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ABSTRACT 

Objective: SARS-CoV-2 vaccinations have demonstrated vaccine immunogenicity in healthy 
volunteers, however, efficacy in immunosuppressed patients is less well characterised. Subsequently, 
there is an urgent need to address the impact of immunosuppression on vaccine immunogenicity.  

Methods: Serological, T-cell ELISpot, cytokines and immunophenotyping investigations were used to 
assess vaccine responses (either BNT162b2 mRNA or ChAdOx1 nCoV-19) in double-vaccinated 
patients receiving immunosuppression for renal transplants or haematological malignancies (n=13). 
Immunological responses in immunosuppressed patients (VACC-IS) were compared to 
immunocompetent vaccinated (VACC-IC, n=12), unvaccinated (UNVACC, n=11) and infection-naïve 
unvaccinated (HC, n=3) cohorts. All participants, except HC, had prior COVID-19 infection.  

Results: T-cell responses were identical between VACC-IS and VACC-IC (92%) to spike-peptide (S) 
stimulation. UNVACC had the highest T-cell non-responders (n=3), whereas VACC-IC and VACC-IS both 
had one T-cell non-responder. No significant differences in humoral responses were observed 
between VACC-IC and VACC-IS, with 92% (12/13) of VACC-IS patients demonstrating seropositivity. 
One VACC-IS failed to seroconvert, however had detectable T-cell responses. All VACC-IC participants 
were seropositive for anti-spike antibodies. Furthermore, both VACC-IS and VACC-IC participants 
elicited strong Th1 cytokine response with immunodominance towards S-peptide. Differences in T-
cell immunophenotyping were seen between VACC-IS and VACC-IC, with lower CD8+ activation and T-
effector memory phenotype observed in VACC-IS.  

Conclusion: SARS-CoV-2 vaccines are immunogenic in patients receiving immunosuppressive therapy, 
with responses comparable to vaccinated immunocompetent participants. Lower humoral responses 
were seen in patients treated with B-cell depleting therapeutics, but with preserved T-cell responses. 
We suggest further work to correlate both protective immunity and longevity of these responses in 
both healthy and immunosuppressed patients.  
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INTRODUCTION 

In late 2019, identification of a novel coronavirus, severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2), was described as the causative pathogen of a pneumonia outbreak, known as 
coronavirus-induced-disease-19 (COVID-19) [1]. What emerged as a local outbreak in Wuhan, China, 
rapidly progressed into a global pandemic of acute respiratory syndrome evoking mass morbidity, 
mortality and significant socio-economic turmoil [2]. Currently, mass vaccination programmes, 
utilising regulatory-approved vaccines, remains the best way to prevent viral transmission [3,4], 
severe disease, death [5,6] and overwhelming the already stretched healthcare services.  

Currently, four vaccines have been approved by the European Medicines agency [7,8], demonstrating 
satisfactory safety and immunogenicity. However, these pre-authorisation trials were performed on 
healthy individuals and excluded immunosuppressed patients as they are poor responders to vaccines 
[9, 10]. Consequently, ambiguity regarding vaccine efficacy in patients on immunosuppression 
prevails. Moreover, immunosuppressed patients, such as kidney transplant recipients, have been 
considered as clinically vulnerable to SARS-CoV-2 infection, which is supported by both population-
based and registry-based studies which illustrate these patients experience significant rates of 
hospitalisations, severe disease and death [11-13]. In view of this, characterising vaccine-induced 
immune responses is crucial for understanding their protective immunity and formulating optimal 
immunisation regimes.  

Both natural infection and SARS-CoV-2 vaccination induce spike protein specific antibodies with 
neutralising activity [8,14]. Nevertheless, the longevity and duration of such humoral protection is 
unclear, with several studies demonstrating waning antibody-levels over time [15]. In contrast, several 
findings have highlighted the role of long-term SARS-CoV-2 T-cell responses [16]. Effective cellular 
immune responses were attributed to mild-COVID-19 [17], alongside development of robust SARS-
CoV-2 specific T-cells which were detected 6-8 months post-infection [18]. Moreover, both mRNA and 
adenoviral vaccines stimulated potent T-cell mediated responses in study- participants [19,20]. 
Furthermore, long-term duration of protective T-cell responses were identified against SARS-CoV, 
whereas no antigen-specific B-memory cells or antibodies were detected 6 years post-infection [21]. 
As such, when assessing vaccine immunogenicity, it is critical to assess both humoral and cellular 
responses. Such evaluation is of greater importance in immunosuppressed cohorts, as there is an 
urgent need to understand the impact of immunosuppression on the efficacy of SARS-CoV-2 
vaccinations. 

To address this knowledge gap, we assessed the effect of immune deficiency in vaccine specific 
responses in a cohort of immunocompromised patients. SARS-CoV-2 vaccine responses were assessed 
in adult-vaccinated kidney transplant patients, or those with haematological malignancies. Here we 
provide a detailed description of the cellular and humoral responses, following two doses of either 
mRNA or adenoviral-vector SARS-CoV-2 vaccines. Unlike current studies examining findings of early 
post-vaccine period, we define details of their most current response (median time: 115 days post-
second dose). Based on our findings, we were able to conclude that these immunosuppressed patients 
produced an immunological response, to SARS-CoV-2 vaccines, which were comparable to healthy 
vaccinated participants. Our findings warrant further investigation to determine correlation between 
such observed responses with protective immunity and longevity, within this clinically vulnerable 
cohort. Moreover, such studies are imperative for the understanding of cellular responses towards 
the continual emergence of SARS-CoV-2 variants of concerns.  
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METHODS 

Study design 

This study was approved by the institutional research review board of Portsmouth Hospital University 
NHS Trust and ethical approval was obtained from a national ethics committee (London-City and East 
research ethics committee, IRAS: 291009). This study was registered under National Institute of Health 
Research (NIHR) portfolio (CPMS ID: 48275). The study was conducted in accordance with principles 
of Good Clinical Practice. All enrolled participants were aged ≥18 or over. Participants were assessed 
for study eligibility by providing a clinical history. Before enrolment, all participants provided written 
informed consent.  

All recruited participants were convalescent donors, except for healthy controls who were COVID-19 
infection-naïve and unvaccinated. All convalescent individuals had prior positive real-time polymerase 
chain reaction (RT-PCR) results before study enrolment. Participants were stratified into the following 
cohorts: healthy unvaccinated COVID-19-infection naïve (HC, n=3), unvaccinated (UVACC, n=11) and 
vaccinated immunocompetent healthcare workers (VACC-IC, n=12) and vaccinated 
immunosuppressed participants (VACC-IS, n=13). VACC-IS participants were put forward to the study 
by their respective clinicians, whereas the remaining participants were enrolled through hospital 
communications.  

