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Abstract 

A quantitative systems pharmacology (QSP) model of the pathogenesis and treatment of SARS-CoV-2 

infection can streamline and accelerate the development of novel medicines to treat COVID-19. 

Simulation of clinical trials allows in silico exploration of the uncertainties of clinical trial design and can 

rapidly inform their protocols. We previously published a preliminary model of the immune response to 

SARS-CoV-2 infection. To further our understanding of COVID-19 and treatment we significantly 

updated the model by matching a curated dataset spanning viral load and immune responses in plasma 

and lung. We identified a population of parameter sets to generate heterogeneity in pathophysiology and 

treatment and tested this model against published reports from interventional SARS-CoV-2 targeting Ab 

and anti-viral trials. Upon generation and selection of a virtual population, we match both the placebo and 

treated responses in viral load in these trials. We extended the model to predict the rate of hospitalization 

or death within a population. Via comparison of the in silico predictions with clinical data, we 

hypothesize that the immune response to virus is log-linear over a wide range of viral load. To validate 

this approach, we show the model matches a published subgroup analysis, sorted by baseline viral load, of 

patients treated with neutralizing Abs. By simulating intervention at different timepoints post infection, 

the model predicts efficacy is not sensitive to interventions within five days of symptom onset, but 

efficacy is dramatically reduced if more than five days pass post-symptom onset prior to treatment. 

Introduction 

The coronavirus disease 2019 (COVID-19) pandemic, caused by SARS-CoV-2, a novel coronavirus that 

emerged in 2019, is a major public health burden worldwide. The pandemic has resulted in more than 200 

million confirmed cases and more than 4 million recorded deaths as of September 2021 [1]. While  



COVID-19 vaccines are highly efficacious [2-5], there is a residual risk of severe cases of COVID-19 for 

unvaccinated and/or high risk populations [6,7]. Given this residual risk, substantial efforts are being 

expended to meet this urgent medical need through the development of pharmaceutical interventions such 

as SARS-CoV-2 neutralizing antibodies and anti-viral therapies [8].  

The development of novel pharmaceutical therapeutics, or repurposing of existing therapeutics for 

COVID-19, is challenging due to the complexity of the disease pathophysiology of viral replication and 

the associated immune response. This is further compounded by the uncertainties in optimal clinical trial 

design such as dose (and regimen) selection, inclusion and exclusion criteria, sample collection, and 

treatment duration. One way to address these challenges is the utilization of quantitative systems 

pharmacology (QSP) models, which leverage and incorporate existing mechanistic knowledge and data to 

extrapolate to forward predictions [9,10]. To this end, several within-host systems models of COVID-19 

were recently developed to elucidate the relative importance of biological processes underlying COVID-

19 pathophysiology and evaluate the efficacy of various therapeutic interventions. These mathematical 

models provide mechanistic support for a link between the disease severity and the timing of Type-1 

interferon (IFN) activation after infection [11], an impaired CD8+ T-cell-dependent adaptive immune 

response [12], and post-hospitalization viral load dynamics [13]. Furthermore, mechanistic model-based 

analyses suggest that the efficacy of virus-targeting therapeutic interventions declines sharply with the 

time of intervention relative to symptom onset, [14-18]. While these models have yielded valuable insights 

about COVID-19 disease pathophysiology and potential therapeutic strategies in general, there is a need 

for the development of integrated systems models capable of more quantitatively describing key readouts 

from emerging interventional randomized-controlled clinical trials (RCTs) in COVID-19 patients to 

inform and accelerate the development of novel COVID-19 therapeutics.  

We previously published a prototype model of the immune response to SARS-CoV-2 infection for 

collaborative development with the aim of shortening the timeline of the traditional cycle for QSP model 

development given the rapidly evolving nature of the pandemic [19]. An important aspect of QSP model 

development involves quantitatively recapitulating the heterogeneity observed in clinical populations 

through the generation of a robust virtual population [20]. Briefly, our typical strategy is to generate a 

preliminary set of ‘plausible’ parameter sets, then further refine the ‘plausible population’ into a ‘virtual 

population’ by comparison to randomized controlled trial data. Here we report an updated version of the 

model with plausible and virtual populations. The initial plausible population of parameter sets are 

constrained against a curated dataset of published observational clinical studies in COVID-19 patients, 

which span viral load and immune responses in plasma and lung. The physiologically constrained 

plausible population is then mapped onto clinically employed COVID-19 disease severity metrics [21] by 



using plasma IL-6 levels as a key biomarker correlated with disease severity. The plausible population is 

finally refined to generate a robust virtual population and partially validated using recently emerging 

interventional RCTs investigating the efficacy of neutralizing Ab cocktail and anti-viral therapeutics in 

outpatients with COVID-19 [22-25]. To our knowledge, this is currently the only integrated QSP model of 

within-host SARS-CoV-2 viral dynamics and the immune response to quantitatively capture key 

virological and clinical endpoints upon treatment of COVID-19 outpatients in interventional, RCTs 

through the development of a robust virtual population.  

Methods   

Overview of Model Structure 

Broadly, the mathematical model links the within-host viral dynamics of SARS-CoV-2 to the activation 

of the innate and adaptive immune response and the accumulation of tissue damage as a result of pro-

inflammatory mediated cell death. A high-level schematic of the salient interactions accounted for in the 

model is depicted in Figure 1, with a brief description in the following text. A more detailed description 

of the mechanistic interactions in our model can be found in Dai et al [19]. 

