A novel approach to concentrate human and animal viruses from wastewater using receptors-conjugated magnetic beads

Chamteut Oh¹, Kyukyoung Kim², Elbashir Araud³, Leyi Wang⁴, Joanna L. Shisler⁵, Thanh H. Nguyen¹,⁶

Corresponding authors: Chamteut Oh (co14@illinois.edu)

1) Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, USA
2) Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, USA
3) Holonyak Micro & Nanotechnology Lab, University of Illinois at Urbana-Champaign
4) Veterinary Diagnostic Laboratory and Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, United States
5) Department of Microbiology, University of Illinois at Urbana-Champaign, USA
6) Institute of Genomic Biology, University of Illinois at Urbana-Champaign, USA

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Graphical abstract

Wastewater → PGM-MBs method → Virus surveillance

High throughput
- 0.5 USD
- 3 hours
- Simple tools

Good performance
- 63-fold increase in concentration
- 10 mL sample → 0.1 mL genome

Robust to environmental samples
- Unwanted viral genomes → PCR Inhibitors
- No dilution is needed
Abstract

Viruses are present at low concentrations in wastewater, and therefore an effective concentration of virus particles is necessary for accurate wastewater-based epidemiology (WBE). We designed a novel approach to concentrate human and animal viruses from wastewater using porcine gastric mucin-conjugated magnetic beads (PGM-MBs). We systematically evaluated the performances of the PGM-MBs method (sensitivity, specificity, and robustness to environmental inhibitors) with six viral species including Tulane virus (a surrogate for human norovirus), rotavirus, adenovirus, porcine coronavirus (transmissible gastroenteritis virus or TGEV), and two human coronaviruses (NL63 and SARS-CoV-2) in influent wastewater and raw sewage samples. We determined the multiplication factor (the ratio of genome concentration of the concentrated over that of the initial solution) for the PGM-MBs method, which ranged from 1.3 to 64.0 depending on the viral species. Because the recovery efficiency became significantly higher when calculated based on virus titers than genome concentration, the PGM-MBs method could be an appropriate tool for assessing the risk due to wastewater contaminated with infectious enteric viruses. PCR inhibitors were not concentrated by PGM-MBs, suggesting this tool will be successful for use with environmental samples. The PGM-MBs method is cost-effective (0.43 USD/sample) and fast turnaround (3 hours from virus concentration to genome quantification), and thus this method can be implemented for high throughput facilities. Based on good performance, intrinsic characteristics of targeting the infectious virus, robustness to wastewater, and adaptability to high throughput systems, we are confident that the PGM-MBs method can be applied for successful WBE and ultimately provides valuable public health information.

Keywords (maximum 6): Porcine gastric mucin conjugated magnetic beads (PGM-MBs); virus concentration method; wastewater-based epidemiology; SARS-CoV-2; enteric viruses
1. Introduction

Enteric viruses are the leading cause of gastroenteritis worldwide. Many enteric viruses, such as rotavirus, norovirus, and adenoviruses, are shed in fecal material (Kang, 2017; Kapikian, 1996). Other airborne viruses, like SARS-CoV-2, are also shed in the human stool (Hu et al., 2020). Thus, wastewater-based epidemiology (WBE) can be a powerful tool to detect viral transmission in communities even before the appearance of clinical cases (Ahmed et al., 2021; Harris-Lovett et al., 2021; Hart and Halden, 2020; Nemudryi et al., 2020; Panchal et al., 2021; Sherchan et al., 2021). However, virus monitoring faces a challenge that the viral concentration in wastewater may be below the detection limit of analysis instruments such as qPCR system, especially when transmission has just started in communities. Although viruses such as noroviruses, adenoviruses, and enteroviruses are excreted at high concentrations (up to 10^{11} viruses/g-feces), the viruses are diluted by different sources of water (Haramoto et al., 2018). For example, Albinana-Gemenez et al. (2006) detected 10^6-10^7 gene copies (gc)/L of adenoviruses and polyomaviruses in sewage, but the virus concentrations decreased to 10^1 to 10^2 gc/L for river water. Since the lower limit of qPCR detection is about 10^0 gc/μL (or 10^6 gc/L), viruses from wastewater samples must be concentrated into smaller volumes. There are several strategies available to concentrate viruses from wastewater include ultracentrifugation, ultrafiltration, adsorption/extraction, skimmed-milk flocculation, polyethylene glycol (PEG) precipitation, and sludge extraction methods (Ahmed et al., 2020; Jafferli et al., 2021; Wolfe et al., 2021). However, those conventional virus concentration methods are expensive, time-consuming, and resource-demanding processes (Gibas et al., 2021; LaTurner et al., 2021; Polo et al., 2020), so this process often becomes a bottleneck in monitoring viruses in wastewater. Therefore, there is an urgent need for a new virus concentration method that is simple and fast.
In the recent past, we and others have coated magnetic beads (MB) with porcine gastric mucin (PGM) to study virus binding properties (Afolayan et al., 2016; Araud et al., 2018; Fuzawa et al., 2019; Oh et al., 2020; Walker et al., 2019). The PGM is a biological substrate that includes molecules (e.g., glycans) that act as virus receptors. Thus, we hypothesize that these PGM-MBs can selectively concentrate viruses from wastewater. An additional benefit of PGM-MBs is that they can capture infectious virus particles instead of viral genomes, giving a more accurate quantification of risk for WBE.