Blood samples were collected upon enrolment, which were taken in heparinized, EDTA and SST-
collection tubes. Samples were processed within 8h of venepuncture. SST-collection tubes were 
centrifuged at 2000g for 10 minutes for collection of serum. Collected serum was stored at -20°C until 
SARS-CoV-2 serological assays were performed. EDTA tubes were used to perform a full-blood count 
using the DxH Haematology Analysers (Beckman Coulter). Heparinized tubes were processed for 
peripheral blood mononuclear cells (PBMCs) collection as described below for ELISpot analysis.  

T-cell ELISpot 

SARS-CoV-2-specific T-cell responses were identified using the T-Spot Discovery SARS-CoV-2 (Oxford 
Immunotec) according to manufacturer’s instructions. In brief, leucosep tubes (Oxford Immunotec) 
were used to isolate PBMCs from lithium-heparinised whole blood. A total of 2.6×106 PBMCs were 
plated into each individual well of T-spot plate. Each well is coated with one of the four different SARS-
CoV-2 structural peptides; Spike (S1) protein, nucleocapsid (NC), membrane (MN) protein, and 
homology (segments of similar sequences which were eliminated from NC and MN panel). Negative 
and positive controls (phytohaemagglutinin) were used to control for cellular contamination and 
functionality, respectively. PBMCs were incubated overnight (37°C, 5% CO2) for 20 hours and IFNϒ- 
secreting SARS-CoV-2 specific T-cells were detected by using an automated plate reader (Autoimmun 
Diagnostika-ASK JM). IFNϒ secreting SARS-CoV-2 T-cells were reported as spot forming units (SFU) per 
well.  

SARS-CoV-2 cellular immunophenotyping 

Following SARS-CoV-2 peptide stimulation in ELISpot plate, harvested PBMCs were counted to 
2.0×106. Counted PBMCSs were resuspended in FACS buffer (phosphate buffered-saline with sodium 
chloride, Beckman Coulter) and stained with a tetra 1 backbone (CD45-FITC, CD3-PC5, CD4-RD1, CD8-

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 5, 2021. ; https://doi.org/10.1101/2021.12.03.21267250doi: medRxiv preprint 

https://doi.org/10.1101/2021.12.03.21267250
http://creativecommons.org/licenses/by/4.0/


ECD (Beckman Coulter)), added with another two fluorochrome-labelled monoclonal antibodies 
(mAbs), HLA-DR-PC7 and CD38-Alexa-fluor 750, as markers for T-cell activation. PBMCs were 
incubated at room temperature in dark for 15 minutes and then resuspended with 250µl FACS buffer. 
Up to 2.0×106 PBMCs were counted using a 10-laser Navios Flow cytometer (Beckman Coulter).  

For T-cell subset analysis, harvested PBMCs following S-peptide stimulation were counted as outlined 
above. PBMCs were then stained with Duraclone IM T-cell panel (Beckman Coulter, Miami, FL). Signals 
from the following different fluorochrome-labelled mAbs were obtained; CD45-Krome Orange, CD3 
APC-A750, CD4-APC, CD8-AF700, CD27-PC7, CD57-Pacific Blue, CD279 (PD1)-PC5.5, CD28-ECD, CD197 
(CCR7)-PE and HLA-DR-FITC. PBMCs were incubated at room temperature in dark for 15 minutes and 
then resuspended with 500µl FACS buffer. Up to 2.0×106 PBMCs were counted using a 10-laser Navios 
Flow cytometer (Beckman Coulter).  

Representation of high-dimensional flow cytometry 

Flow cytometric t-distributed stochastic neighbor embedding (tSNE) and FlowSOM analysis were 
performed using Cytobank (http://premium.cytobank.org). For surface T-cell activation marker 
expression, analysis was performed using the above outlined markers. CD3+ gated events from 
individuals within each cohort were collected and concatenated into a single file. Data from 103,311 
CD3+ gated events, from all cohorts per peptide, were exported as flow cytometry standard (FCS) files 
using Kaluza 2.1 software (Beckman Coulter, Miami, FL). Then, data from 4453 CD3+ events, with the 
following settings: 1,000 iterations, perplexity 30, and theta 0.5, subsampling equal each cohort was 
used to generate tiSNE analysis. FlowSOM was performed using above outlined markers, which were 
performed individually with gated CD4+ and CD8+ populations from tiSNE analysis per cohort. The 
following parameters were used to conduct FlowSOM analysis: number of clusters: 225; number of 
metaclusters: 15; iterations: 10; and hierarchical consensus clustering method was used.  

For T-cell subset, analysis was conducted using above outlined markers. S-peptide stimulated CD4+ 
and CD8+ gated events from each individual were concatenated into a single file per cohort; VACC-IC 
CD4: 83,612 events; VACC-IC CD8: 35,721; VACC-IS CD4: 60,932; VACC-IS CD8: 16,397 events. All CD4 
and CD8 events, per cohort, were used to conduct tiSNE analysis with aforementioned parameters. 
For both T-cell activation and T-subset analysis, heat maps were used to report statistical phenotypic 
changes in marker expression within CD4 and CD8 populations per cohort.  

 Serological testing 

Serum was tested for antibodies to Spike (S) protein using the Binding site Anti-spike IgG/A/M ELISA 
assay according to manufacturer’s instructions. Result outcomes are reported as positive or negative 
with a threshold index-value of ≥1.0. Samples with optical density greater than top-standard of curve 
were reported as >4.00 index value. 

Th1 cytokine profiling 

Th1 cytokine responses (IL-6, TNF, IL-1β, IL-10) were measured in supernatant derived from PBMC 
stimulation with SARS-CoV-2 peptides within ELISpot plate. 20µl of supernatant was collected and 
stored in -80°C until analysis was conducted. IFN-γ was not tested as supernatant was derived from 
ELISpot plate which captures IFN-γ secretion. Cytokine responses were measured using Multiplex 
assays as performed by the Clinical Immunology laboratory at Addenbrooke’s Hospital, Cambridge.  
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Statistical analysis 

Statistical analysis was conducted using Prism V9.0 (GraphPad Software, San Diego, California, USA). 
Unless otherwise stated, all data are reported as median with IQR. Where appropriate, Kruskal-Wallis 
test with Dunn’s post-hoc comparison test was performed to assess differences between >2 groups. 
Two-sided Mann-Whitney was used to assess perform differences between 2 groups. P<0.05 unless 
otherwise stated. Other details, if any, for each investigation are provided within relevant figure 
legends. *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001 

 

RESULTS 

Study participant characteristics 

A total of 39 participants were recruited into the study and stratified into appropriate cohorts based 
on their clinical characteristics. In unvaccinated cohort (UNVACC, supplemental table S1), the median 
age of participants was 37 years (IQR: 31-47), male-to-female ratio was 3:8, with 81.8% of participants 
from white-British ethnicity. Co-morbidities of hypothyroidism (n=1), stroke (n=1) and sleep apnoea 
(n=2) were reported in this cohort. The reported time between positive RT-PCR result and study 
enrolment was 160 days (IQR: 145-165). Nine UNVACC participants (81.8%) were classified as 
ambulatory mild disease [22], based on reported signs and symptoms during active SARS-CoV-2 
infection. Two participants were hospitalised requiring oxygen therapy (non-invasive ventilation) and 
treated with dexamethasone, which as shown by the RECOVERY trial (NCT: NCT04381936), lowered 
mortality in hospitalised adult COVID-19 patients. 