Briefly, we developed a set of ordinary differential equations (ODEs) to describe the dynamics of SARS-

CoV-2 viral load, adapted from previously published models of viral infection dynamics and the innate 

and adaptive immune responses [26-31]. In our model, uninfected susceptible alveolar Type II cells are 

infected by SARS-CoV-2 to form productively infected cells, which shed viable virus. The modeled 

viable virus is representative of clinically measured viral loads upon polymerase-chain reaction (PCR) 

assay of nasopharyngeal swab samples. Viable virus and infected cells activate the innate and adaptive 

mediators of the host immune response. Infected alveolar cells produce Type I IFN, which forms an 

integral part of the innate immune response in our model by preventing the infection of additional 

susceptible cells and, thus, implicitly accounting for the anti-viral effects of IFN-stimulated gene products 

[32].  

The model further describes the virus and infected cell-induced maturation of macrophages and 

neutrophils as well as dendritic cells, which are the primary antigen presenting cells (APC) responsible 

for activating the adaptive immune response. The activated CD8+ cytotoxic T-cells (CTLs) are the key 

adaptive immune mediators involved in the clearance of infected cells, while the activated CD4+ Th1 and 

Th17 cells are assumed to maintain a permissive inflammatory milieu through the secretion of 

proinflammatory cytokines that potentiate the activation of the CTLs. Finally, the model accounts for 

various clinically relevant biomarkers including proinflammatory cytokines such as IL-6, C-reactive 

protein, ferritin, and surfactant protein D. For simplicity, the model considers only the alveolar and 



plasma compartments, corresponding to the major site of infection and the primary site for bioanalytical 

sample collection, respectively. 

The preliminary version of the model [19] accounted for the saturable maturation kinetics (with Hill 

coefficient =1) of the macrophages, neutrophils and dendritic cells by the virus and infected cells. 

Importantly, in the current refined model, we hypothesize that in the context of an ongoing infection with 

an exponentially proliferating pathogen, these cells behave as logarithmic sensors such that the production 

of mature innate immune cells due to viable virus and infected cells varies in a log-dependent manner 

[Supplementary materials: Supplementary equations]. This enables the host immune system to remain 

responsive to pathogen levels ranging over orders of magnitude. Without this characteristic the model can 

match viral load data but predicts marginal improvements on disease severity following viral load 

lowering therapies that are administered after the peak in the viral load occurs. This is largely because, 

with the prior implementation, the immune response is saturated at viral load levels below that observed 

in treated patients who are observed to have reductions in severity.  While still an active area of research, 

a number of theoretical and experimental studies support the existence of signaling architectures capable 

of log-sensing (often referred to as the Weber-Fechner property) in varied biological sensory systems, 

including the immune system [33-37]. Sontag [33] developed a log-sensing network architecture that 

reproduced prior experimental results by Johansen et al. [38] where exponential increases in antigen 

stimulation resulted in the greatest immune activation relative to constant or linear antigen stimulation, 

suggesting that the immune response can detect exponentially increasing pathogen populations due to its 

lack of adaptation to exponential ramps.  More recently, Nienaltowski found that the fraction of the total 

population of immune cells activated in response to inflammatory cytokine stimuli varied with the 

logarithm of the stimulus [37]. For simplicity we assume that the log-dependent activation of the immune 

system is due to activation of the innate immune cells, and not the adaptive immune T-cells.  Moreover, 

we also do not propose specific intracellular or extracellular motifs that give rise to log-sensing given that 

this is still an active area of research with multiple feasible formulations [34,36].  

 



 

Figure 1: Simplified model schematic: The model describes the productive viral infection of susceptible Type II alveolar cells - infected cells 

together with free virus activate proinflammatory mediators of the innate and adaptive immune systems (chiefly Type I interferons and CD8+ 

T-cells) to clear the infected cells. The activation of this proinflammatory response engages anti-inflammatory mediators such as Treg cells, 

IL-10, and TGF-b, which contribute to resolve the proinflammatory response. Importantly, the proinflammatory response also causes the 

accumulation of tissue damage as a result of the inflammatory death of infected and bystander alveolar cells.  This can lead to positive 

feedback leading to a sustained immune response indicative of the more severe outcomes of COVID-19. Finally, these processes are linked 

to certain circulating biomarkers of interest including IL-6, CRP, ferritin, and surfactant protein-D. A more detailed model schematic can be 

found in Figure 1 in Dai et al. [19]. 

Generating a plausible population 

We used a tiered approach to calibrate the model and generate a robust virtual population. We first 

generated an initial plausible population that constrains the model states, such as the viral load and 

various immune mediators to physiologically reasonable values, such that they qualitatively match a 

curated collection of observational studies on COVID-19 summarized in Supplementary Table S1. 

Observational clinical datasets were selected by prioritizing studies with 1) longitudinal measurements of 

cytokines and immune cell populations in plasma and, where possible, the bronchioalveolar space, 2) 

longitudinal nasopharyngeal viral load, and 3) other plasma biomarker measurements stratified by disease 

severity which record the time of measurements relative to symptom onset. When possible, we selected 

studies with concordant assay sensitivities and read-outs. The observational data used to constrain the 

model states in the plausible population are primarily from hospitalized COVID-19 patients since such 

datasets were more readily available and of higher quality at the time of model development; however, we 

used outpatient data when possible, to inform some of these states such as plasma IL-6 and the viral load 

[39,40]. Nevertheless, despite the challenges, the data were suitable for the generation of the plausible 

population given the initial goal of constraining the model to a physiologically realistic regime.  