The objective of this research was to design and optimize this receptor-based virus concentration method using porcine gastric mucin conjugated-magnetic beads (PGM-MBs) and evaluate the efficacy of PGM-MBs compared to its conventional counterparts. Fig. S1 shows five steps of the PGM-MBs method from wastewater sample pretreatment, virus attachment, virus concentration, genome extraction, to genome quantification step. We first optimized the method using influent wastewater spiked with five virus strains (Tulane virus (TV), rotavirus (RV), adenovirus (AdV), human coronavirus (NL63), and porcine coronavirus (transmissible gastroenteritis virus; TGEV). We selected these viruses based on their significance for public health and economy (Binder et al., 2017; Fielding, 2011; Katayama et al., 2002; La Rosa et al., 2020a; Lodder and De Roda Husman, 2005; Waruhiu et al., 2017). We systematically evaluated the performances of the PGM-MBs method (sensitivity, specificity, and robustness to environmental inhibitors) with 20 sewage samples spiked with these enteric viruses. In addition, we used PGM-MBs in local sewage samples to concentrate SARS-CoV-2 and compared its performances to electronegative filtration methods, one of the most widely used virus concentration methods. The findings suggest that PGM-MBs can be simple, affordable, but still accurate tools for WBE.
2. Materials and Methods

2.1. PGM-MBs virus concentration method

The porcine gastric mucin conjugated magnetic beads (PGM-MBs) were produced as described in our previous studies (Araud et al., 2018; Fuzawa et al., 2019; Oh et al., 2020), and the detailed procedure is elaborated in Text S1. The PGM-MBs is a suspension that includes 1-4 µm diameter beads at a concentration of 2×10^6 beads/µL. The pretreatment of wastewater samples, necessary to remove solid particles that can otherwise interfere with subsequent analysis, was achieved by either gravitational settling for 2 hours or filtration through 0.22 µm membrane filters (S2GPT02RE, Millipore Sigma, USA). The virus attachment to the PGM-MBs was optimized by changing the MgCl$_2$ concentration between 0 to 100 mM. Specifically, the PGM-MBs and MgCl$_2$ were added to a wastewater sample at a 1:1000 volume ratio and 50 mM, respectively. For example, we put 10 µL of the PGM-MBs into 10 mL of the samples for the optimization experiments and 50 µL PGM-MBs to 50 mL sewage for SARS-CoV-2 surveillance. The mixture was shaken for 30 minutes on an orbit shaker at 450 rpm (Fisher Scientific, USA) at room temperature. Then, the virus-containing PGM-MBs were concentrated by a magnet (DH125J-FN, Amazing magnets, USA) placed at the outside surface of the bottom of the tube for about 30 minutes and the clear supernatant was removed. The remaining PGM-MBs and supernatant were collected and transferred to a 1.5 mL low adhesion microcentrifuge tube (1415-2600, USA scientific, USA). The PGM-MBs were washed three times by sequentially resuspending beads in 1 mL PBS, collecting beads by using a magnetic separation rack (S1509S, New Biolabs Lab, USA), and removing supernatants. Finally, the viral genomes were extracted by heat denaturation method and quantified by either qPCR or RT-qPCR depending on viral
species, which is elaborated in Section 2.1. Also, Section 3.1 presents the results of the PGM-MBs optimization experiments.

2.2. Viral nucleic acid extraction and quantification

Commercial nucleic acid extraction kits are expensive, time-consuming and could be in short supply (Satyanarayana, 2020). Therefore, we established a heat denaturation method compatible with the PGM-MBs method to reduce resources (cost, time, and labor). The heat denaturation method started with resuspending a pellet of virus-containing PGM-MBs with 100 μL proteinase K (P8107S, New England Biolabs, USA) that was diluted 100-fold by molecular biology grade water (Millipore Sigma) for denaturation of the viral capsid. The mixture was then transferred to a 200 μL-size PCR tube (14-222-262, Fisher Scientific, USA) and incubated at 95°C for 10 minutes using a thermal cycler (MyCycler™, Bio-Rad), followed by quick cooling on ice. While being heated, the viral genomes were released from the capsid, and the proteinase K was inactivated. The PGM-MBs were pelletized by a magnet (S1509S, New Biolabs Lab, USA) for one minute, and the genomes were taken from the supernatant near the solution surface for further analysis. The concentrations of viral genomes were quantified by SYBR-based RT-qPCR for TV, RV, NL63, and TGEV; Taqman-based RT-qPCR for SARS-CoV-2; or SYBR-based qPCR for AdV. We used iTaq universal SYBR green reaction mix (Bio-Rad Laboratories, USA) for TV, RV, NL63, and TGEV analysis, PowerUp SYBR™ Green Master Mix (Applied Biosystems, CA, USA) for AdV quantification, and Taqman Fast Virus 1-step Master Mix (4444432, Applied Biosystems, USA) for SARS-CoV-2. Viral genomes were quantified using a qPCR system (QuantStudio 3, Thermo Fisher Scientific, USA). Table S1 summarized these RT-qPCR methods following the MIQE guidelines (Bustin et al., 2009). Text S2 provides detailed
information about qPCR analysis, including thermal cycles, qPCR cocktail compositions, and primers.

2.3. Preparing viruses for experiments with virus-spiked wastewater

We determined the performance of the PGM-MBs method using influent wastewater spiked with viruses propagated in vitro. These viruses are Tulane virus (TV, *Caliciviridae*, a viral surrogate for human norovirus) (Yu et al., 2013), rotavirus OSU strain (RV, *Reoviridae*, ATCC VR-892), adenovirus type 2 (AdV, *Adenoviridae*, ATCC VR-846), human coronavirus (NL63, *Coronaviridae*), and porcine coronavirus (TGEV, *Coronaviridae*). We obtained TV from the Cincinnati Children’s Hospital Medical Center. We obtained NL63 strain from BEI sources (NR-470). TGEV is a porcine enteric virus, and is in the same family as NL63 and SARS-CoV-2 (*Coronaviridae*). We received the TGEV from the Veterinary Diagnostic Laboratory at the University of Illinois at Urbana-Champaign. Rotavirus strain OSU strain (RV, *Reoviridae*, ATCC VR-892) and adenovirus type 2 (AdV, *Adenoviridae*, ATCC VR-846) were obtained from the ATCC. Detailed information about propagation methods including culture media and growing conditions is elaborated in Text S3. Plaque assays were used to determine titers of TV, RV, AdV, and TGEV. TCID50 assays were used to quantify NL63 titers. MA104 (ATCC, CRL-2378.1) was used as a host cell line for TV and RV plaque assay. A549 (ATCC; CCL-185), MK2 cells (ATCC, CCL-7), and ST cells (CRL-1746, ATCC) were used to determine virus titers of AdV, NL63, and TGEV, respectively. Detailed information on virus titer determination is summarized in Text S4.
2.4. Collection of influent wastewater and local sewage samples for method optimization and evaluation

We collected environmental samples from 10 locations from January to July 2021 (20 samples in total) to cover a variety of wastewater. We collected a 24-hour composite of influent wastewater on February 3rd, 2021, from the Urbana & Champaign Sanitary District, IL, USA, a district that serves about 100,000 local residents. Because the bacteria present in the wastewater interfere with the plaque assays, a portion of the influent wastewater was filtered through a 0.22 μm polyethersulfone membrane filter (S2GPT02RE, Millipore Sigma, USA), and the filtered influent wastewater was used for sensitivity and specificity experiments (Section 3.1, 3.2, 3.3, and 3.6). The filtrate was stored at -80°C until used. The filtrate was thawed and stored at 4°C for less than two weeks, a time period where we conducted all experiments in this study.