Twelve participants were stratified as vaccinated immunocompetent (VACC-IC, supplementary table 
2) with a median age of 45 years (IQR: 30-53) and male-to-female ratio of 1:5. Five VACC-IC 
participants reported co-morbidities of depression (n=2) and mild asthma (n=3); none of these 
participants, alongside remainder of VACC-IC cohort, were treated with immunosuppressive 
therapies. Time reported between positive RT-PCR result and study enrolment was 175 days (IQR: 
143-431), with all twelve participants classified as having mild COVID-19 disease, and double-
vaccinated with BNT162b2 vaccine. Median time between receiving the second vaccine dose and 
study enrolment was 112.5 days (IQR: 87.2-153).  

Thirteen immunosuppressed patients (VACC-IS), with a median age of 61 years (IQR: 55-65), were 
recruited. Male-to-female ratio was 7:6, with all patients from a British-white ethnic background. 
Clinical characteristics and immunosuppressive regimes are summarised in Table 1. Seven patients 
(53.8%) had end-stage renal disease and received renal transplantation with an average of 2043 days 
(6.5 years) prior to study enrolment. Four patients were diagnosed with haematological malignancies, 
whilst two patients had autoimmune disorders. Twelve patients had further co-morbidities, of which 
all were high-risk for severe COVID-19. All VACC-IS were on immunosuppressive treatments, with 
61.5% and 46.1% managed on Mycophenolate mofetil and Tacrolimus, respectively, and five patients 
receiving B-cell depletion therapy (Rituximab, R-CHOP) within last 6 months. More than 69% of VACC-
IS patients suffered either severe or moderate COVID-19 disease, which required hospitalisation, 
whereas 25% of patients were managed supportively at home. All 13 patients had prior SARS-CoV-2 
infection with median time of 243 days (IQR: 163-292) prior study enrolment. All patients received 
second-dose SARS-Cov-2 vaccinations with median time of 115 days (IQR 85-143) prior study 
enrolment; all patients were double-vaccinated with 7:6 ratio to Pfizer/BNT162b2-to- AZ/ChAdOx1 
vaccines. Three patients were recruited who were infection-naïve (HC), with median age of 27 years 
(IQR: 25-38), and of British-white ethnicity. All HC reported no co-morbidities or on active treatments.  
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 Table 1. Patient characteristics of VACC-IS 

Baseline Characteristics COVID IS, n=13 
  
Age, yr (IQR) 61 (55-65) 
Gender 
    Male 
    Female 
Ethnicity 
    White (%) 
BMI, kg/m2 (±SEM) 
Diagnosis, n (%) 
    ESRD requiring transplantation  
    MPO vasculitis 
    CLL 
    Diffuse large B-cell lymphoma 
    MCD 
Co-morbidities, n (%) 
    Gout 
    Hypertension 
    Type 2 Diabetes Mellitus 
    DVT 
    Asthma 
Time from positive COVID-19 PCR result, days 
Median (IQR) 
WHO COVID-19 clinical severity scale, n % 
    Ambulatory mild disease 
    Hospitalized: moderate disease 
    Hospitalized: severe disease 
Vaccine received, n % 
    AZ/ChAdOx1 
    Pfizer/BNT162b2 
Time from receiving 2nd dose, days 
Median (IQR) 
Immunosuppressive regimen, n (%)  
    Tacrolimus 
    Ciclosporin 
    MMF 
    Prednisolone 
    Azathioprine 
    Rituximab 
    R-CHOP 
 

 
7 
6 

 
12 (100%) 
30.6±2.46 

 
7 (53.8%) 
1 (7.7%) 
2 (15.3%) 
2 (15.3%) 
1 (7.7%)  

 
2 (15.3%) 
6 (46.1%) 
2 (15.3%) 
1 (7.7%) 
1 (7.7%) 

243 (163-292) 
 
 

4 (30.8%) 
3 (27.7%) 
6 (46.1%) 

 
6 (46.1%) 
7 (58.3%) 

 
115 (85-143) 

 
6 (46.1%) 
1 (7.7%) 
8 (61.5%) 
7 (53.8%) 
1 (7.7%) 
3 (23.0%) 
2 (15.3%)  

  
ESRD, End-stage renal disease; MPO, Myeloperoxidase; CLL, Chronic lymphocytic leukaemia; ITP, 
Immune thrombocytopenia; MMF, Mycophenolate Mofetil; R-CHOP, rituximab, cyclophosphamide, 
doxorubicin hydrochloride, vincristine, and prednisone.   
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Cellular response  

We examined SARS-CoV-2 cellular response to natural infection and vaccination, by stimulating PBMCs 
with either Spike (S) (Fig 1a), Nucleocapsid (NC) (Fig 1b), or Membrane (MN) (Fig 1c) peptides, and 
enumerated IFNγ producing SARS-CoV-2 specific T-cells by ELISpot. As expected, infection-naïve 
unvaccinated (HC) individuals produced a very low response against S-peptide stimulation, with 2/3 
HC eliciting no S-peptide response (Fig 1a). One HC participant demonstrated very low spot forming 
units (SFU) to S-peptide (3 SFU), which could be a result of non-specific activation. There were 
statistically significant differences in S-peptide responses between vaccinated immunocompetent 
(VACC-IC) and immunocompromised (VACC-IS) cohorts versus HC (VACC-IC, p=0.040 and VACC-IS, 
p=0.025, respectively). No significant differences in S-peptide responses were observed between 
unvaccinated (UNVACC) versus HC (p=0.471). Comparison of S-peptide responses between VACC-IC 
and VACC-IS, demonstrated no significant differences (p=0.968, Figure 1a), where, VACC-IS mounted 
a higher T-cell response to spike (median 17.00 SFU, IQR: 8-44) compared to VACC-IC (median 14.50 
SFU, IQR: 7.50-26.75). In VACC-IS, there was one non-responder to S-peptide (0 SFU) which was a 
kidney transplant patient. Whilst every VACC-IC participant produced a SFU to S-peptide, one 
participant exhibited 1 SFU, which we categorised as non-responder following two doses of SARS-CoV-
2 vaccination. UNVACC had the highest non-responders (n=3), whereby, T-cell responses to S-peptide 
(median: 5.00, IQR: 1-27) were lower by 9.50 and 12.00 SFU compared to VACC-IC and VACC-IS, 
respectively.  