To generate this plausible population, we uniformly sampled biologically relevant parameters 

[Supplementary Table S2] with high sensitivity and uncertainty within 5-fold bounds of a nominal 

parameter set and filtered solutions that were within 2-fold bounds of viral load and immune mediator 

measurements in the curated set of literature data. The incubation period of the infection needs to be 

assumed to calibrate the time course of simulated infection to the time-dependent dynamics of viral and 

immune mediators in the curated datasets, which are reported relative to time from symptom onset. 

Several epidemiological studies suggest that the viral load of SARS-CoV-2 peaks around the onset of 

COVID-19 symptoms [13,41-43]. Informed by this epidemiological evidence, we assume that symptom 

onset coincides with the timing of the peak in viral load for the plausible virtual subjects, thus enabling 

the translation of the time from ‘day of symptom onset’ to time from ‘day of infection’ in the curated 

datasets. Thus, rather than assume a fixed, identical SARS-CoV-2 incubation period for each virtual 

subject, we obtain a distribution of incubation periods across the plausible population based on the 

individual viral load trajectories of each virtual subject.  

Infection with SARS-CoV-2 was simulated using an inoculum equivalent to 10 viral RNA copies/mL. We 

further account for an endogenous Ab response that begins to have an appreciable effect on viral 

clearance on Day 20 post infection using a phenomenological representation. While this is roughly in 

alignment with clinical findings that almost all infected individuals are sero-positive 14-28 days from 

symptom onset [44], the simplistic phenomenological representation in our model can be more finely 

refined to these observations as more appropriate clinical datasets become available. Moreover, we 

assume that, post peak, the virus can no longer infect new susceptible cells within the host when the viral 

load declines below 104 viral RNA copies/mL. Studies suggest a ratio between 103-104 between PCR 

assay measurements (in RNA copies/mL) and the number of infectious units measured in tissue culture 

infective dose (TCID50) [45]. This assumption is made to prevent an unphysiological rebound in viral 

load at later time points once a low viral load regime (<104 viral RNA copies/mL) post peak is reached.  

Linking to disease severity  

The primary outcome in the outpatient interventional RCTs, detailed in subsequent sections, are reported 

as a reduction of hospitalizations or deaths. We ultimately aimed to generate a final virtual population that 

would match both the observed reductions in COVID-19 related events in these clinical trials along with 

the reported changes in viral load markers. Therefore, upon generation of the plausible population, the 

QSP model outputs must be appropriately translated to clinically reported disease severity categories.  

In doing so, we adopt a parsimonious approach and treat plasma IL-6 as the key biomarker correlated to 

disease severity. Numerous clinical studies provide evidence for a link between increasing plasma IL-6 

levels and COVID-19 disease severity and prognosis [46-49]. Del Valle et al., in a large study of > 1400 



COVID-19 patients, found a threshold of 70 pg/mL of plasma IL-6 levels at hospitalization could 

independently predict disease severity and mortality. A recent, RCT evaluating the efficacy of 

Tocilizumab in >300 subjects further showed plasma IL-6 levels were significantly correlated with 

baseline clinical severity and were also a significant predictive biomarker for clinical severity through 

Day 28 of the trial [46,47]. To translate the plausible population to the incidence of hospitalization 

reported in outpatient clinical trials, a threshold of 40 pg/mL is employed for plasma IL-6 levels, 

corresponding to a value closer to the lower tail of the plasma IL-6 distribution observed in hospitalized 

patients with mild-moderate COVID-19 severity [46,47]. Moreover, given the uncertainty in using a 

plasma biomarker as an indicator of a hard-end point such as hospitalization, we conservatively apply this 

threshold to the peak IL-6 levels attained at any point over the entire time-course of the simulated 

infection. Note that this approach is more suitable for estimating event rates in trial populations than the 

timing of hospitalization or death in specific patients. 

Virtual population refinement to match interventional data 

The final virtual population is formed by selecting a subset of plausible subjects whose simulated 

responses were constrained to interventional data from published RCTs in outpatient COVID-19 patients. 

Three RCTs were selected for model calibration and validation, specifically, the Blaze-1 Ph3 nAb trial of 

bamlanivimab  and etesevimab (NCT04427501) [22], the Ph2 and Ph3 REGN-COV nAb trial of 

casirivimab and imdevimab (NCT04425629) [24,50], and the Ph2 interim analysis of the anti-viral 

molnupiravir [MK-4422/EIDD-2801] (NCT04405570) [25]. These three RCTs primarily evaluated the 

effectiveness of their respective pharmaceutical interventions in reducing the rate of hospitalization in 

outpatients with mild to moderate COVID-19 at high risk of hospitalization. 

The above RCTs reported the mean viral load dynamics, with the nAb trials further reporting the rate of 

medically related events through Day 29 of the trial, in the placebo and treatment arms, respectively and 

the associated relative risk reduction in event rate upon treatment. Thus, a final virtual population was 

selected from the plausible population such that it matched both the reported viral load time course and 

the disease severity rates in the placebo and treatment arms of the trial using importance sampling 

methods previously published in Allen et al. [51]. The virtual population matching the Blaze-1 clinical 

trial observations was selected such that it was of comparable in size to the trial population (N=516). 

