checked for proper registration to template space. The ATLAS v2.0 dataset has been validated 243 
and incorporated into several new lesion segmentation challenges (see Lesion Segmentation 244 
Challenges below).  245 

 246 

Usage Notes 247 

Data can be accessed under a standard Data Use Agreement, which requires users to agree to 248 
use the data only for purposes described in the agreement. Users of the ATLAS v2.0 dataset 249 
should properly acknowledge the data contributions of the authors and laboratories by citing this 250 
article and the specific data repository from which they accessed the data.  251 
 252 
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We also have released our open-source Pipeline for Analyzing Lesions After Stroke (PALS) 253 
software.28 This software allows users to calculate lesion volume, evaluate lesion overlap with 254 
brain regions of interest, and create lesion overlap images (similar to that shown in Figure 4). 255 
PALS can be used with ATLAS v2.0 to perform lesion analyses and can be accessed at 256 
https://github.com/npnl/PALS.  257 
 258 
As previously noted, manual lesion segmentation can be subjective, and despite our extensive 259 
quality control process, errors can still occur. Any issues or feedback can be submitted on the 260 
ATLAS Github page under ‘issues’, which will be addressed by our research team 261 
(https://github.com/npnl/ATLAS/). Any changes to the data or updates with new data will be 262 
released under new ATLAS versions (e.g., v2.1, v2.2), and changes will be posted on Github.  263 

 264 

Lesion Segmentation Challenges 265 

A key purpose of the ATLAS v2.0 dataset is to provide hidden test data to fairly evaluate the 266 
performance of lesion segmentation algorithms. To this end, the ATLAS v2.0 lesion mask test 267 
data (n=300) and additional completely hidden dataset (135 T1w MRIs and lesion masks) are 268 
only available for lesion segmentation challenges upon request to the corresponding author. 269 
The ideal challenge will provide fast, web-based evaluation and results with a public 270 
leaderboard and will require public sharing of submitted algorithms with clear usage instructions 271 
to advance scientific knowledge within the community and continually improve on the best 272 
available algorithms.  273 

Following our ATLAS v1.2 release, we found that a large percentage of users of the ATLAS 274 
dataset are students from around the world who used this data to learn how to apply machine 275 
learning, deep learning, and/or computer vision methods to this challenging problem. ATLAS 276 
v1.2 was used widely for student theses and class projects, as well as for training individuals in 277 
algorithm development, and we anticipate that ATLAS v2.0 will be used extensively for these 278 
purposes as well. Given the educational interest in ATLAS, a challenge using the ATLAS v2.0 279 
data has been established through a partnership with the Paris-Saclay Center for Data Science 280 
using their Rapid Analytics and Model Prototyping (RAMP) project management tool 281 
(https://paris-saclay-cds.github.io/ramp-docs/).41 RAMP challenges are open and collaborative 282 
web challenges that provide informative starter kits in Python to reduce the barrier of entry for 283 
participants.41 The starter kits provide background information on the problem as well as basic 284 
solution code. The RAMP approach democratizes science by allowing novice data scientists 285 
and learners to approach new technical problems by providing the foundational knowledge 286 
necessary to get started in the field and giving everyone the same starting point. RAMP 287 
challenges consist of a competitive phase, during which participants work individually to solve 288 
the problem, and a collaborative phase, during which participants can see each other’s solutions 289 
and work together to create the best final solution. Following the competitive phase, participants 290 
submit their solutions and code to the RAMP website, where they can see the results of 291 
everyone’s submissions. Because code is openly shared in the collaborative phase, participants 292 
can learn from one another’s solutions and work together to develop the best combined 293 
solution. This collaborative method has been used to successfully address over 20 different 294 
scientific challenges and is an excellent educational tool.41 More information about the RAMP 295 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted December 11, 2021. ; https://doi.org/10.1101/2021.12.09.21267554doi: medRxiv preprint 

https://doi.org/10.1101/2021.12.09.21267554


automated lesion segmentation challenge using ATLAS v2.0 data can be found here: 296 
https://ramp.studio/problems/stroke_lesions. This RAMP challenge may also be made available 297 
for use by course instructors and can provide a project platform for collaborative learning at 298 
events such as Brainhacks, which bring together scientists around the world to work together on 299 
challenging brain imaging problems.42 300 

ATLAS v2.0 is also being actively proposed for an Ischemic Stroke Lesion Segmentation 301 
(ISLES) Challenge at the International Conference on Medical Image Computing and Computer 302 
Assisted Intervention (MICCAI) in 2022. The ISLES challenge is one of the best-known stroke 303 
lesion segmentation challenges and has attracted hundreds of researchers to the competition 304 
over the years to showcase the performance of novel methods. The ISLES challenge series 305 
started in 2015 and has taken place at MICCAI for multiple years, incorporating new datasets 306 
and clinical and technical challenges each year.9 ISLES datasets often serve as benchmarks for 307 
the field, and teams are invited to submit their algorithms for publication following the 308 
challenge.9,43,44 Adding ATLAS v2.0 to the ISLES challenge introduces stroke data across acute 309 
to chronic timepoints into the challenge for the first time and presents a unique single-channel 310 
(versus multispectral) imaging challenge. More information about ISLES challenges can be 311 
found at http://www.isles-challenge.org/.  312 

Finally, because ENIGMA Stroke Recovery receives new stroke MRI data on an ongoing basis, 313 
we continually generate lesion segmentations that can be used as additional test data. New 314 
cohort data may be added to our unseen test dataset and used only in lesion segmentation 315 
challenges (e.g., expanding on our current n=135 completely hidden test dataset). In future 316 
challenges, data may also be sorted into small, medium and large lesions, as we previously 317 
showed that automated methods performed the worst on small, followed by medium, lesions, 318 
and perform the test on large lesions.10 This is likely due to the ease of detection of large lesions 319 
boundaries, whereas small lesions can often be missed completely or mistaken for other brain 320 
pathology.10 Future challenges may focus on accurate identification of small lesions only, or on 321 
improving the accuracy of medium and large lesion segmentation boundaries.  322 

 323 

Conclusion 324 

ATLAS v2.0 builds on our previous ATLAS v1.2 release and provides a total archive of 955 325 
images, separated into 655 public training cases and 300 hidden test cases. Additional, private 326 
test data, beyond the 955 archived images, is available for lesion segmentation challenges. Our 327 
primary goal in releasing ATLAS v2.0 is to enable the development of more accurate, robust 328 
and generalizable lesion segmentation algorithms using single-channel T1-weighted MR 329 
images. We anticipate that the larger sample size, hidden test dataset, and collaboration with 330 
lesion segmentation challenge platforms will lead to the development of improved lesion 331 
segmentation algorithms. The ultimate goal of this work is to increase the reproducibility of 332 
stroke MRI studies and facilitate large-scale stroke neuroimaging analyses to inform stroke 333 
rehabilitation research.  334 
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