As UNVACC, VACC-IC and VACC-IS cohorts comprised of convalescent individuals, NC and MN 
responses were detected (Figure 1b, 1c), albeit without any significant differences between all 
cohorts. Nevertheless, UNVACC and VACC-IS had equal non-responders to NC (n=3) and MN (n=4), 
whilst non-responders against NC (n=2) and MN (n=1) were also seen in VACC-IC. Moreover, VACC-IC 
S-peptide responses were significantly higher compared to NC (p=0.005) and MN (p=0.001) by 11.00 
and 12.00 SFU, respectively (Figure 2a). Similar trend was observed in VACC-IS (Figure 2b), where S-
peptide responses were significantly higher by 14.50 SFU compared to both NC (p=0.005) and MN 
(p=0.003). Whilst UNVACC S-peptide responses were higher, there were no significant differences 
between NC and MN (Figure 2c). Together, this demonstrated that both vaccination cohorts induced 
immunodominance towards S-peptide, whereas no significant precedence to either SARS-CoV-2 
peptides were seen with natural infection.  

 

Humoral response 

Humoral responses were evaluated using total Ig anti-spike ELISA immunoassay. As expected, 
convalescent unvaccinated and vaccinated cohorts had significantly higher serological responses 
compared to HC individuals (Fig 3a, p<0.0001). UNVACC cohort demonstrated the lowest serological 
response (median: 2.92 index-value, IQR: 2.28-3.18), with 10/11 participants displaying seropositivity. 
Seronegative responses were seen in one UNVACC participant, who also displayed absent SARS-CoV-
2 T-cell response. All 12 VACC-IC participants were seropositive (median: 4.40 index-value, IQR: 4.15-
4.40), with 10/12 participants generating a serological response which was greater than top standard 
of assay (4.00 index-value). Moreover, whilst humoral responses were higher in both vaccinated 
cohorts compared to UNVACC; only VACC-IC demonstrated a significantly higher humoral response 
compared to UNVACC (p=0.002) 

In VACC-IS, 12/13 patients were seropositive (median: 4.40 index-value, IQR: 2.49-4.40), with 8/13 
patients eliciting responses that were greater than assay top-standard. No significant differences in 
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humoral responses were seen between VACC-IC and VACC-IS. Nevertheless, examining the lower 
quartile ranges, 25% of VACC-IS participants produced a humoral response (2.49 index-value) which 
was 1.66 index-value lower than 25% of humoral responses observed in VACC-IC (4.15 index-value). 
Furthermore, analysing the different immunosuppressive therapies within VACC-IS (Fig 3b), 
highlighted patients on tacrolimus, MMF and prednisolone, exhibited higher serological response 
(median: 4.40 index-value, IQR: 2.90-4.40) than those on B-cell depleting therapy (median 2.62 index-
value, IQR: 0.94-4.09). Nevertheless, only 1/4 patients receiving B-cell therapy were seronegative. 
Overall, the above findings highlight both vaccinated cohorts produce higher anti-S serological 
responses than unvaccinated cohort. Furthermore, vaccinated immunosuppressed patients elicit 
humoral responses which were comparable to vaccinated immunocompetent cohort.  

 

Characterisation of CD4+ and CD8+ T-cell activation marker expression 

To assess phenotypic changes in T-cell activation marker expression post-SARS-CoV-2 peptide 
stimulation, we performed an unsupervised analysis which evaluates the entire complex scenario 
depicted by CD4+ and CD8+ T-cells. Initially, we conducted a dimensionality reduction analysis, flow 
cytometric and combined t-distribution stochastic neighbour embedding (tSNE), to acquire a 
phenotypic landscape of CD45+CD3+CD4+ and CD8+ lymphocytes in all cohorts (Fig S1). We then 
explored CD4+ and CD8+ T-cell panel by unsupervised analysis using FlowSOM [23]. Such analysis 
conducts multivariate clustering of cells based on self-organised map (SOM) algorithm, enabling cells 
to be stratified into specific meta-clusters based on HLA-DR and CD38 expression [24]. Heat maps 
were used to statistically report differences in phenotypic expression between cohorts.  

For CD4+ characterisation (Fig 4a-b) against S-peptide stimulation, we clustered all individual cells for 
each cohort into 15 distinct clusters based on surface HLA-DR and CD38 expression. Subsequently, we 
reduced complexity by merging similar cluster profiles and conducted further re-clustering. As 
illustrated in Fig 4a, 5 distinct clusters in CD4+ T-cells were identified in all cohorts. Each metacluster 
were represented equally within all cohorts, with exception to metacluster 4, which was lower in 
VACC-IS. Moreover, no significant differences in CD4+HLA-DR CD38 phenotypes were seen between 
cohorts (Fig 4b). Dual HLA-DR+CD38+ expression was identified in metacluster 4 and 9, whilst 
metacluster 7 illustrated CD4+ HLA-DR+CD38wk expression. Both metacluster 3 and 10 portrayed HLA-
DR-CD38+ and HLA-DR+CD38-, respectively. Overall CD4+ HLA-DR+ expression was in 80% of 
metaclusters (n=4), whilst CD38+, CD38- and CD38wk, were identified in 60% (n=3), 20% (n=1) and 20% 
(n=1), respectively. 