Since the clinically observed viral load time-course is reported relative to the start of treatment, it was 

necessary for us to assume a time of infection to calibrate the QSP model. As for the plausible subjects, 

the time of the peak viral load post simulated infection was assumed to coincide with the time of 

symptom onset. In the case of each of the simulated interventions, the time of intervention relative to the 



simulated time of symptom onset (time to peak viral load) is given by the mean time from symptom onset 

to randomization reported for the corresponding clinical trial.  

Despite generating the final virtual population by calibrating the model to only the viral load 

measurements and severity information available in the interventional trials, our tiered model calibration 

approach, described above, ensures all other model states are still constrained to physiologically plausible 

values informed by the curated set of observational clinical data in COVID-19 patients. 

Modeling neutralizing antibody therapeutics:  

The pharmacodynamic effect of the nAb cocktails are modeled to decrease the rate constant for the 

production of infected cells due to viable virus. This is informed by their mechanism of action whereby 

the nAbs selectively bind to the spike protein of SARS-CoV-2, thus neutralizing the virus particles, 

preventing their entry into susceptible cells, and subsequent replication  [52]. 

Blaze-1 Ph3 nAb trial: The efficacy of the nAb cocktail bamlanivimab and etesevimab was evaluated in 

an RCT for outpatients with recently diagnosed, mild to moderate COVID-19. A two-compartment model 

was used to describe the plasma pharmacokinetics of bamlanivimab and etesevimab. The model 

parameters and equations were adapted from the publicly available Emergency Use Authorization (EUA) 

document for the nAb cocktail [Supplementary materials: Supplementary equations] [23]. The QSP model 

was calibrated to the Blaze-1 Ph3 placebo and 2800mg bamlanivimab and 2800mg etesevimab treatment 

arms. The maximal effect (Emax) and the potency (EC50) of the individual nAbs was informed by the 

pre-clinical and clinical values reported in the EUA document and further optimized to match the 

observed viral load time course and severity improvements from the clinical trial.  

REGEN-COV nAb trials: The pharmacokinetics of REGEN-COV (casirivimab and imdevimab) were 

described using a one-compartment model matched to produce the reported noncompartmental analysis 

(NCA) parameters from [24], including the maximal plasma concentration (Cmax), plasma concentration at 

Day 28 post administration (CDay 28), and half-life for each antibody, respectively [Supplementary Figure 

S1]. The QSP model was matched to the placebo and 8g REGEN-COV treatment arms from the REGEN-

COV2 Ph2 trial. As partial validation of the simulated Blaze-1 placebo group time-course, a subset of 

virtual subjects from the virtual population was sampled such that their selection was informed only by 

the baseline placebo viral load measurement for each of the reported subgroups from the REGEN-COV 

Ph2 trial. Subsequently, the predicted viral load time-course of the virtual population subset was validated 

against the entire viral load trajectories of the subgroup placebo arm viral load time courses from this 

trial. 



 The maximal effect (Emax) was fitted to match the Ph2 trial observations. The potency (EC50) of the 

individual nAbs was informed by the published pre-clinical in vitro estimates [52] and further optimized 

to match the observed viral load time course and severity improvements from the Ph2 clinical trial. The 

simulated treatment dynamics of the REGEN-COV Ph2 trial, and the suitability of our log-sensing 

hypothesis were further validated against the lower dose 2.4mg REGEN-COV treatment arm from the 

Ph3 trial. 

Modeling anti-viral therapeutics:  

The anti-viral, molnupiravir is the pro-drug of the pharmacologically active EIDD-1931, a nucleoside 

analogue which acts by introducing random point mutations throughout the SARS-CoV-2 viral RNA, 

leading to error catastrophe of viable virus [53]. Informed by this mechanism of action, the 

pharmacodynamic effects of molnupiravir are modeled as inhibiting the production of viable virus from 

infected cells. The plasma concentration of EIDD-1931 for model simulations were obtained from 

published clinical literature [54] [Supplementary Figure S2]. The Emax of the therapeutic is fixed to 1, 

informed by preclinical in vitro assay information for the active form of the molecule, EIDD-1931 [53]. 

The EC50 was optimized to match the viral load time course from the Ph2 interim analysis [25]. In 

modeling the anti-viral molnupiravir, as a simplification we do not attempt to explicitly model the 

intracellular concentration of its active metabolite EIDD-1931 and instead optimize the EC50 relative to 

the reported plasma concentration of EIDD-1931.  

Preliminary Virtual Population of SARS-CoV-2 Variants of Concern 

The Delta variant is currently the dominant variant of concern worldwide and is potentially associated 

with an increased risk of post-vaccination breakthrough infection and greater infectiousness [55]. Delta 

variant SARS-CoV-2 is reported to have a higher peak viral load (lower Ct value), higher viral load upon 

controlling for days from symptom onset, a longer duration of viral load shedding and a potentially 

shorted incubation period [56-61]. We selected a subset of virtual subjects from the previously developed 

plausible population with viral dynamics that are in general agreement with the virological observations 

from the above-mentioned epidemiological studies. We match data presented in Li et al. [59], describing 

the greater viral load in Delta variant infections in a cohort of isolated close contacts of individuals with 

confirmed SARS-CoV-2 infection. Given the Blaze-1 Ph3 clinical trial was completed in early 2021, prior 

to the emergence of the Delta variant and thus, did not report a significant proportion of Delta variant 

infections, we assume viral infections in the Blaze-1 population are more representative of the 19A/19B 

clade reported in Li et al. Furthermore, since Li et al. did not report a time of first test since estimated 



close contact exposure, we assume the measurement of viral load is made 2 days post infection, where the 

viral load in the Blaze-1 population corresponds to the reported viral load of the 19A/19B clade.  