Three-day composite sewage samples were collected from January to July 2020 from 10 different neighborhood-level sewersheds across Champaign County, IL, USA (Table S3). These sewage samples were stored at 4°C for less than two weeks before being used to test the impact of the filtration process on performances of the PGM-MBs method (Section 3.4) and the tolerance of the PGM-MBs method to PCR inhibitors (Section 3.5). In addition, the SARS-CoV-2 concentration in these sewages were measured for a smaller aliquot of these samples kept at -80°C for less than a week and analyzed as soon as they were defrosted (Section 3.7). Information including sampling locations and dates was summarized in Table S3.

2.5. Recovery efficiencies of the PGM-MBs method

In an experiment conducted to evaluate performances of the PGM-MBs method with different viral genome concentrations, we spiked 100 μL of either TV, RV, AdV, NL63 or TGEV into 10
mL of filtered influent wastewater (Table S3). The initial genome copies spiked to wastewater were about 10^7 gc for TV and NL63 and about 10^8 gc for RV, AdV, and TGEV. The wastewater was serially diluted in 10-fold increments (four serial dilutions for TV and NL63 and five serial dilutions for RV, AdV, and TGEV) and the three biological replicates were prepared. The results from this experiment can be found in Section 3.2.

We conducted another experiment to compare the recovery efficiencies (RE) of the PGM-MBs method by examining viral genome concentration or virus titer. For these experiments, 10 μL of virus (about 10^4 PFU of TV, RV, AdV, and TGEV, and 10^3 TCID50 of NL63) and 10 μL of MgCl$_2$ (final concentrations of 50 mM) was added to 1 mL of six different filtered sewage samples (Table S3). Viral genome concentrations and infectious virus titers in the initial sewage samples were quantified. After that, we put 10 μL of PGM-MBs to these sewage samples. Then, we took the supernatant and quantified its genome concentrations and virus titers. We assumed that the difference in viral genomes and virus titers between the initial sewage and the supernatant is the recovered genomes and virus titers by the PGM-MBs method (Eq. 1). Section 3.3 presents the results from this experiment.

$$RE = \frac{\text{Virus genomes or titers}_\text{Initial sewage} - \text{Virus genomes or titers}_\text{Supernatant}}{\text{Virus genomes or titers}_\text{Initial sewage}}$$
(Eq. 1)

2.6. Tolerance for PCR inhibitors

We conducted a set of experiments to understand the impact of solid particles on performances (RE and tolerance to PCR inhibitors) of the PGM-MBs method. We chose 6 sewage samples collected from different sampling locations or times. These sewage samples were left in a refrigerator at 4°C for two hours without disturbance to mimic sedimentation. The
liquid near the surface of these samples was used for two experiments. In the first experiment, this liquid was used as it is. In the second experiment, this liquid was filtered by 0.22 μm pore size filters. Each of five viral species (about 10^6 gc) was added to 10 mL of either the filtered or the unfiltered samples before these samples were subjected to the PGM-MBs. The concentrations of viral genomes in samples before and after the PGM-MBs method were quantified and the recovery efficiencies were calculated. In addition, we tested the impact of solid particles as PCR inhibitors. In these experiments, we used the same pairs of unfiltered and filtered samples described above. Then, we applied the PGM-MBs method to the sewage samples, to which we did not spike any viruses. After we obtained the final extracts from the PGM-MBs sample, we spiked 1 μL of TV genomes to 10 μL of the final extracts. Because TV is a Rhesus monkey virus, they are not expected in the sewage samples. The same number of TV genomes was added to PCR inhibitor-free water (molecular biology grade water) as control samples. The results about the impact of solid particles on the performances of the PGM-MBs method are presented in Section 3.4.

We also tested tolerance of the PGM-MBs method to PCR inhibitors in environmental samples. We collected 19 different sewage samples and 1 sample from lagoon (Table S3). We also dissolved humic acid (41747, Alfa Aesar, USA), which was extracted by alkaline extraction method from brown coal, to molecular biology grade water at a final concentration of 20 mg C/L. These 21 samples were filtered through 0.22 μm membrane filters before being processed these 21 samples with two different methods: a commercially available genome extraction kit (Viral RNA Mini Kit) and the PGM-MBs method. We subjected 140 μL of the samples to the Viral RNA Mini Kit (QIAGEN, German) and obtained 60 μL of the final solution. To test the PGM-MBs method, we put 10 μL of the PGM-MBs to 10 mL of the samples adjusted to 50 mM of
MgCl₂ and 100 μL of a final solution was obtained. Then, we spiked 1 μL of TV genomes to 10 μL of the two types of final solutions (i.e., genome extraction kit and PGM-MBs method) and molecular biology grade water as PCR inhibitor negative controls. The results on the tolerance of the PGM-MBs to PCR inhibitors are presented in Section 3.5.

2.7. Specificity of the PGM-MBs method

We prepared three different solutions: molecular biology grade water, filtered influent wastewater without spiking viruses, and filtered influent wastewater with the four different viral species spiked. For example, for a TV specificity test, the other four virus species (RT, AdV, NL63, and TGEV) were spiked into 10 mL of the filtered influent wastewater to test impact of co-existing viral species on detection of TV genomes. Then, we applied the PGM-MBs method to each of these three solutions and analyzed target virus concentrations in the final extracts from the control wastewater and the four virus-spiked wastewater. All samples were categorized into either positives (i.e., Ct values less than 40) or negatives (undetermined or Ct values higher than 40). The results of the specificity experiment can be found in Section 3.6.