Characterisation of CD8+ S-peptide responses demonstrated 5 clusters (Fig 4c), where metacluster 1 
and 8 were under-represented in VACC-IS cohort, whilst remaining metaclusters were similar across 
cohorts. Unlike CD4+, there were differences in HLA-DR and CD38 expression observed between 
cohorts, as illustrated by metacluster 1 and 2 (Fig 4d). CD8+ HLA-DR+CD38wk expression were identified 
in VACC-IS metacluster 1 (as represented by darker yellow shade for CD38), whereas dual HLA-
DR+CD38+ expression were seen in HC, UNVACC and VACC-IC. Moreover, dual HLA-DR+CD38+ 
expression in UNVACC and VACC-IC were identified for metacluster 2, whereas significant different 
outcomes were observed in HC and VACC-IS; as illustrated by HLA-DR+CD38wk expression. 
Furthermore, all CD8+ metaclusters expressed HLA-DR+(n=5), whereas CD38+ were reported in 20% 
and 40% of metaclusters in HC (n=1) and UNVACC, VACC-IC (both n=2), respectively. No CD38+ 

expression were identified in VACC-IS, with 60% of VACC-IS metaclusters (n=3) expressing CD38wk, and 
40% (n=2) were CD38-. Overall post S-peptide stimulation, both CD4+ and CD8+ upregulated HLA-DR+, 
with higher CD38+ observed in CD4+ T-cells.  
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Evaluation of HLA-DR and CD38 expression was conducted in NC (Fig S2a-d). 7 metaclusters were 
identified for NC. As with S-peptide, under-representation was observed in VACC-IS (metacluster 6, 
Fig S2a), which expressed HLA-DRwkCD38+ (Fig S2b). Moreover, dual CD4+ HLA-DR+ CD38+ were seen in 
metacluster 4 in all cohorts (Fig S2b); albeit expression of HLA-DR and CD38 was lower in both 
vaccinated cohorts compared to UNVACC and HC. Overall, NC-peptide stimulation preferentially 
expressed CD38+ (n=4) compared to HLA-DR+ (n=2) in CD4+. For CD8+ NC responses, 4 metaclusters 
were identified (Fig S2c), metacluster 7 and 2 were under-represented in VACC-IS and UNVACC, 
respectively. Both metacluster 7 and 2 expressed CD8+HLA-DR+CD38+ and CD8+HLA-DR+CD38-, 
respectively. (Fig S2d). Furthermore, CD8+ stimulated with NC-peptide elicited a predominant dual 
CD8+ HLA-DR+ CD38+ phenotype (n=3) in all cohorts, with only metacluster 2 demonstrating a CD8+ 

HLA-DR+ CD38- phenotype. Overall, a greater T-cell activation profile was observed in CD8+, compared 
to CD4+, following NC-peptide stimulation.  

Stimulation with MN-peptide resulted in characterisation of 7 CD4+ metaclusters (Fig S3a). The similar 
trend of metacluster under-representation was evident in VACC-IS CD4+ (metacluster 1), which 
depicted an HLA-DRwkCD38+ profile (Fig S3b). No dual CD4+ HLA-DR+ CD38+ were seen across all cohorts, 
with HLA-DRwk expression observed across all metaclusters, whilst 57%(n=4) of CD4+ metaclusters 
expressed CD38wk; only 3 metaclusters depicted CD38+. However, within CD8+ landscape, UNVACC 
cohort depicted a substantial drop in metacluster 5 and 9 representation (Fig S3c) with HLA-DR+ CD38- 
and HLA-DR+ CD38+ expression (Fig S3d), respectively. Dual HLA-DR+CD38+ expression was observed in 
metacluster 9, with HLA-DR+ expressed in all CD8+ metaclusters (n=5); albeit at lower levels in 
metacluster 14. CD38+ expression was generally lower in CD8+ metaclusters across all cohorts, with 
VACC-IS and HC illustrating the lowest CD8+CD38+ expression. Overall, in S, NC and MN-peptide 
stimulations, VACC-IS exhibited lower proportions of specific metaclusters. Furthermore, HLA-DR+ was 
preferentially upregulated in CD8+ whereas, CD38+ expression was skewed towards CD4+ T-cells. 

 

Characterisation of T-cell subsets 

As proof-of-principle, we conducted a T-cell subset (TCS) immunophenotyping panel, post-S-peptide 
stimulation, on VACC-IC (n=3) and VACC-IS (n=2) participants. Initially, we used a manual gating 
strategy (Fig S4) where we compared both CD4+ and CD8+ T-cell subsets as illustrated in Figure 5a-b. 
Within CD4+ and CD8+ populations, we examined markers for T-cell differentiation (CD45RA, CD197, 
CD27 and CD28), senescence and exhaustion (CD57 and CD279 (PD1), respectively). As highlighted in 
Fig 5a, there were no significant differences between CD4+ T-cell subsets between VACC-IC and VACC-
IS. Both CD4+ naïve (Tn) and effector (Te) cells were higher, by 10.29% and 6.39%, respectively, in VACC-
IC compared to VACC-IS. Whereas CD4+ T-effector-memory (Tem) was higher by 16.74% in VACC-IS 
compared to VACC-IC. Both VACC-IC and VACC-IS had very similar T-central memory (Tcm) populations. 
Furthermore, senescent CD4+ T-cells (CD4+CD57+) were also similar between both cohorts; except for 
one VACC-IC participant who exhibited higher CD4+CD57+ cells (19.62%, Fig 5a).  

A similar trend was seen in CD8+ subsets, where Tn and Te were higher in VACC-IC, whilst Tem 
populations higher in VACC-IS (Figure 5b). Moreover, both VACC-IC and VACC-IS demonstrated a 
15.19% and 10.14% increase in CD8+ Te, respectively, compared to CD4+ Te. These observations were 
supported with elevated senescent-terminally differentiated CD8+ (CD8+CD57+) levels compared to 
CD4+. Overall, with exception of Tn, CD4+ and CD8+ Tem, displayed highest percentage values across both 
cohorts. Subsequently, Tem was identified as the predominant memory T-cell subset. Furthermore, 
no exhausted CD4+ and 8+ T-cells (CD4+CD57+PD1+) were seen in both cohorts using manual gating 
strategy.  
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Subsequently, we used the same unsupervised analysis, as used for activation-markers, where tiSNE 
analysis identified CD4+ and CD8+ TCS, whose percentages are represented alongside the heatmap; 
which portrays TCS marker expression in both cohorts (Fig 5c-d). Immediately, it can be recognised 
VACC-IS had absent CD4+ Te subset (Fig 5d), whereas a low percentage (1.55%) were identified for 
VACC-IC (Fig 5c). Unlike manual gating strategy, tSNE analysis demonstrated CD4+Tcm were dominant 
for VACC-IC (19.29%) and VACC-IS (18.39%); which were similar between both cohorts. Whereas, 
VACC-IS evoked a 7.91% increase in CD4+Tem compared to VACC-IC. Furthermore, as highlighted in 
Figure 5d, VACC-IS CD4+ Tn exhibited considerably weaker CD27 and CD28 expression, compared to 
VACC-IC. Furthermore, VACC-IS CD4+ Tn, along with Tcm, Tem and CD8+ Tem exhibited weak expression of 
exhausted T-cells (CD57 PD1, dark green on heatmap); whereas such CD57 PD1 phenotypes were 
absent in these subsets in VACC-IC. These subtle variations were not detected from use of manual 
gating strategy. 