Model Simulation 
The model was simulated in MATLAB 2019a, and ode15s was used to integrate the model differential 

equations. The computation time for a single run of the model was on the order of 1 second. The code is 

available in full at https://github.com/openPfizer/QSP_model_COVID19 and archived in [62]. 

Results 

The plausible population generated by constraining the simulated viral load and various immune 

mediators to physiologically reasonable values is shown in Figure 2 for selected representative model 

variables. For a more complete depiction of the dynamics, we represent the plausible population time 

course from the time of infection. The time course of the plausible population relative to the day of 

symptom onset, as described in the methods is depicted in Supplementary Figure S3. As evidenced by the 

substantial variability in the plausible virtual population and associated clinical observations, the QSP 

model captures the significant heterogeneity in viral load and immune markers and is thus able to 

represent subjects across the spectrum of disease severity, including mild, moderate, and severe COVID-

19 patients. Simulated viral inoculation leads to an exponential increase in viral load, which peaks on 

average ~5d post infection, followed by a rapid and steady decline. The increasing viral load engages the 

innate and adaptive immune response, leading to the secretion of several inflammatory cytokines. In 

agreement with a canonical anti-viral innate immune response [63], the activation of the innate immune 

mediators leads to an early peak in the time course of Type I IFN, TNF-⍺ and IL-1β secretion, followed 

by a more delayed increase in IL-6 and IL-10, the chief cytokine assumed to be a biomarker of disease 

severity and the major counter-regulatory anti-inflammatory cytokine in the QSP model, respectively.  

 



 

Figure 2: Plausible population overlaid against observational COVID-19 clinical data for the viral load time course and different representative 

cytokines (N = 14545). For the purpose of visual representation of the time course of the viral and immune makers from the day of infection, 

the time from symptom onset was translated to a time from infection by assuming an incubation period of 4.5d [64].  

Upon generation of the plausible population constrained to the observational clinical studies, a subset of 

virtual subjects is sampled from the plausible population to form a refined virtual population that 

quantitatively matches the viral load time course from interventional RCT data. Figure 3A depicts the 

mean simulated viral load time course from the refined virtual population closely matching the time 

course of the mean trial data from the Blaze-1 Ph3 placebo and 2800mg bamlanivimab and 2800 

etesevimab nAb cocktail arms, respectively. While the QSP model adequately captures the more 

clinically relevant high viral load regime (> 1000 copies/mL), there is a discrepancy between the 

simulated and clinically observed treatment arms at very low viral loads (below 500 copies/ml) at the later 



time points of the clinical trial (Day 11). We hypothesize that this discrepancy at low viral loads is due to 

the SARS-CoV-2 PCR assay characteristics. While the model only accounts for viable virus, the PCR 

assay can detect inactive, unencapsulated viral fragments [65] that might not be representative of active 

ongoing infection especially at the low viral loads observed at later time points in the clinical trial. This 

non-viable viral RNA might persist for much longer than active virus and hence lead to the slower than 

predicted dynamics (at low viral load) in the time course of the observed treated group. Moreover, this 

lower viral load regime is also below the reported lower limit of quantification of the PCR assays used in 

comparable RCTs [24,25]. 

Figure 3B depicts both the simulated mean viral load reduction at Day 7 of the clinical trial along with its 

simulated variability characterized using 1000 bootstrapped trials in good agreement with the 

corresponding trial observation. The size of the virtual population (N=502) is comparable to that reported 

in the placebo (N=517) and treatment (N=518) arms. Additionally, the 5.1d mean incubation period for 

this virtual population, given the assumption that symptom onset occurs at peak viral load, is in good 

agreement with current epidemiological estimates of the mean incubation period of 4-5d for SARS-CoV-

2 [64,66,67]. Moreover, the assumption that intervention occurs post viral load peak in our population is 

further supported by the observed mean placebo and treatment arm viral load trajectories, which exhibit a 

monotonic decline from the start of treatment, suggesting that the majority of mild/moderate COVID-19 

outpatients enter the trial after the peak in viral load. While we use a threshold of 104 copies/mL to 

represent an active infection in the current plausible population and Blaze-1 virtual population, our results 

are not materially affected by a lower threshold of 103 RNA copies/mL, which corresponds to the lower 

limit of quantification for SARS-CoV-2 PCR assays used in several clinical trials [25,50][Supplementary 

Figure S4].  