We applied the PGM-MBs method and electronegative membrane filtration method to 50 mL of 7 different sewage samples. The sewage samples were filtrated by 0.22 μm membrane filters and the filtrate was supplemented by the MgCl₂ at a final concentration of 50 mM. We added about 10⁵ gc of NL63 as a internal control. These samples were incubated at room temperature for 30 minutes before processing them either by the PGM-MBs method or the electronegative membrane filtration method. For the PGM-MBs method, we put 50 μL of the PGM-MBs to the 50 mL of samples. The electronegative membrane filtration started with filtering the 50 mL of sewage samples through 0.45 μm electronegative membranes. After that,
the membrane filter was placed into a 5 mL tube (0030119487, Eppendorf, Germany). We put a mixture of lysing buffer (2800 μL) and RNA carrier (28 μL) followed by 1-minute vortex, 15-minute shaking at 450 rpm, and subsequent 1-minute vortex. Section 3.7 presents the results of the comparison between the PGM-MBs method and the electronegative membrane filtration method.

2.8. Statistical analysis

Mann-Witney test was conducted to compare differences in recovered viral genomes depending on different MgCl₂ concentrations (Fig. 1A) and extraction method (i.e., heat denaturation method and extraction kit; Fig. 1B). Paired sample t-test was performed to compare recovery efficiencies determined either by genome concentration or virus titer (Fig. 5) and to compare recovery efficiencies with filtered and unfiltered sewage samples (Fig. 6). There were no outliers (i.e., all data for the paired t-test exist within a range from Q1-1.5IQR and Q3+1.5IQR). Also, normalities of the differences between two data sets were checked by Shapiro-Wilk test. Two-sample proportion test was conducted to compare two binomial proportions of Ct values less than 40 from control wastewater and virus-spiked wastewater in Table 2. We added notes to Table 2 showing if sample size (n) times proportion (p) is greater than 5, which is an assumption for the two-sample proportion test. All statistical analysis was conducted by OriginPro 2019b.
3. Results

3.1. Optimization of the PGM-MBs method for efficient concentration of enteric viruses in wastewater

We tested MgCl₂ concentration and genome extraction method to optimize the PGM-MBs method. MgCl₂ is known to reduce repulsive electrical double layer force of small particles such as viruses in liquid (Gorrepati et al., 2010; Gutierrez and Nguyen, 2012), so it has been used to improve the performance of adsorption-based virus concentration methods such as electronegative membrane filtration method (Ahmed et al., 2020; LaTurner et al., 2021; Lu et al., 2020). We varied MgCl₂ concentrations of the influent wastewater from 0 mM to 100 mM to find the optimum concentration for virus-PGM-MB interactions. Fig. 1A shows the amount of viruses recovered by PGM-MBs when different MgCl₂ concentrations were used. With the exception of TGEV, MgCl₂ increased the amount of virus binding to PGM-MBs. For example, the binding efficiency to PGM-MBs significantly increased for TV or NL63 as MgCl₂ concentration increased until 10 mM (Mann-Whitney test, p<0.05). The binding efficiencies of RV or AdV to PGM-MBs became insignificantly different at 50 and 100 mM MgCl₂ (Mann-Whitney test, p<0.05). Therefore, 50 mM was determined as the optimal concentration of MgCl₂ for the PGM-MBs method.

Second, we established a heat denaturation method to release genomes from viruses bound to PGM-MBs as an alternative to using nucleic acid extraction kits. This method only requires the addition of proteinase K followed by heating up at 95°C for 10 minutes. Fig. 1B presents the results obtained from two experiments, in which the PGM-MBs method was applied to the spiked wastewater samples and the retrieved PGM-MBs were subjected to either an extraction kit (Viral RNA Mini Kit, Qiagen) or the heat denaturation method. The RNA
extraction kit resulted in a significantly lower genome copy number than the heat denaturation method (Mann-Whitney Test p<0.05). Based on this comparison, the alternative nucleic extraction method using Proteinase K and heat treatment can be recommended for PGM-MBs method.

![Fig. 1. (A)](image1.png) Determination of the optimum MgCl₂ concentration. The y-axis indicates the recovered viral genomes at different MgCl₂ concentrations divided by the average number of viral genomes at 0 mM of MgCl₂. (B) Comparison between results obtained with Viral RNA Mini Kit and with the heat denaturation method. The y-axis represents the recovered viral genomes divided by average number of viral genomes by extraction kit. Statistical analysis of two groups of results were conducted by a non-parametric test (Mann-Whitney Test; *: p<0.05 and ns: no significant difference).

3.2. Evaluation of the PGM-MBs method with spiked viruses

Genome concentrations of the spiked viruses in the initial wastewater samples are plotted on the X axis of Fig. 2. On the Y axis, we plotted the genome concentrations of the corresponding final solutions after applying the PGM-MBs method. Linear correlations were obtained for all cases (R² >0.97) as shown in Fig. 2. Based on these linear correlations, we determined recovery
efficiency (RE), concentration factor (CF), multiplication factor (MF), and LOQ$_{\text{PGM-MBs}}$ as shown in Eqs 2-4.

\[RE = \frac{\text{The number of virus particles}_{\text{final solution}}}{\text{The number of virus particles}_{\text{initial solution}}} \]
(Eq. 2)

\[CF = \frac{\text{Volume}_{\text{final solution}}}{\text{Volume}_{\text{initial solution}}} \]
(Eq. 3)

\[MF = \frac{\text{Concentration}_{\text{final solution}}}{\text{Concentration}_{\text{initial solution}}} = \frac{RE}{CF} \]
(Eq. 4)

Fig. 2 Calibration curves showing the relationship between genome concentrations of initial solutions and final solutions. Three biological replications were tested for each concentration.

We summarized the average and standard deviation values for RE, CF, and MF obtained for each viral species in **Table 1**. We found that the PGM-MBs method showed different performances depending on testing viral species. For example, the REs ranged from 0.013 (TGEV) to 0.640 (AdV). The wide range of REs with different testing viruses were also reported.
by previous studies (Uchida et al., 2007; Ye et al., 2016). Since CF values were maintained throughout the experiments to be 0.01 (i.e., 0.1 mL of final volume and 10 mL of initial volume), MF values also showed a wide range from 1.3 (TGEV) to 64 (AdV). The MF values showed that AdV could be concentrated 64 times, while TGEV was concentrated by 1.3 times. Regardless of the viral species, the PGM-MBs method was able to concentrate enteric viruses from 10 mL of wastewater.