Both VACC-IS CD8+ Tcm and Tem were greater by 7.12% and 14.94% (Fig 5d), respectively, compared to 
VACC-IC (Fig 5c). Whereas VACC-IC depicted a 6.50% increase in CD8+ Te compared to VACC-IS. Overall, 
tSNE analysis demonstrated CD4+Tcm as the dominant memory T-cell subset in both VACC-IC and VACC-
IS. Whereas CD8+ Te and Tem were the dominant subset in VACC-IC and VACC-IS, respectively, post S-
peptide stimulation.  

 

Ex vivo production of pro-inflammatory cytokines 

Multiplex cytokine analysis (IL-6, TNFα, IL-1β and IL-10) was performed on study cohorts after antigen-
specific stimulation in PBMCs with SARS-CoV-2 S, NC, and MN peptides (Fig 6a-c). We recognise IFNγ 
secretion as a key cytokine signature in viral infections [25], however as PBMCs were harvested within 
an IFNγ capture ELISpot plate this cytokine was excluded.  

Of the four cytokines analysed, three (IL-6, TNFα and IL-10) showed no significant differences in 
secretion between cohorts following S-peptide stimulation (Fig 6a). IL-1β levels were significantly 
elevated in both VACC-IC (median 55.85 pg/ml IQR: 30.58-241.4) and VACC-IS (median 77.25 pg/ml, 
IQR: 30.58-241.4) compared to UNVACC (Fig 6d, p=0.023 and p=0.008, respectively). IL-6 secretion 
demonstrated the highest magnitude of cytokine secretion in all cohorts after S-peptide stimulation. 
Interestingly, HC participants secreted the highest IL-6 levels (median 2711 pg/ml, IQR: 33.61-3779), 
whereas within convalescent cohorts, VACC-IC produced the highest IL-6 levels (median 482.4 pg/ml, 
IQR: 61.16-2894), which was 300.7and 372.7 pg/ml greater than UNVACC and VACC-IS, respectively. 
Similarly, VACC-IC secreted the highest TNFα levels (median 126.7 pg/ml, IQR: 55.97-362.5) which 
were 50.6, 80.47, and 31.29 pg/ml higher than HC, UNVACC and VACC-IS.  

Following NC-peptide stimulation, no significant differences in IL-6, TNFα and IL-10, were observed 
between cohorts (Fig 6b). Similar to S-peptide, significantly elevated IL-1β levels were detected in 
VACC-IC and VACC-IS compared to UNVACC in both NC (p=0.023 and p=0.004, respectively) and MN-
peptide stimulation (p=0.005 and p=0.025, respectively, Fig 6c). Furthermore, following MN-peptide 
stimulation (Fig 6c), IL-10 levels were modestly elevated in VACC-IC compared to VACC-IS (p=0.033). 
Overall, the magnitude of cytokine secretion observed across convalescent cohorts (UNVACC, VACC-
IC and VACC-IS) were all significantly greater for IL-6, TNFα and IL-1β than IL-10 (Fig S5). These findings 
are indicative of a strong bias towards Th1 cytokine secretion following S, NC and MN-peptide 
stimulation.  
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DISCUSSION 

Immunisation represents the most effective intervention against infectious diseases, such as SARS-
CoV-2; as evident by success of mass global vaccination programmes reducing viral spread and 
preventing severe disease [26]. Nevertheless, there are very few studies exploring the immunogenicity 
of COVID-19 vaccines in immunocompromised patients, such as solid-organ transplant recipients 
(SOTs) and haematological malignancies. Moreover, reduced vaccine-induced immune responses 
have been associated in SOTs, or in general, in patients on active immunosuppressive therapies [27]. 
To address this, we explored the immunogenicity of two SARS-CoV-2-19 licenced vaccines (either 
BNT162b2 mRNA or ChAdOx1 nCoV-19 adenoviral-vector) in double-vaccinated adult renal transplant 
recipients and those diagnosed with haematological malignancies. Unlike previous studies where 
vaccine immunogenicity was limited to early post-vaccine period [28], we enrolled immunosuppressed 
patients with a median time of 115 days post second-dose, thus, providing an up-to-date snapshot of 
their immune response to SARS-CoV-2 vaccination. We compared the humoral and cellular responses 
of this immunocompromised group (VACC-IS) to healthy vaccinated (VACC-IC), unvaccinated 
(UNVACC) and infection-naïve (HC) cohorts. Our data demonstrates that VACC-IS patients responded 
to the vaccine by producing comparable cellular and humoral responses to VACC-IC. However, findings 
from large prospective studies [29] are required to correlate such vaccine-induced response with 
protective immunity.  

Recent reports have highlighted diminished T-cell responses against COVID-19 vaccines in renal 
transplants patients receiving T-cell directed therapies [28] and in haematological cancer patients [30]. 
In response to these studies we examined vaccine-induced SARS-CoV-2 specific T-cell responses in 
these patients through using an IFNγ release assay. Reassuringly, 92% of VACC-IS patients (n=12) 
elicited a detectable T-cell response following spike (S) peptide stimulation. An identical T-cell 
response rate were observed in VACC-IC participants, demonstrating no differences in vaccine-
induced T-cell responses between VACC-IC and VACC-IS. Interestingly, a 17.24 % increase in IFNγ-
secreting SARS-CoV-2 specific T-cells were identified in VACC-IS compared to VACC-IC. Our findings 
are consistent with the preliminary OCTAVE trial data (ISRCTN: 12821688), where T-cell responses 
were similar across immunosuppressed and immunocompetent cohorts [29]. Similarly, both VACC-IC 
and VACC-IS PBMCs stimulated with SARS-CoV-2 peptides induced a predominantly Th1 response, 
with significantly elevated IL-6, TNFα and IL-1β compared to IL-10. Moreover, cytokine and T-cell 
responses in vaccinated cohorts demonstrated immunodominance towards S-peptide compared to 
NC an MN peptides; findings that are consistent with both vaccine clinical trials [19,20] 

Both VACC-IC and VACC-IS had one T-cell non-responder each; however, both these participants 
demonstrated positive serology for anti-spike SARS-CoV-2 antibodies. Moreover, 3 VACC-IS patients 
had received B-cell depleting therapy (Rituximab) 2 months following their second SARS-CoV-2 vaccine 
dose. Whilst 2/3 of these patients, were serologically positive, their anti-spike antibody levels were 
lower in comparison to those receiving T-cell targeted therapies. Such correlation between diminished 
vaccine specific humoral responses and B-cell depleting therapies have been reported in prior studies 
[31]. Nevertheless, all 3 patients receiving B-cell therapy, including the patient who failed to 
seroconvert, elicited T-cell responses to S-peptide stimulation. These results highlight that B-cell 
negative patients, due to primary or therapy-induced aetiologies, can still reap benefit from T-cell 
compartment of vaccination. 