 



 

Figure 3: A: Mean of the virtual population (N=502) for the simulated placebo (PBO) group and the 2800mg bamlanivimab + 2800mg 

etesevimab simulated treated group matching the mean trial data from the observed Blaze-1 Ph3 placebo group and the 2800mg bamlanivimab 

+ 2800mg etesevimab treated group. B: log10 reduction in viral load from baseline at Day 7 after treatment administration in the observed 

Blaze-1Ph 3 trial (blue) and the simulated the 2800mg bamlanivimab + 2800mg etesevimab treated group. Error bars represent the 95% 

confidence interval in the mean for clinical trial observations and range of observations in the simulated virtual population. Violin plots are 

indicative of 99% prediction interval of mean from 1000 bootstrapped samples of the virtual population.   

Subsequently, the placebo group viral load dynamics of the refined Blaze-1 trial virtual population were 

partially validated against that from the REGEN-COV Ph2 trial. In addition to an analysis of the overall 

viral load lowering response upon treatment, the REGEN-COV Ph2 trial also reported a subgroup 

analysis where subjects were stratified by increasing baseline viral load (i.e. subjects with baseline viral 

load >104, >105, >106 or >107, respectively). We tested the ability of the model to reproduce the placebo 

group viral load time course from the REGEN-COV Ph2 trial by using only the baseline viral load 

measurements for each of the subgroups to inform the selection of a subset of virtual subjects from the 

Blaze-1 virtual population. Figure 4A-D shows the simulated placebo group trajectories from the 

REGEN-COV virtual population (N=402) in good agreement with the observed placebo group dynamics 

for each reported subgroup from the Ph2 trial. The model also adequately captures the treatment group 

trajectories for each subgroup upon fitting the Emax and using preclinical estimates to inform the 

neutralization EC50 of the simulated REGEN-COV antibodies.  

Following from this, the model predicts the subgroup responses in agreement with REGEN-COV Ph2 

trial findings, where patients with higher baseline viral loads exhibited higher viral load decreases upon 

treatment [Figure 4E]. While the model slightly underpredicts the reduction in viral load for the subgroup 

with baseline viral load > 106 copies/mL; it is capable of accurately predicting the other subgroup 



responses and matches this group at day 7. As a further partial validation, using the same virtual 

population shown in Figure 4A-D, and the same pharmacodynamic parameters for REGEN-COV, the 

model also adequately predicts the viral load lowering efficacy at Day 7 reported in the Ph 3 trial upon 

simulation of a lower 2.4g REGEN-COV dose [Figure 4F].  

 

Figure 4: Partial validation of the model against REGEN-COV antibody cocktail trial data: A-D) Time course of the viral dynamics of the 

overall virtual population and each of the subgroups compared against observations from the REGEN-COV Ph2 clinical trial for the placebo 

group and the 8g REGEN COV treatment group. Error bars are representative of the standard error for the virtual population and clinical trial 

observations. E) log10 reduction in viral load from baseline at Day 5 for the overall virtual population and each of the subgroups compared 

against observations from the REGEN-COV Ph2 clinical trial for the placebo group and the 8g REGEN COV treatment group. Error bars are 

representative of the 99% prediction interval of the mean for the virtual population F) log10 reduction in viral load from baseline at Day 5 for 

the overall virtual population compared against observations from the Ph3 trial REGEN-COV trial for the 2.4g REGEN-COV treatment. Error 

bars are representative of the 95% confidence interval for clinical trial observations. Violin plots are indicative of 99% prediction interval of 

mean from 1000 bootstrapped samples of the virtual population. REGEN-COV Ph2 data extracted from [24]. 
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The model also recapitulates the viral load dynamics for molnupiravir, an anti-viral intervention with a 

different mechanism of action than the nAb cocktails. The model matches the trajectories of the change in 

viral load from baseline for both placebo and treatment arms [Supplementary Figure S5].  

Subsequently, based on the use of the plasma IL-6 threshold of 40 pg/mL as the primary biomarker for 

clinical endpoints in the model, the simulated Blaze-1 and REGEN-COV trials are assessed for 

improvements in disease severity upon intervention within the virtual population. A therapeutic 

intervention that substantially decreases the viral load can decrease IL-6 levels and thus, the rate of 

simulated COVID-19 related events based on our IL-6 threshold [Figure 5A]. The rates of medically 

attended visits or hospitalization in the placebo and treatment arms of the virtual populations for the 

Blaze-1 Ph3 and REGEN-COV Ph2 trials are appropriately matched to the observed event rates from the 

corresponding clinical trials [Figure 5B]. Following from this, the model also captures the observed 

relative risk reduction in event rates. Hence, the model adequately captures the primary endpoints of the 

aforementioned clinical trials and provides a proof of concept for our approach to translate from key 

model states to disease severity [Figure 5C].  

 

Figure 5: A) Workflow depicting interplay between viral load dynamics and plasma IL-6 levels, the key biomarker used to stratify COVID-

19 severity. A therapeutic intervention that substantially decreases the viral load can decrease plasma IL-6 levels and thus, the rate of COVID-

19 related events. B) Event rates in the observed and simulated placebo and treated group respectively for the Blaze-1 Ph3 and 2.4mg REGEN-

COV Ph3 treatment arm. C) Relative risk reduction in classified events in the simulated and observed Blaze-1 Ph3 and 2.4mg REGEN-COV 

Ph3 treatment arms, respectively. Blaze-1 Ph3 virtual population, N=502, REGEN-COV virtual population, N=402. 