LOQ is defined by the lowest genome concentrations that fulfill the following two conditions: 1) None of the replicates (e.g., nine qPCR samples from three biological replicates and three technical replicates) is undetermined by qPCR or RT-qPCR analysis, and 2) coefficient of variation for all replicates is less than 25% (Forootan et al., 2017; Kralik and Ricchi, 2017). In this study, LOQF is LOQ of final solution obtained by the PGM-MBs method. On the other hand, the LOQPGM-MB is the genome concentrations of initial solution whose final concentrations after being concentrated by the PGM-MBs method becomes the LOQF. By definition, LOQPGM-MBs is the lowest genome concentration of initial solution from Fig. 2. Table 1 shows the LOQ of the PGM-MBs method for each viral species ranging from $10^{4.63}$ to $10^{6.08}$ gc/L. These LOQ values were comparable to the previously reported LOQs determined by 36 different methods for SARS-CoV-2 surveillance (Pecson et al., 2021).

Table 1. The summary of the virus concentration experiment using the PGM-MBs method with 10 mL of filtered influent wastewaters

<table>
<thead>
<tr>
<th>Viral species</th>
<th>RE</th>
<th>CF</th>
<th>MF</th>
<th>LOQ of PGM-PMs method (Log_{10} gc/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TV</td>
<td>0.152±0.092</td>
<td>0.01</td>
<td>15.2±9.2</td>
<td>5.10</td>
</tr>
<tr>
<td>RV</td>
<td>0.123±0.041</td>
<td>0.01</td>
<td>12.3±4.1</td>
<td>5.57</td>
</tr>
<tr>
<td>AdV</td>
<td>0.640±0.166</td>
<td>0.01</td>
<td>64.0±16.6</td>
<td>4.63</td>
</tr>
</tbody>
</table>
We compared the MF values obtained by PGM-MBs method and conventional virus concentration methods applied in previous studies (Ahmed et al., 2020; LaTurner et al., 2021; Philo et al., 2021; Randazzo et al., 2020; Ye et al., 2016). Since the previous publications used different initial volumes, we calculated the MF values of PGM-MBs, which would be obtained with wastewater samples used previously. For this calculation, we derived the following Eqs 5-7. Since LOQ\textsubscript{PGM-MBs} is one of the initial concentrations at a specific condition where its final concentration is the LOQ\textsubscript{F}, we can derive Eq. 5 from Eqs. 2-4.

\[\text{LOQ}_{\text{PGM-MBs}} = \frac{1}{\text{MF}} \times \text{LOQ}_F = \frac{C_F}{R_E} \times \text{LOQ}_F = \frac{\text{Volume}_{\text{final solution}}}{\text{Volume}_{\text{initial solution}}} \times \frac{1}{R_E} \times \text{LOQ}_F \quad (\text{Eq. 5}) \]

Eq. 5 shows that LOQ\textsubscript{PGM-MBs} are inversely proportional to Volume\textsubscript{initial solution}, so the LOQ\textsubscript{PGM-MBs} will be lowered as the volume of the initial solution increases if the other variables such as Volume\textsubscript{final solution}, LOQ\textsubscript{F}, and RE remain constant as Volume\textsubscript{initial solution} changes. Therefore, we can reasonably assume that Volume\textsubscript{final solution} and LOQ\textsubscript{F} will be maintained if the same virus concentration method and quantification instruments are used. We also assumed RE is maintained when the volume ratio of the PGM-MBs to the initial solution is fixed to 10 µL to 10 mL. Therefore, we can derive Eqs. 6-7.

\[\text{LOQ}_{\text{PGM-MBs}} \times \text{Volume}_{\text{initial solution}} = \text{constant} \quad (\text{Eq. 6}) \]

\[\frac{\text{MF}}{\text{Volume}_{\text{initial solution}}} = \text{constant} \quad (\text{Eq. 7}) \]
Eqs. 6-7 show LOQ_{PGM-MBs} and MF are functions of Volume_{Initial solution}, and thus we can calculate LOQ_{PGM-MBs} and MF at different initial volumes such as 50, 200, and 1000 mL with LOQ_{PGM-MBs} and MF values that were experimentally determined with the 10 mL of the initial solution (Table S4).

We calculated the MF values of the PGM-MBs method with different initial volumes by Eq. 7. These MF values are presented as the solid lines in Fig. 3. Open symbols represent the MF of conventional virus concentration methods reported by previous studies (Ahmed et al., 2020; LaTurner et al., 2021; Philo et al., 2021; Randazzo et al., 2020; Ye et al., 2016). These previously reported MF values vary depending on virus concentration methods (direct extraction, electronegative membrane, PEG, ultrafiltration, ultracentrifugation, and skimmed milk etc.) and target viral species (BCoV, MHV, OC43, MgV, MS2, T3, and Phi6) (Table S5). Also, MF values will be also affected by water matrices that were not reflected in this comparison. Nevertheless, we found the PGM-MBs method presented higher MFs compared to the conventional counterparts in general. Specifically, MF values of PGM-MBs for TGEV (the least effective testing virus by the PGM-MBs method) were higher than 77 out of 99 MFs by conventional virus concentration methods.
Fig. 3. Comparisons of multiplication factors (MF) of the PGM-MBs method to those from other studies (Ahmed et al., 2020; LaTurner et al., 2021; Philo et al., 2021; Randazzo et al., 2020; Ye et al., 2016). Solid lines are extrapolated MF from experimental results with 10 mL of influent wastewater using Eq. 7. Different colors for the solid lines represent MF for different viral species determined by the PGM-MBs method. Open symbols are MFs calculated from 99 virus concentration experiments reported by 5 different studies. Different shapes for the open symbols indicate each reference.