A plausible explanation for comparable T-cell responses observed in our data, which were not seen in 
a study conducted by Prendecki et al [28], could be that our immunosuppressed patients had prior 
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natural infection, subsequently it could represent an augmented response to second-dose vaccine 
(“third” challenge in these convalescent patients). In fact, the same study reported a 54% increase in 
T-cell response in their immunosuppressed patients following second-dose vaccination [28]. Such 
findings support additional vaccine doses could provide an immunogenic “top-up” in 
immunosuppressed patients. Going forward, we propose a comparative evaluation of assessing 
vaccine immunogenicity between convalescent and infection-naïve vaccinated immunosuppressed 
patients. Findings from these studies could provide evidence-based data for optimal vaccine type and 
dosing schedule in these patients.  

All study participants, except HC-infection naïve, had prior natural infection, where unvaccinated 
(UNVACC) had the highest T-cell non-responders (n=3) to S-peptide stimulation. Interestingly, one 
UNVACC T-cell non-responder was also seronegative for anti-spike antibodies. This participant 
represented a house-hold case of COVID-19; with positive real-time polymerase chain-reaction 
nasopharyngeal result, and no significant medical history. We speculate one of two reasonings; firstly, 
this could represent a case of natural waning immunity, or, secondly, a false-positive result. We 
believe the latter is unlikely, as the house-hold contact was tested in our study and had detectable 
serology and T-cell response. Furthermore, all but one HC participant had no detectable T-cell 
responses. One HC participant had a weak response of 3 SFU to S-peptide. We favour two hypothetical 
models which could explain this. Firstly, this result could represent a cross-reaction with other six 
human pathogenic coronaviruses [32]. Secondly, as these were healthcare workers, both occupational 
and house-hold exposure could evoke very low concentration of SARS-CoV-2, which may be 
insufficient to elicit a B-cell response but may induce a T-cell response.  

Investigating the CD4+ and CD8+ vaccine-induced landscape highlighted key differences between 
VACC-IC and VACC-IS. Firstly, whilst no significant differences in CD4+ surface activation markers (CD38 
and HLA-DR) were observed between VACC-IC and VACC-IS, the abundance of the dominant 
metacluster population were reduced in VACC-IS. Similarly, reduction of metacluster abundance were 
identified in VACC-IS CD8+, however, with notable differences in T-cell activation marker expression. 
Over 40% of VACC-IC CD8+ metaclusters depicted dual HLA-DR+CD38+ expression with elevated levels 
of CD8+ Te (CD45RA+CD197-CD27-CD28-) cells post-S-peptide stimulation. Such finding is consistent 
with prior studies which have highlighted terminal effector T-cells overexpress the activation markers 
CD38 and HLA-DR [33]. However, the same metaclusters were identified as HLA-DR+CD38wk in VACC-
IS. Moreover, VACC-IS demonstrated a greater increase in CD8+ Tem (CD45RA-CD197-CD27+/-CD28- 

CD57+) subsets compared to VACC-IC. Such findings may explain the increased levels of IFNγ secreting 
SARS-CoV-2 specific T-cells observed in our ELISpot data; as CD8+Tem have shown to secrete the 
greatest IFNγ levels compared to other T-cell memory subsets [34]. 

Similar findings have been reported in a recent study investigating vaccine-induced response in 
multiple sclerosis patients on anti-CD20 therapy [35]. No differences in T-cell activation were seen in 
CD4+ compartments post-vaccination in both healthy and MS-patient cohorts. However, CD8+ HLA-
DR+CD38wk metaclusters were seen in MS patients, which were predominantly of the Tem subset in line 
with our findings in VACC-IS cohort. The authors concluded such findings in MS-patients are indicative 
of a robust CD8+ T-cell response compared to healthy controls. However, we hypothesise the lack of 
CD4+ T-follicular helper cells and vaccine-induced antibodies could have preferentially driven and 
augmented CD8+ T-cell responses. Whilst these findings are encouraging, we believe extensive deep-
immune profiling comprising a broader range of immunosuppressed patients are required to achieve 
a definitive illustration of vaccine-induced T-cell responses. We propose undertaking activation-
induced marker (AIM) assays on CD4+ and CD8+ antigenic specific cells. Such experimental design may 
provide in-depth information surrounding CD4+ T-cell priming by examining co-expression of CD200 
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and CD40L. Functional CD8+ T-cell responses can be investigated through examining IFNγ, TNFα, IL-2 
and granzyme B expression. Such functionality could be correlated with polyfunctional status of SARS-
CoV-2 specific T-cells as it remains unclear whether mono- or polyfunctional T-cells are of greater 
protective value [19]. 

Our study has some limitations. Firstly, the small number of participants and immunosuppressed 
patients, restricted to renal transplant and haematological malignancies, makes it challenging to draw 
firm conclusions. Moreover, demographical risk factors for COVID-19, such as ethnicity [36] were not 
controlled for as most participants were white-British. Consequently, these demographic variables 
could not be fully investigated in this study. Secondly, we were only able to re-bleed a small proportion 
of our VACC-IC and VACC-IS study participants for T-cell subset analysis. Going forward, we propose 
to extend the T-cell subset panel along with drop-in markers of activation and proliferation (such as 
Ki-67). This would provide a more detailed phenotypic landscape of T-cell memory subsets found in 
vaccinated healthy and immunosuppressed cohorts.  

Overall, our data confirms an immunological response to SARS-CoV-2 vaccines in immunosuppressed 
patients, when assessed by combination of cellular and serological assays. The observed vaccine-
induced responses within this immunosuppressed cohort were comparable to healthy vaccinated 
participants. Furthermore, our data highlights the robust and broad capacities of SARS-CoV-2 specific 
T-cells. Further work is required to decipher these responses with the continual emergence of global 
SARS-CoV-2 variants of concerns. Our findings warrant further work correlating the observed 
immunological responses with protective immunity and evaluate if longevity of these responses is 
comparable to healthy individuals. Such information may aid development of a standardised 
immunisation schedule required to optimise the vaccine-induced responses observed in this clinically 
vulnerable patient group.  
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Figure 1. Cellular responses in unvaccinated infection naïve (HC, n=3), unvaccinated convalescent (UNVACC, n=11), 
vaccinated immunocompetent (VACC-IC, n=12) and vaccinated immunosuppressed (VACC-IS, n=12) participants to Spike (A), 
Nucleocapsid (B) and Membrane (C) SARS-CoV-2 peptides. One VACC-IS patient was excluded from analysis due to failed 
positive control. Data representative of individual values expressed as IFNγ spot forming units (SFUs per 2.5×106 PBMCs), 
median (centre bar) and IQR (upper and lower bars). For visualization of data on log-scale, SFU values=0 is represented by 
0.1. Statistical analysis is performed by Kruskal-Wallis nonparametric test with Dunn’s post-hoc test; if not indicated P value 
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is not significant, *= P<0.05. HC, Healthy infection-naïve; UNVACC, unvaccinated convalescent; VACC-IC, vaccinated 
immunocompetent; VACC-IS, vaccinated immunosuppressed.  