Finally, we determined the sensitivity of viral load lowering efficacy and severity reduction to the time of 

therapeutic intervention relative to symptom onset (time of peak viral load in the model). In general, the 



model predicts that early intervention when closer to the time of peak viral load (symptom onset) results 

in greater efficacy, depicted in Figure 6 for the Blaze-1 virtual population upon the administration of the 

2800mg bamlanivimab and 2800mg etesevimab nAb cocktail. The model predicts that intervention prior 

to 6d post symptom onset results in greater than 50% improvement in severity outcomes, on average. 

Efficacy is predicted to decline rapidly as the timing of intervention is delayed to beyond 7d relative to 

the time of onset of symptoms. A qualitatively similar trend for the dependence of efficacy on time of 

intervention is also observed for simulated REGEN-COV nAb therapy [Supplementary Figure S6].  

Despite predicting higher therapeutic efficacy at early times of intervention (<=4d) compared to later 

intervention (>4d), a slight non-monotonic response is predicted to occur in our virtual population 

simulations, when intervention occurs very early (<2d post symptom onset). This non-monotonic 

response occurs due to the selection of specific virtual subjects in our population, where very early 

intervention is found to increase the AUC of viral load post dosing compared to placebo conditions, given 

the PK/PD parameters of the simulated treatments. While this subset of patients can be filtered from the 

final virtual population as further appropriate real-world clinical data becomes available, given the current 

relative paucity of outpatient data, it is possible that these virtual subjects are representative of a model-

identified risk where earlier intervention might not always lead to substantially greater clinical benefit.  

 
Figure 6: Sensitivity of A) viral load lowering efficacy and B) disease severity reduction to the time of intervention for the simulated 2800mg 
bamlanivimab + 2800mg etesevimab treatment and Blaze-1 Ph3 virtual population. The model predicts that early intervention when closer to 
peak viral load (symptom onset) results in greater viral load lowering efficacy and relative risk reduction in severity end-point. Error bars 
indicate 99% prediction intervals of mean.  

Discussion 

To adequately inform drug development and clinical trial design decisions, QSP models must reasonably 

encapsulate key features of disease pathophysiology as well as appropriately represent the observed 



heterogeneity in real-world clinical populations. We report an updated version of our prototype model of 

COVID-19 with a robust virtual population capable of capturing the key viral load and severity endpoints 

from outpatient RCTs of therapeutic interventions targeting the viral dynamics of SARS-CoV-2. 

Furthermore, in recapitulating both nAb and anti-viral RCTs, the model can capture clinical responses 

with distinct mechanisms of action. 

Moreover, our results also act as a proof of concept for the relatively simple approach we employed to 

translate the QSP model outputs to disease severity metrics. As more mechanistic information becomes 

available, the QSP model lends itself to the incorporation of clinical information on additional 

biomarkers, such as ferritin and CRP, which are preliminarily implemented in the model [47]. More 

sophisticated probabilistic approaches, e.g. Markov-chain based models, might also be used to account for 

the inherent uncertainty in biomarker-based classification of disease severity and clinical trajectories of 

COVID-19 patients. Furthermore, data-driven approaches for the prognosis of COVID-19 disease 

progression might be leveraged for the calibration of additional biomarkers and ultimately inform QSP 

model-predicted improvements in disease prognosis upon therapeutic intervention [68].  

The robustness of the virtual population is partially validated using independent clinical data from the 

REGEN-COV Ph2 and Ph3 RCTs. Given only baseline viral load information from the Ph2 trial, the 

model predicts the viral load trajectories of the placebo and treatment arms. Notably, as further validation, 

in agreement with clinical observations [24,50], the model further predicts that subjects with higher 

baseline viral load exhibit larger reductions in viral load upon treatment, a finding borne out solely from 

the dynamics of the model. These observations support the predictive potential of the QSP model and 

reported virtual population to inform key decisions during the development of novel therapeutic 

interventions.  

An important factor in the deployment of effective pharmaceutical therapies and consequently, clinical 

trial design is identifying patient populations that will most benefit from an intervention. We find that the 

clinical efficacy of pharmaceutical intervention is sensitive to the timing of intervention relative to the 

time of symptom onset. The model predicts that intervention within 6 days relative to symptom onset on 

average would be necessary to achieve meaningful clinical efficacy in outpatients with mild to moderate 

COVID-19 severity. Our predictions are supported by recently published RCTs, which suggest that early 

intervention improves clinical outcomes in this patient population. RCTs in COVID-19 outpatients 

limiting recruitment of subjects to within 5-7 days post symptom onset have shown clinically meaningful 

improvements in clinical outcomes [22,50,69,70]. Furthermore, both nAbs and anti-viral therapies were 

found to be at most marginally effective in reducing mortality in hospitalized, COVID-19 patients, 

leading to discontinuation of larger clinical trials in these patients due to low likelihood of benefit [69,71-



73]. Albeit a different population than the one studied here, the reduced efficacy of virus targeting 

treatments in hospitalized patients is likely contributed by the fact that such patients are further along the 

disease course, with the reported average time of symptom onset to hospitalization being 8-10 days 

[42,49,74]. The model predicts that at later times in the disease course, the immune response will likely 

contribute more to disease pathology with viral loads having decreased by several orders of magnitude 

relative to peak viral loads. More recently, early read-outs from a clinical trial of AZD7442, a long-acting 

nAb combination more closely analyzed the sensitivity to timing of intervention in a prespecified analysis 

in COVID-19 outpatients enrolled within 7 days of symptom onset. While hospitalization rates decreased 

by 50% for the overall trial population, patients treated within 5d of symptom onset exhibited a 67% 

decrease in risk of hospitalization [75]. These observations are in remarkably close alignment with our 

predictions and lend further credence to the predictive utility of the model in informing key clinical trial 

design parameters, such as inclusion criteria.  