3.3. Concentrating infectious viruses by the PGM-MBs method

The quantification of infectious virus titers in the environment are essential to evaluate accurately the risk posed to human health by viral pathogens (Haas et al., 2014). Thus, we designed experiments that evaluated the ability of PGM-MBs to concentrate infectious enteric viruses. The first experiment assessed if lab-grown viruses (TV, RV, AdV, NL63, and TGEV) spiked in wastewater could determine the environmentally relevant concentrations of these
viruses. We serially diluted the lab-grown viruses to the filtered influent wastewater and
determined the genome concentrations and infectious virus titers. The slopes in Fig. 4 indicate
the ratio of genome concentrations to infectious virus titers in the virus-spiked wastewater. As
shown in Fig. 4, the genome concentrations are linearly correlated with the infectious virus titers
for each virus with slopes ranging from 0.87 to 1.20 ($R^2 > 0.95$) except for NL63 where only two
serial dilutions were measured because the initial NL63 titer was lower (about 10^3 TCID/mL)
than the other species. This linear correlation is used to estimate the infectious virus titers at the
environment with genome concentrations.

![Fig. 4 Calibration curves showing the relationship between infectious virus titers and genome concentrations of the virus-spiked wastewaters (n=3).](image)

Next, we hypothesize that PGM-MBs have an intrinsic affinity to viruses with intact
receptor-binding proteins that better represent infectious viruses than genome concentrations.
This hypothesis is tested by experiments in which either genome concentrations or virus titers
were used to determine RE. We assumed the PGM-MBs has an affinity to infectious virus particles if REs determined by virus titers are higher than those by genome concentrations. Fig. 5 shows that RE calculated by virus titers (RE\textsubscript{titer}) are significantly higher than those by genome concentration (RE\textsubscript{genome}) for the tested viral species (Paired sample t-test, p<0.05) except for AdV where both RE\textsubscript{titer} and RE\textsubscript{genome} were close to 1 (Paired sample t-test, p>0.05). These results support our hypothesis that PGM-MBs have a higher affinity for infectious virus particles because the receptor-based approach excludes viruses whose receptor-binding proteins are deficient. The affinity to infectious virus particles is a unique feature of this PGM-MBs method considering the fact that conventional virus concentration methods such as ultracentrifugation, ultrafiltration, PEG, and electronegative filtration showed rather lower RE\textsubscript{genome} compared to RE\textsubscript{titer} (Rusiñol et al., 2020). Therefore, the recovered virus genomes by the PGM-MBs better represents the risk stemming from the enteric viruses in the environment than those determined by conventional counterparts.
Fig. 5. Recovery efficiency of the PGM-MBs method in terms of virus gene copy and virus titer. Statistical analyses were performed by a paired sample t-test (ns: no significant difference and *: p<0.05 and n=6).

3.4. Performance of the PGM-MBs method for unfiltered environmental samples

In the experiments described in 3.3, we removed bacterial cells that may interfere with the plaque assay by filtering the samples with 0.22 μm filters. Therefore, we designed another experiments to confirm that the PGM-MBs method works for environmental samples without the filtration process. We determined RE for each of the five viruses from the Filtered and Unfiltered sewage samples (**Fig. 6A**). The paired sample t-test results showed that the differences between the Filtered and the Unfiltered samples were not significant different except for RV (p>0.05). This finding support that the presence of solid particles in the sewage samples did not significantly affected performances of the PGM-MBs method. We also tested the impact of solid particles as PCR inhibitors. **Fig. 6B** presented that ΔCt values for TV of the final solutions, which were obtained from either Filtered or Unfiltered sewage samples, were less than 1 (one sample t-test, p<0.05). This finding means that negligible inhibition impact, as suggested previously (Gibson et al., 2012; Wu et al., 2018). Thus, the PGM-MBs method can minimize the effect of PCR inhibitors regardless of the existence of solid particles in the unfiltered environmental samples.
Fig. 6. Impact of solid particles to (A) recovery efficiency and (B) tolerance to PCR inhibitors of the PGM-MBs method. (A) Each of five viral species were spiked to both filtered and unfiltered samples. Recovery efficiencies of both filtered and unfiltered samples for each viral species were compared by paired sample t-test (ns: no significant difference, *: p<0.05 and n=6). (B) Both filtered and unfiltered samples were subjected to the PGM-MBs method. TV genomes were spiked to final solutions of the PGM-MBs method and PCR inhibitor-free water (negative control). ΔCt values were calculated by subtracting Ct_water from Ct_sample. One sample t-test was conducted twice with either a left or a right tail and all ΔCt values were within ±1 (p<0.05 and n=3).
3.5. Evaluation of the PGM-MBs method for PCR inhibitors in environmental samples

We designed experiments to test if the PGM-MBs method can reduce the PCR inhibitors from the environmental samples. PCR inhibition was evaluated by comparing the ΔCt values for 21 different samples (Fig. 7). Out of the 21 samples, 19 samples have ΔCt obtained by either the kit or PGM-MBs method is smaller than 1, so both the extraction kit and the PGM-MBs method were capable of eliminating PCR inhibitors for these 19 samples. For these 19 samples, there was no significant difference between ΔCt values of the two methods (paired sample t-test; p>0.05). On the other hand, both methods will require dilutions to avoid PCR inhibitors in the lagoon sample and samples spiked with coal-based humic acid. However, additional 5-fold and 2-fold dilution were enough for the PGM-MBs method to reduce PCR inhibitors remaining in the lagoon and humic acid samples, respectively. In contrast, those extra dilutions were not enough for the extraction kit to reduce the inhibition. Our findings agree with a previous study showing the PGM-MBs were less sensitive to the PCR inhibitors from fresh herbs and leafy vegetables than using PEG method and commercial genome extraction kit (Suresh et al., 2019). Maher et al. (2001) also demonstrated magnetic bead-based purification successfully eliminates PCR inhibitors in the airborne environment. Therefore, we concluded that the PGM-MBs method is as tolerant to PCR inhibitors in environmental samples as a commercial kit.
3.6. Evaluation of PGM-MBs method for specificity

Porcine gastric mucin consists of different types of receptors, so various viral species are expected to bound when the PGM-MBs are applied to environmental samples (Larsson et al., 2009; McGuckin et al., 2011). The numbers of targeted virions attached to the PGM-MBs may be smaller than other virions which may also attach to the PGM-MBs. The attachment of these untargeted viral species could result in false-positive amplifications (Jaroenlak et al., 2016; Schrader et al., 2012; Tamariz et al., 2006). Therefore, we examined if the introduction of various viruses to the PGM-MBs causes false positives for the genome of our interest.