Figure 2 
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Figure 2. Comparison of Spike, NC, and MN responses in VACC-IC (A), VACC-IS (B) and UNVACC (C) cohorts. One VACC-IS 
patient was excluded from analysis due to failed positive control. Data representative of individual values expressed as IFNγ 
spot forming units (SFUs per 2.5×106 PBMCs), median (centre bar) and IQR (upper and lower bars). For visualization of data 
on log-scale, SFU values=0 is represented by 0.1. Statistical analysis is performed by Kruskal-Wallis nonparametric test with 
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Dunn’s post-hoc test; if not indicated P value is not significant, *P<0.05, **P<0.01. HC, Healthy infection-naïve; UNVACC, 
unvaccinated convalescent; VACC-IC, vaccinated immunocompetent; VACC-IS, vaccinated immunosuppressed.  

Figure 3 
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Figure 3. Characterisation of humoral responses in all four cohorts. A.) Anti-SARS-CoV-2 humoral response was evaluated 
in infection naïve unvaccinated (HC, n=3), convalescent unvaccinated (UNVACC, n=11), convalescent vaccinated 
immunocompetent (VACC-IC, n=12), and convalescent vaccinated immunocompromised (VACC-IS, n=13) cohorts. Data 
representative of individual anti-spike SARS CoV-2 total Ab values (index-value), median (centre bar) and IQR (upper and 
lower bars). B.) Humoral responses in VACC-IS cohort based on immunosuppressive regimes. Responses were categorised 
into either combinative therapy of Tacrolimus, MMF and Prednisolone versus B-cell depleting therapy (Rituximab and R-
CHOP). Median time between patients receiving previous B-cell depleting infusion and serological analysis was 105 days 
(IQR: 37.50- 240.0). Data representative of individual anti-spike SARS CoV-2 total Ab values (index-value), median (centre 
bar) and IQR (upper and lower bars) for each therapeutic regime. Black dotted lines indicatives of upper limit of assay (4.00 
index value). Red dotted lines indicative of assay cut-off threshold for positivity (1.00 index-value). Statistical analysis is 
performed by Kruskal-Wallis nonparametric test with Dunn’s post-hoc test; if not indicated p value is not significant, 
**p<0.01, ****p<0.0001. MMF, Mycophenolate mofetil; Pred, Prednisolone; R-CHOP, Rituximab, Cyclophosphamide, 
Doxorubicin Hydrochloride, vincristine, and prednisolone.  
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Figure 4 
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Figure 4. Unsupervised analysis of CD4+ and CD8+ T-cells post S-peptide stimulation. A Representation of CD4+ phenotypic 
landscape, by coupling tSNE dimensional-reductional analysis with FlowSOM which was used to identify specific CD4+ T-cell 
metaclusters based on HLA-DR and CD38 expression for each cohort. B Heat map representing the different CD4+ 
metaclusters identified by FlowSOM for each cohort, where the colours in the heatmap represent the median acrsinh ratio 
for HLA-DR and CD38 expression of each metacluster. Heatmap colours vary from black for lower expression, to yellow for 
higher expression of each surface marker (HLA-DR, CD38). C The same unsupervised analysis was used to define the CD8+ 
phenotypic landscape, coupled with FlowSOM, for identification of CD8+ metaclusters between cohorts. D Heat map 
representing the median arcsinh ratio of HLA-DR and CD38 observed for each cohort.  
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Figure 5 
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Figure 5. Characterisation of T-cell subsets. Percentages of different CD4+ T-cell (A) and CD8+ T-cell subpopulations (B) are 
shown for VACC-IC (n=3) and VACC-IS (n=2), as obtained by manual gating strategy. Data representative of individual values, 
mean (centre bar) ±SEM (upper and lower bars). Statistical analysis conducted using two-sided Mann-Whitney test; if not 
indicated, p-value not significant. C. Heat map representing different CD4+ and CD8+ T-cell subpopulations for VACC-IC (C) 
and VACC-IS (D) cohorts, as identified by tiSNE. The tSNE plot was designed by concatenation of samples per cohort where 
equal sampling of 60,845 and 16,388 for CD4+ and CD8+, respectively, were used for VACC-IC. For VACC-IS, 60,932 CD4+ and 
16,397 CD8+ events were used. The colours in the heat map represents the median acrsinh ratio for each surface marker 
expression. Heatmap colours vary from black for lower expression, to yellow for higher expression. Tn is identified as 
CD45RA+CD197+CD27+CD28+; Tcm are CD45RA-CD197+CD28+CD27+/-; Tem are CD45RA-CD197-CD28-CD27+/-; Te are 
CD45RA+CD197-CD28-CD27-CD57+; Exhausted cells express CD57+CD279+ (PD1). Tn, Naïve T-cells; Tcm, T-central memory; 
Tem, T-effector memory; Te, T-effector.  
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Figure 6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Cytokine secretion following SARS-CoV-2 peptide stimulation. Multiplex cytokine analysis was conducted using 
supernatant after antigenic-specific stimulation with Spike (A), Nucleocapsid (NC), and Membrane (MN) peptides in HC (n=3), 
UNVACC (n=10), VACC-IC (n=11) and VACC-IS (n=13) participants. Two samples from UNVACC (n=1) and VACC-IC (n=1) were 
excluded due to laboratory technical error. Individual data points are illustrated as individual scatter plots for each cytokine, 
expressed as pg/ml, with median (centre bar) and IQR (upper and lower bars). Statistical analyses were determined using 
nonparametric Kruskal-Wallis test with Dunn’s post-hoc test for multiple comparisons. *P<0.05, **P<0.01. HC, Healthy 
infection-naïve; UNVACC, unvaccinated convalescent; VACC-IC, vaccinated immunocompetent; VACC-IS, vaccinated 
immunosuppressed. 
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