In qualitative agreement with our results, previous systems modeling studies also find that early 

intervention post infection is required for adequate therapeutic efficacy [15,16,76]. However, many prior 

models predicted that viral intervention post peak viral load or more than 1-2 days post symptom onset 

would likely not result in clinical efficacy [77]. Supporting our assumption that symptom onset occurs at 

peak viral load, COVID-19 outpatients in recent RCTs, enrolled on average within 4-5 days of symptom 

onset are already post peak viral load. Our model suggests a relatively slow attenuation of efficacy with 

meaningful reductions in the risk of hospitalization predicted to occur with interventions starting up to 5d 

post peak viral load or symptom onset. The less pronounced attenuation of efficacy with time from peak 

viral load can be at least partially attributed to the log-sensing activation of the immune response in the 

QSP model, thus enabling the immune system to be comparably responsive as the viral antigen varies 

over orders of magnitude. Therefore, the model suggests that RCTs in COVID-19 outpatients might 

preferentially recruit patients within 5d post symptom onset to appropriately evaluate the efficacy of 

therapeutics. 

The model lends itself to several potential additional analyses not presented in this work. In this study, we 

focused on developing a robust virtual population to support the development of therapeutic interventions 

applicable to COVID-19 outpatients. However, given the generality of our tiered approach and 

comprehensive mechanistic architecture of the model, the model can be used to develop robust virtual 

populations in other patient populations, as in hospitalized patients with severe COVID-19. While the 

focus of the current study has been on modeling anti-viral interventions, given the comprehensive 

immune component of the model, additional interventions of interest especially immunomodulatory 

interventions can be subsequently incorporated and validated against emerging clinical trial data in 



hospitalized COVID-19 patients. Moreover, the model can be adapted to multiple therapeutic scenarios, 

such as pre- and post-exposure prophylaxis. This is especially relevant to the treatment of close-contacts 

of infection-confirmed cases, with a number of clinical trials exploring the efficacy of pharmaceutical 

interventions in such settings [78]. Furthermore, virtual populations might also be constructed to match 

viral load and immune dynamics in vaccinated individuals upon breakthrough infection as more RCT or 

other appropriate datasets on such subjects become available. 

The model calibration procedure described in preceding sections can be used to obtain a virtual 

population representative of SARS-CoV-2 variants that might exhibit differing viral dynamics compared 

to the SARS-CoV-2 clades prevalent in the 2019-2021 period of the COVID-19 pandemic, including the 

Alpha and Beta variants. We developed a preliminary, proof-of-concept virtual population matching the 

virological characteristics of the Delta variant, the dominant variant of concern worldwide as of Nov 

2021. While we do not use the model to predict the effects of pharmaceutical interventions in the Delta 

variant infections given the current substantial uncertainty in the differences in disease pathophysiology, 

and viral dynamics between the Delta variant and older variants of SARS-CoV-2, as more data becomes 

available the preliminary virtual population presented in this work can be adapted to address such 

questions [Supplementary Figure S7]. Emerging SARS-CoV-2 variants of concern can potentially impact 

the epidemiological properties of COVID-19, such as to changes in infectiousness, associated disease 

severity. Variants of concern can warrant a re-consideration of the efficacy of pharmaceutical 

interventions. For instance, despite considerable efficacy against the 2019-2020 clades of SARS-CoV-2, 

the FDA withdrew the EUA for the use of bamlanivimab alone in 2021 due to evidence showing 

significantly reduced efficacy against the Delta variant, which was quickly becoming the dominant 

variant of concern in the United States [79,80]. Given these potential implications, mechanistic model-

informed analysis can help address questions associated with how variants can impact key drug 

development parameters, including changes to the dose/dosing regimen, the development of new anti-

viral combinations and the withdrawal altogether of therapies no longer effective against more recent 

variants.  

In summary, the QSP model is to our knowledge, currently the only model capable of quantitatively 

capturing key clinical end-points from recently conducted interventional RCTs in outpatient populations 

involving therapies with distinct mechanisms of action. We presented a robust virtual population, which 

was partially validated against the REGEN-COV RCT and is capable of informing key clinical trial 

design parameters for novel COVID-19 interventions. There are number of limitations to our approach. 

Chiefly, while model components directly describing the viral load dynamics are calibrated against both 

hospitalized and outpatient datasets, the majority of immune states are informed by data in hospitalized 



COVID-19 subjects. Additionally, the model does not distinguish between distinct compartments of 

infection, such as the upper and lower respiratory tract, and further does not account for the mechanistic 

influence of excessive immune activation on the incidence of systemic complications or the impact of 

systemic comorbidities on disease severity. Finally, we do not comprehensively account for the 

endogenous humoral SARS-CoV-2 antibody response dynamics, which is found to be associated with 

baseline viral load. Subsequent releases of the model will focus on addressing these limitations and 

extending the model to other patient-care settings, such as in the case of high-risk vaccinated subjects 

with pre-existing immunity and the development of immunomodulatory treatments in hospitalized 

patients.  
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