First, qPCR analysis of all 175 samples of PGM-MBs in molecular biology grade water showed no detected level of genomes for RV, AdV, NL63, and TGEV, indicating that viral genomes did not originate from the PGM-MBs (Table 2). Second, analysis of PGM-MBs in

Fig. 7. Evaluation of a commercial genome extraction kit (Viral RNA Mini Kit, Qiagen) and the PGM-MBs method in reducing PCR inhibitors in 20 environmental samples (different sampling locations or dates) and 20 mg/L of humic acid dissolved water. Tulane virus was spiked to those 21 different samples that were treated by either the extraction kit or the PGM-MBs method as well as molecular biology grade water (PCR inhibitor negative control). Lagoon and humic acid samples were further diluted 5-, and 2-fold, respectively.
influent wastewater showed a few positive samples for TV, AdV, NL63, and TGEV, but 20
cases out of 76 (33%) for RV (Table 2). Because the primers used for our porcine RV targeted
the VP1 gene of rotavirus group A, the detection of human RV in the wastewater is possible. In
Silico analysis using Basic Local Alignment Search Tool (BLAST) indeed confirmed that the
forward and reverse primers match 100% to human RVs (GenBank ID:LC389885.1 and
ID:JQ715640.1, respectively). Human RV has been found in wastewater regardless of seasons
(Atabakhsh et al., 2019; Ibrahim et al., 2016). Nevertheless, the proportion of RV positive
samples from the influent wastewater were not significantly different from those from the virus-
spiked wastewater (two sample proportion test; p>0.05) (Table 2). Ct values of pooled positive
samples also did not show significant difference between the influent wastewater and the virus-
spiked wastewater (two sample t-test; p>0.05). Considering the outweighing amount of the
spiking viruses (Ct values ranging from 14 to 23) over the detected Ct values (about 35), we
concluded that different types of viruses collected from the wastewater by the PGM-MBs
method would not significantly affect the detection of target viruses.
Table 2. Specificity tests for the PGM-MBs method.

<table>
<thead>
<tr>
<th>Viral species</th>
<th>Positivity rate (for each viral species) or Ct values (for sum of the five viral species)</th>
<th>Solution types</th>
<th>Statistical analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Positivity rate or Ct values (for sum of the five viral species)</td>
<td>Distilled Water</td>
<td>Wastewater</td>
</tr>
<tr>
<td>TV</td>
<td>0/30 (0%)³)</td>
<td>1/30 (3.3%)</td>
<td>3/39 (7.7%)</td>
</tr>
<tr>
<td>RV</td>
<td>0/35 (0%)</td>
<td>20/76 (26.3%)</td>
<td>18/54 (33.3%)</td>
</tr>
<tr>
<td>AdV</td>
<td>0/40 (0%)</td>
<td>3/30 (10.0%)</td>
<td>2/30 (6.7%)</td>
</tr>
<tr>
<td>NL63</td>
<td>0/30 (0%)</td>
<td>2/36 (5.6%)</td>
<td>4/36 (11.1%)</td>
</tr>
<tr>
<td>TGEV</td>
<td>0/40 (%)</td>
<td>2/30 (6.7%)</td>
<td>2/30 (6.7%)</td>
</tr>
<tr>
<td>Pooled positive samples⁵)</td>
<td>N.A.</td>
<td>34.5±0.9 (n=28)</td>
<td>34.9±1.2 (n=29)</td>
</tr>
</tbody>
</table>

1) The spiked virus shows Ct values of 19.3, 22.5, 14.6, 21.2, and 23.0 for TV, RV, AdV, NL63, and TGEV, respectively.
2) The number of positive samples/total samples was presented with positivity rate in parentheses. At least five molecular replicates and six technical replicates (n>30) were measured by the qPCR.
3) Not applicable. Group of data does not satisfy the assumptions for the two-sample proportion test (i.e., np<5).
4) Positivity rates of wastewater and virus spiked wastewater were analyzed by the two-sample proportion test.
5) All the positive Ct values regardless of the viral species were pooled, and an average was presented with a standard deviation.
6) Two sample t-test compared the Ct values of wastewater and virus spiked wastewater

3.7. Application of the PGM-MBs method for SARS-CoV-2 surveillance

We applied the electronegative membrane filtration method and the PGM-MBs methods in parallel for the SARS-CoV-2 surveillance with local sewages. The electronegative membrane filtration method represented conventional virus concentration methods here because of its high recovery efficiency (Ahmed et al., 2020; LaTurner et al., 2021; Lu et al., 2020). Seven different sewage samples, which tested positive for SARS-CoV-2 by either the filtration or the PGM-MBs method, were used for the comparison. To ensure qualities of the virus concentration processes, we spiked NL63, which recognizes the same receptors (ACE2) as SARS-CoV-2 (Rawat et al., 2021), to the sewage samples as an internal control. All the data reported showed higher than 1.0%
of NL63 recovery efficiency. We found that NL63 recovery efficiencies for the filtration and the PGM-MBs method were normally distributed (Shapiro-Wilk test, p>0.05) in wide ranges from 1.4 to 18.6% (Fig. S4). The wide range of recovery efficiencies were also reported elsewhere (Randazzo et al., 2020), and this is probably because the two methods basically collect viral genomes through virus adsorption to their media (i.e., electronegative membrane filter and the PGM-MBs), which depends on the water characteristics (pH, ionic strength, or competing substances) (Gutierrez and Nguyen, 2012). The NL63 recovery efficiencies by the electronegative membrane filtration and the PGM-MBs method were not significantly different (paired sample t-test, p>0.05). We measured the N1 gene of SARS-CoV-2 (Nalla et al., 2020), and presented three technical replicates of Ct values, instead of concentrations, because most of the samples showed N1 gene concentrations below LOQ (Table 3). The Ct values for N1 gene were not significantly different between the two methods (paired sample t-test p>0.05). Therefore, we concluded the PGM-MBs method can be applied for monitoring SARS-CoV-2 in wastewater.
Table 3. Application of the PGM-MBs method for wastewater-based SARS-CoV-2 surveillance

<table>
<thead>
<tr>
<th>Sample</th>
<th>NL63 recovery (%) (multiplication factor)</th>
<th>Ct values for N1 gene</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Electronegative membrane filtration</td>
<td>PGM-MBs</td>
<td>Electronegative membrane filtration</td>
</tr>
<tr>
<td>RW (6/1)</td>
<td>2.5 (21)</td>
<td>6.1 (30)</td>
<td>32.8<sup>1)</sup></td>
</tr>
<tr>
<td>WS (6/1)</td>
<td>2.0 (17)</td>
<td>7.5 (38)</td>
<td>36.7</td>
</tr>
<tr>
<td>MT (6/9)</td>
<td>1.7 (14)</td>
<td>1.4 (7)</td>
<td>34.1</td>
</tr>
<tr>
<td>PM (6/13)</td>
<td>9.7 (81)</td>
<td>13.4 (67)</td>
<td>35.9</td>
</tr>
<tr>
<td>PM (6/21)</td>
<td>12.9 (107)</td>
<td>18.6 (93)</td>
<td>36.2</td>
</tr>
<tr>
<td>ST (6/2)</td>
<td>7.4 (64)</td>
<td>3.7 (19)</td>
<td>44.1</td>
</tr>
<tr>
<td>ST (7/7)</td>
<td>5.5 (46)</td>
<td>3.9 (19)</td>
<td>37.6</td>
</tr>
</tbody>
</table>

1) Numbers in parentheses indicate collected month/date.
2) Whichever shaded data set between electronegative membrane filtration and PGM-MBs for each sample indicates lower average Ct values.
3) U stands for undetermined samples until 45 PCR cycles.

4. Discussion

4.1. The PGM-MBs method proves suitability for wastewater-based epidemiology

High throughput became an important factor for successful WBE because a fast turnaround for analyzing virus concentration of wastewater is critical (Betancourt et al., 2021; Zhu et al., 2021). The adaptability to high throughput instruments, low price, and a short operational time should be considered to evaluate virus concentration methods. Using magnetic beads and heat denaturation for collecting viruses and extracting viral genomes, respectively, allow the PGM-MBs method to satisfy those three requirements. Karthikeyan et al. (2021) demonstrated that a magnetic-bead-based approach could be implemented for an automated nucleic acid purification system (Thermo Fisher Scientific, USA), which enabled high throughput analysis (96 samples per run). In addition, using the PGM-MBs will further lower the cost for WBE. For example,
consumables for the production of the 10 µL PGM-MBs (10 mL wastewater sample analysis) cost 0.413 USD (Table S6). Essential materials for this method, including magnetic beads, mucin, magnets, and proteinase K are not proprietary. Also, the entire process for the PGM-MBs method only takes less than 3 hours, including concentrating viruses (30 minutes), extracting genomes (10 minutes), and quantifying viral genomes (90 minutes), which is much shorter than conventional virus concentration methods (Cervantes-Avilés et al., 2021). For example, ultrafiltration (Haramoto et al., 2020), skimmed milk flocculation (Guerrero-Latorre et al., 2020), and PEG precipitation (La Rosa et al., 2020b) took 5.2, 9.6, and 12.8 hours only for a virus concentration step, respectively. Taken together, the PGM-MBs method is expected to be scaled up for high throughput analysis.

4.2. Performance of PGM-MBs method is comparable to or better than conventional virus concentration methods

We made two comparisons between PGM-MBs and conventional counterparts to evaluate the performances in concentrating viruses from environmental samples. First, we systematically characterize the performances of PGM-MBs method with five model viruses and wastewater. Because there are various virus concentration methods, we could not test all these conventional methods in the same experimental conditions as the experiments for the PGM-MBs method. Instead, we compared MF of the PGM-MBs method to those reported by previous studies. Note that we chose MF over LOQ for the comparison because LOQ depends on instruments (e.g., ddPCR versus qPCR) (Falzone et al., 2020; Park et al., 2021) and qPCR methods (e.g., SYBR versus Taqman method) (Fuchs Wightman et al., 2021) while MF focuses only on the increase in viral genome concentrations by virus concentration methods. Thus, although we could compare
the PGM-MBs method with various experiments using different virus concentrations (Fig. 3), we could not directly compare the results on the same experimental conditions. To compensate for this limitation, we applied the PGM-MBs method and electronegative membrane filtration method, which is one of the most efficient virus conventional methods (Ahmed et al., 2020; LaTurner et al., 2021; Lu et al., 2020) for SARS-CoV-2 concentration under the same experimental conditions (Table 3). Given the findings from Fig. 3 and Table 3, we concluded that the PGM-MBs method is comparable to or better than conventional methods to concentrate various enteric viruses, including SARS-CoV-2 from environmental samples.

5. Conclusions

This study first introduced a novel approach to concentrate enteric viruses from the environment using porcine gastric mucin-conjugated magnetic beads (PGM-MBs). This novel method is simple, fast, affordable, and comparable with conventional methods. The optimized PGM-MBs method takes less than 3 hours from virus concentration to genome quantification and costs less than 0.5 USD for 10 mL volume of sample without expensive instruments such as an ultracentrifuge. We systematically demonstrated that the performance of PGM-MBs method is comparable to or better than conventional methods to concentrate various enteric viruses, including SARS-CoV-2, from environmental samples. We also discovered that the PGM-MBs method is robust to environmental samples, which features the existence of different viral species and PCR inhibitors. Taken all together, we concluded that the PGM-MBs method can readily be used for urgent SARS-CoV-2 surveillance to cope with the current COVID-19 pandemic or monitoring other enteric viruses for better public health management.
Acknowledgement

This project is funded by the Grainger College of Engineering and the JUMP-ARCHES program of OSF Healthcare in conjunction with the University of Illinois. The Human coronavirus NL63 strain (NR-470) was obtained through BEI Resources, NIAID. We thank Mr. Bruce Rabe at Urbana & Champaign Sanitary District for providing us with influent wastewater. We also acknowledge Bill Brown for sampling site selection, Hayden Wennerdahl, Kip Stevenson, Dr. Laura Keefer and Dr. Schmidt for sampling deployment, and Yuqing Mao, Aijia Zhou, Matthew Robert Loula, Aashna Patra, Kristin Joy Anderson, Mikayla Diedrick, Hubert Lyu, Hamza Elmahi Mohamed, Jad R Karajeh, Runsen Ning, Rui Fu, Kate O’Brien for sewage sampling and processing.
Reference

